

NA4: Application Identification and Support

C. Loomis (CNRS), V. Floros (GRNET)

EGEE-II Final EU Review (CERN) 8-9 July 2008

www.eu-egee.org

Contents

Enabling Grids for E-science

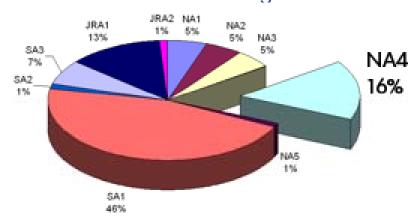
- NA4: Application Identification and Support
- Adoption of Grid Technology
- Common APIs and Tools
- EGEE User Community
- Exploitation Plans
- Summary
- Presentation highlights important pointed raised in DNA4.2.2 and DNA1.2.2.
 - Statistics broken down by date cover EGEE-II project.
 - Current status statistics are for June 2008.

Goals & Organization

Enabling Grids for E-science

- Expand use of EGEE infrastructure:
 - User: Person exploiting EGEE services.
 - Virtual Organization: Groups of users federating resources.
 - Applications: User codes, programs, and algorithms.
- Ensure current users are satisfied.

Steering Committee				
Coordinator	C. Loomis			
Deputy Coordinator	V. Floros			
VO Mgr. Group	F. Schaer			
NA4/NA1 Liaison	F. Harris			
Astron. & Astrophysics	C. Vuerli			
Comp. Chemistry.	M. Sterzel			
Earth Science	M. Petitdidier			
Fusion	F. Castejon			
High-Energy Physics	M. Lamanna			
Life Sciences	C. Blanchet V. Breton J. Montagnat			
GILDA	R. Barbera			
GASuC	G. Sipos			


NA4 in Numbers

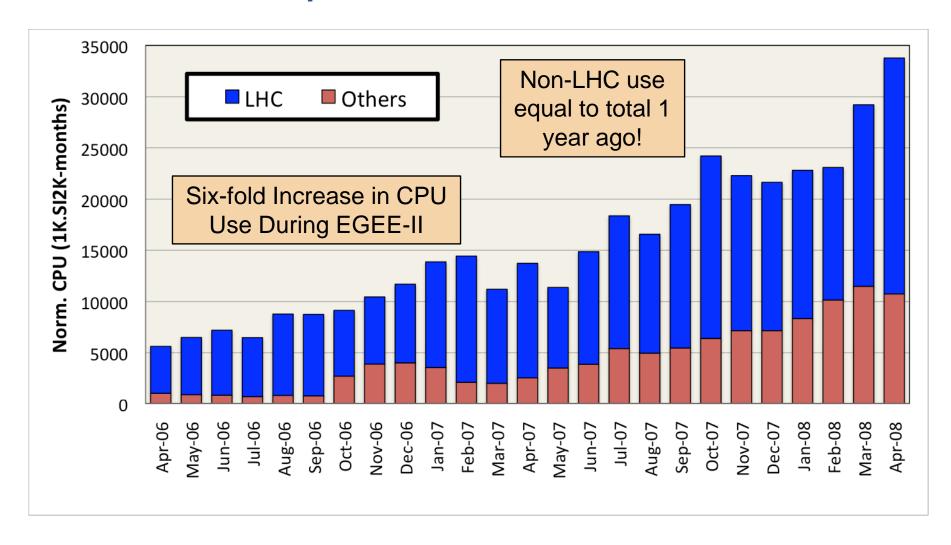
Enabling Grids for E-sciencE

40 (42) Partners, 25 (27) Countries

EGEE-II Budget

Federation	FTE	People	
Cent. Europe	6	51	
CERN	12	18	
FR	16	93	
DE/CH	3	17	
IT	18	54	
N Europe	3	31	
Russia	2	6	
SE Europe	5	79	
SW Europe	11	29	
UK/IRE	1	4	
Asia	0	4	
US	0	0	
Total	77	386	

27%


Adoption of Grid Technology

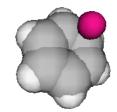
CPU Utilization

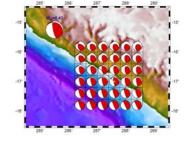
Enabling Grids for E-sciencE

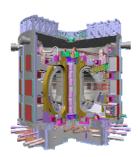
Recent level equal to ~32000 CPUs in continuous use.

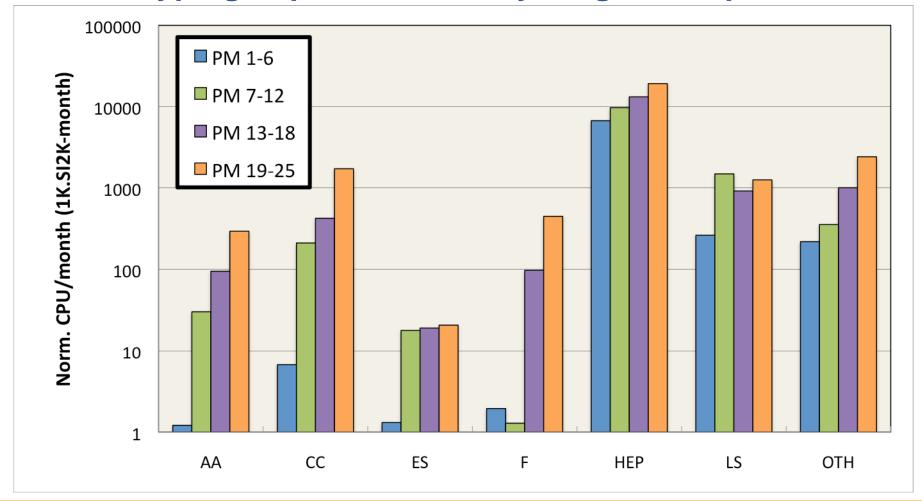
Reported Applications

Enabling Grids for E-sciencE


- 1st year
 - Growth in reported apps.
- 2nd year
 - Transition: prototype to production


	6/2006	2/2007	1/2008
Astron. & Astrophysics	2	8	9
Comp. Chemistry	6	27	21
Earth Science	16	16	18
Fusion	2	3	4
High-Energy Physics	9	11	7
Life Sciences	23	39	37
Others	4	14	21
Total	62	118	117




Condensed Matter Physics Comp. Fluid Dynamics Computer Science/Tools Civil Protection

Maturing User Communities

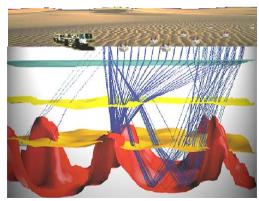
Enabling Grids for E-sciencE

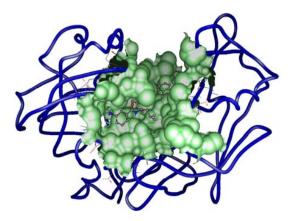
- Continued strong use in developed disciplines.
- Prototyping to production for younger disciplines.

Industrial Participation

Enabling Grids for E-science

Collaboration with industry in NA4:


- Discuss with industry how to port applications to grid.
- Network restrictions discourage direct collaboration on infrastructure.


Geocluster (CGGVeritas)

- Geoscience software package, used for example in petroleum search.
- Made available to researchers on EGEE grid infrastructure.

WISDOM

- Collaboration with BioSolveIT.
- Provided free licenses for docking calculation on EGEE.

License Models

Enabling Grids for E-science

- Expanding community needs commercial software on the grid.
 Working to find good license models:
 - VO License Model
 - § Used for comp. chemistry packages Gaussian and Turbomole.
 - § Puts burden of enforcement on VO manager.
 - § Inflexible and poorly adapted to workflow.
 - Client/Server License Model
 - § Used by MATLAB Parallel Computing Toolkit.
 - § Allows separate licenses for client and server.
 - § More flexible and allows sites to provide a "resource".
 - Solution Control of the State of Sta
- Collaboration with MathWorks:
 - Shows EGEE becoming target platform for software vendors.
 - Jointly written technical report is evidence on engagement on both sides (http://doc.cern.ch//archive/electronic/egee/tr/egee-tr-2008-001.pdf).

Common APIs and Tools

Middleware critical for success of NA4:

- gLite provides important core services.
- Application-level code and services supplements those services.

NA4 contributions:

- Improvements to gLite and gLite deployment.
- Development of high-level services.
- Identification of external services and packages.

Middleware

Enabling Grids for E-sciencl

Extensive testing of services

- HEP and life science communities leaders in this area
- Recent work with gLite WMS indicative of positive results.
- Advanced testing of prototypes, like Hydra for data encryption.

Collaborate through targeted working groups:

- MPI: improve parallel job support on grid
- SDJ: reduce scheduling latencies for quasi-interactive apps.
- MDM: mgt. of medical data on the grid
- Priority: provide mechanisms to define VO-level job priorities
- Portal: define best practices for grid portals
- VO Config.: improve sharing via simpler VO configuration
- DB Access: improve database access from grid
- Issue: Ensure recommendations are acted upon.

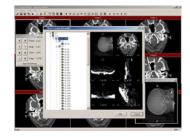
Development

Enabling Grids for E-science

Direct development has usually resulted in generic service used by several scientific communities.

AMGA: Metadata catalog.

Ganga: Job submission framework.


DIANE: Master/slave task manager.

Dashboard: VO and user-level monitoring.

MOTEUR: Workflow engine.

•MDM: Medical Data Management

RESPECT

Rec. External Software Pkgs. for the EGEE Community

- Identify useful, 3rd-party software that works with gLite.
- Make people aware of that software to avoid duplicated efforts.
- http://egeena4.lal.in2p3.fr/index.php?option=com_content&task=v iew&id=71&Itemid=63

Current packages:

- GridWay: Grid metascheduler.
- P-GRADE Portal: Workflow oriented graphical environment.
- Ganga: Job submission framework.
- DIANE: Master/slave task manager.
- <u>i2glogin</u>: Interactive login to grid nodes.
- GReIC: Database access and management.
- Discussing with int.eu.grid to add more of their products to the RESPECT program.

EGEE User Community

Virtual Organizations

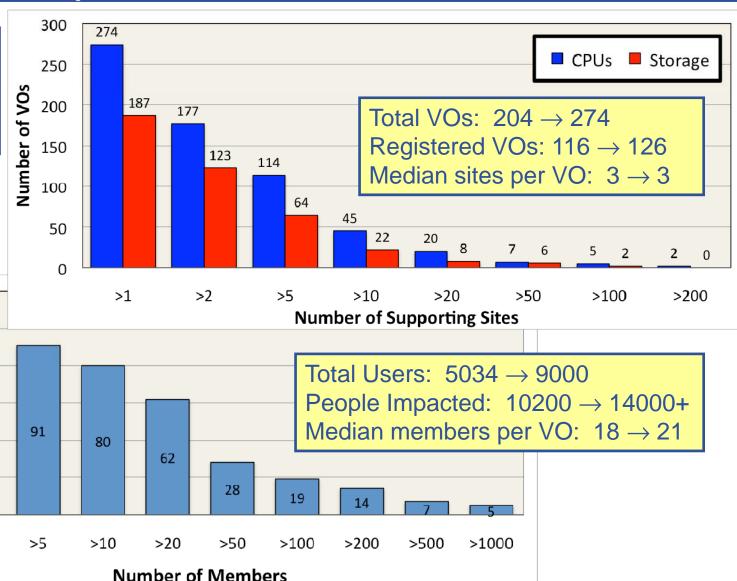
Enabling Grids for E-sciencE

EGEE is an open infrastructure; not all VOs register with the project.

120

100

80


60

40

20

0

Number of VOs

105

>1

104

>2

Support Services

- EGEE has comprehensive and efficient support system.
- Support from other activities:
 - GGUS (SA1), Training (NA3), Middleware (JRA1)
- Support activities within NA4:
 - Administrative support: OAG, VO Mgrs. Group
 - § Improved relations between VOs and operations.
 - § http://cic.gridops.org/index.php?section=home&page=volist
 - User support: UIG, NA4 Portal
 - § Improved documentation.
 - § http://egee-uig.web.cern.ch/egee-uig/production_pages/UIGindex.html
 - Application porting support: GILDA, GASuC

18

Previous Support Issues

Enabling Grids for E-sciencE

All of these issues have been resolved in EGEE-III via structural changes to the NA4 activity and tasks.

•Resource Allocation:

- Issue: No EGEE computing and storage resources to allocate to new virtual organizations as bridge to production use.
- Solution: Create seed resources for new communities.

•Application Porting Support:

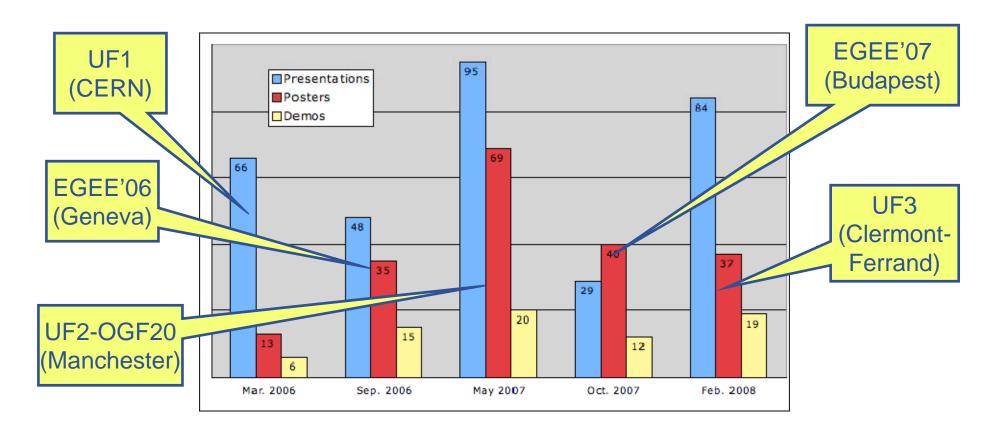
- Issue: Porting support is most efficient "in person". How to finance travel for unfunded people?
- Solution: Fund to partially finance travel to GASuC.

•Direct User Support:

- Issue: Providing user support to "outside" users.
- Solution: Team within NA4 to provide this type of support.

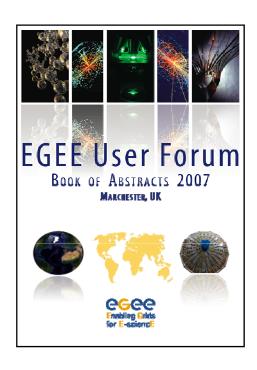
Application Porting Support

Enabling Grids for E-sciencE


- Porting an application to the grid usually requires expertise that new virtual organizations do not have.
- Training infrastructure (with NA3):
 - https://gilda.ct.infn.it/
 - GILDA team advises new users on EGEE grid technology.
 - t-infrastructure provides resources for testing new applications.
- Porting to production service:
 - http://www.lpds.sztaki.hu/gasuc/
 - Some prefer porting directly to production service.
 - GASuC (SZTAKI) now offers hands-on consulting to do this.
- Direct support from NA4 partners:
 - Motivated to port "local" applications.

Community Building

Enabling Grids for E-sciencE


- Meetings for specific scientific disciplines.
- Strong participation in technical working groups.
- User Forums & EGEE Conferences.

User Forum Results

- Rich scientific program.
- Some contributions submitted to referred journals.

BOOK OF ABSTRACTS 2'008:

CLERMONT-FERRAND, FRANCE

BOOK OF ABSTRACTS 2'008:

CCCC
Enabling Grids
for E-science

http://indico.cern.ch/conferenceDisplay.py?confld=7247

http://indico.cern.ch/conferenceDispla
y.py?confld=22351

Examples of Scientific Results

Enabling Grids for E-sciencE

Earth Science

Seismic noise calculation.

Fusion

- Ion kinetic transfer
- Simulation of wall interactions
- Stellarator optimization

Drug Discovery (WISDOM)

- Malaria: 6/30 compounds similar or better than PepstatinA
- Avian flu: 20% of compounds better than Tamiflu
- Ongoing tests with compounds from later calculations.

Collaborating Projects

Enabling Grids for E-sciencE

- Community building is also pursued through interaction with various collaborating projects
 - Share resources among communities
 - Re-user application software
 - Transfer scientific results and applications between projects
- Liaise via EGEE Conferences and User Forums
- In EGEE-III collaborations are formalized through MoUs

Exploitation Plans

Enabling Grids for E-science

 Detailed exploitation plans for each sector given in final periodic report. Generally, plans are to expand number, size, and complexity of ported applications.

EGEE-III

- Provides grid infrastructure for next two years.
- EGEE-II experience improved NA4 structure in EGEE-III.
- All current disciplines will continue into EGEE-III.
- Add Grid Observatory activity.
- Long-term exploitation depends on having a stable, production platform available.

Summary

Enabling Grids for E-sciencl

Adoption of grid tech. and growth of user community:

- 6x increase in CPU utilization over life of project
- Use by diverse set of VOs and scientific disciplines.

Work on common APIs and tools:

- Improvement of gLite itself through testing and enhancements.
- Direct development of tools.
- Identification of third-party tools via RESPECT.

Scientific disciplines continue with EGEE-III:

- Expand number, size, complexity of ported applications.
- Structural and task changes should address previous issues.
- Challenge: Effectively support large and growing community.
- Strong participation from people not financially supported by EGEE.