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The Evolution of vacuum energy

•The cosmological constant is very small today

•Expectation is that microscopic origin of cc is 
vacuum energy of quantum field theory
 
•Why is it so small vs. 

•If it is so small why is it not zero?

•Is it always very small (ie. is there an adjustment 
mechanism)?

1 Introduction: A brief history of vacuum energy

The discovery of the acceleration of the Universe [1] has led to one of the deepest puzzles of

modern day physics. While within cosmology the dark energy responsible for the acceler-

ation can simply be described by adding a new parameter, the cosmological constant (cc)

to the expansion equations, within particle physics this CC is expected to correspond to

the vacuum energy of the quantum field theory, determined by the underlying microscopic

physics. It is then difficult to explain why a simple estimate for the vacuum energy is many

orders of magnitude larger than the observed value Λ ∼ (10−3 eV)4, which is much smaller

than any other scales appearing in the Standard Model (SM) of particle physics. Super-

symmetry (SUSY) is the only known mechanism to set the CC to zero, however SUSY

breaking does contribute to the vacuum energy resulting in the oft quoted 60 orders of

magnitude discrepancy, known as the CC problem. On the other hand, if there is a (yet

to be identified) adjustment mechanism for the cosmological constant,1 then why is it not

exactly zero? This has led many scientists to embrace Weinberg’s approach, who predicted

the expected magnitude of the CC from anthropic considerations: if the CC was much

larger than the critical density then structure could not have formed given the observed

size of density perturbations recorded in the the cosmic microwave background.

Looking at the cosmic history of the Universe, one can realize that the CC problem is

in fact not a single problem, but several problems. At every phase transition the Universe

undergoes (when the vacuum expectation values of fields are changing) the vacuum energy

is expected to jump by an amount proportional to the critical temperature Tc:

∆Λi ∝ T 4
c,i . (1.1)

In order for the CC to not dominate after the phase transition (and thus allow ordinary

radiation dominated expansion of the Universe in accordance with successful structure

formation), the total CC after the end of the phase transition has to be quite precisely

equal to the change in the CC generated at the next phase transition. Viewed from this

angle the CC problem is even more disturbing: every time the CC is about to dominate

the energy density a new phase transition must happen, and the amount of cancellation

of the CC during the phase transition is already anticipating the future history of the

Universe. At temperatures above the electroweak scale the CC in the SM is of order M4
W .

As the Universe cools and goes through the EW phase transition the CC gets reduced to a

size of the order of the QCD scale, which then gets reduced to its current size during the

QCD phase transition. Depending on the UV completion of the SM there may be another

GUT and/or SUSY phase transition (or something else). A sketch of the evolution of the

pressure due to radiation together with that of the CC (assuming a GUT, EW and QCD

phase transition) is shown in Fig. 1 which illustrates the main features: the CC was much

larger at earlier times, nevertheless it always remained a sub-dominant component of total

1Any such adjustment mechanism is strongly contrained by the Weinberg no-go theorem [2], for recent
discussions see [3].
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The Evolution of vacuum energy

•If CC result of microphysics, in traditional picture cc 
should undergo a series of jumps at every phase 
transition
 
• Expectation

•Want CC to NOT dominate AFTER phase transition
(otherwise Universe accelerates too early)

•CC AFTER PT should be of order of        of NEXT
phase transition

•eg. before EWPT 
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The Evolution of vacuum energy

•                           so tuning

•At one phase transition Universe already ``knows” 
where the next phase transition will be

•At least QCD, EW PT, potentially also SUSY and/or 
GUT phase transition (if SUSY changes GUT 
expectations)

•In previous history       was much larger than now,
but never dominated previously! 

∆Λ ∼ M4
W Λ+∆Λ ∼ O(Λ4

QCD)

Λ



A simple sketch of the evolution of Λ

energy density except around the times of the phase transitions. A simple toy model for

the evolution of vacuum energy is presented in App. ??. This picture again underlines the

interpretation of the CC as a quantity determined by microscopic physics, which can vary

as the theory undergoes a series of phase transitions.
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Figure 1: Sketch of the evolution of the cosmological constant (red) and the total pressure

dominated by radiation (blue) during the exapansion of the Universe. Left: standard

evolution where the vacuum energy jumps at every phase transition (the ones pictured here

correspond to the GUT, electroweak and QCD phase transitions). Right: the evolution

assuming some form of adjustment mechanism for vacuum energy.

Whether this is indeed the basic picture of the evolution of the CC would be one

of the most important fundamental questions of physics to be verified experimentally.
2

Any such experiment would also yield verification of the microscopic origin of the CC, as

the gravitational effect of the vacuum energy of the quantum field theory. The difficulty

in verifying this picture experimentally is clear: until very recently, the CC was always

a sub-leading component of the energy density, and thus was never the main driver of

the expansion. Moreover the most recent known phase transition is that of QCD, at a

temperature TQCD
c ∼ 200 MeV. While this is a relatively low particle physics scale, most of

the phenomena relevant to experimental cosmology (nucleosynthesis, structure formation,

CMBR) are sensitive only to temperatures well below the QCD scale. Thus one would need

to consider new observables that are potentially sensitive to the details of the QCD or the

electroweak (EW) phase transitions. This is further complicated by the fact that both of

these phase transitions are thought to be quite weak: the QCD phase transition is likely a

cross-over, while the EW phase transition in the SM with a 125 GeV Higgs boson is second

order, whose imprints are weaker than those of strongly first order phase transitions would

be. For example a strongly first order PT is expected to lead to production of gravitational

waves, whose spectrum could potentially be sensitive to the evolution of the CC during

the PT. Since neither of the PT’s is expected to be first order, no significant gravitational

waves would have been produced.

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a CC
that is always zero, except for some spikes during the phase transitions.
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The Evolution of vacuum energy

•       goes through steps during phase transitions

• Whenever       would start to dominate a new phase 
transition happens

•       is always subleading even though it was much 
bigger than it currently is - challenging to find 
experimental tests of this picture

•Size of step of order

•Amount of tuning given by                            

Λ

Λ

Λ

(T (i)
c )4

(T (i+1)
c )4
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•       is always small except around PT’s

• When PT starts      starts growing 

• Adjustment mechanism kicks in and drives 
small again

•Will have its own timescale

•Heights will depend on details of adjustment, PT                            

Λ

Λ

Λ

Alternative evolution of Λ: with adjustment

∆tadj



ΛQCD

•Important goal: to determine experimentally which of 
these pictures is right one 
 
•If steps: lends more credence to anthropic 
arguments 

• If adjustment need to find mechanism

•Difficulty:      always sub-dominant 

•Last of these transitions occurred at               :                            
Above CMB, BBN, etc. Not much precision results 
from that period

Steps or adjustment?

Λ



Example: QCD PT from lattice

Deviation from radiation domination only during short 
period during PT...

Difficulty of finding effects

5

Figure 3: Comparison of the thermodynamics of lattice QCD
and of a theory of free quarks and gluons. In all cases, three
quark species (u, d, and s) have been included. The curve
labeled “hotQCD” is based on Ref. [11], while the curve la-
beled “Wuppertal” is from Ref. [12]; see the main text for de-
tails. The free field theory curve was obtained by setting the
masses of all the quarks and gluons artificially to 500MeV.
This counter-factual assumption is made in order to obtain
the narrowest possible peak in Θ/T 4 in the vicinity of the
QCD transition, illustrating that interactions have a signifi-
cant effect beyond introducing dynamically generated masses.

the p4, asqtad, and stout-improved staggered fermion ac-
tions, see [11, 12] and references therein.) Going forward,
we will use the p4 results of [11]; not that we endorse
them as more accurate, but instead because they are the
most different from free field results, providing us with
an upper limit of how sharp the QCD transition might
plausibly be as a result of interactions.
In order to obtain a complete account of the visible

sector degrees of freedom in the vicinity of the QCD tran-
sition, we combine the energy density and pressure ob-
tained from (6) and (7) with free field treatments of all
the leptons, and also the c and b quark, where all par-
ticles are constrained to have the same temperature. A
free field treatment is obviously not perfect (particularly
for the c quark), but improved approximations would be
complicated.

V. THE ELECTROWEAK PHASE TRANSITION

It is far from obvious that the electroweak transi-
tion can be approximated by free field thermodynam-

ics. The masses of all observed Standard Model parti-
cles owe their existence to a non-zero Higgs expectation
value, φ = σ ≡ 246GeV. But this expectation value is
eventually driven to zero at high temperatures. An elec-
troweak scale contribution to the cosmological constant
accompanies this change in the Higgs expectation value.
Meanwhile, electroweak interactions introduce thermal
corrections to particle masses. Without accounting prop-
erly for these thermal corrections and other loop effects,
the Higgs mass itself, now known to be approximately
125GeV in vacuum [13, 14], would become imaginary
once the Higgs expectation value falls below the point
where the tree-level potential is concave up. One of the
main conclusions of this section, illustrated in Fig. 4, is
that, close to the peak of Θ/T 4, free field thermodynam-
ics based on the vacuum particle spectrum nevertheless
provides a decent approximation to the ring-improved
one-loop treatment of [15], which is the simplest account
of the electroweak transition that avoids obvious inconsis-
tencies such as imaginary masses. At substantially higher
temperatures, we will show that the ring-improved one-
loop treatment predicts a negative value of Θ/T 4.

A more modern understanding of the electroweak tran-
sition [16], based in part on lattice simulations, is that the
transition is not weakly first order, as predicted by the
ring-improved one-loop treatment, but is instead a cross-
over. If anything, we expect the full non-perturbative
results for the trace Θ of the stress tensor to be closer
to the free field results than the ring-improved one-loop
results are, though it is likely that the ring-improved one-
loop treatment is still a good guide well above and well
below the cross-over.

The treatment of [15] proceeds in three steps:

1. First one produces thermally improved formulas
for all the fields using self-energy diagrams. The
schematic form of these masses is m2(φ, T ) =
m2

tree(φ) + g2T 2, where g is a gauge coupling and
φ is the Higgs field expectation value. The precise
forms of all the masses are listed in table I.

2. Next one assembles an effective potential, correct
through one-loop order, as follows:

(From Caldwell & Gubser 
2013)



•Further complication: neither EW nor QCD PT first 
order (at least in SM with 125 GeV Higgs) - no 
gravitational waves produced from bubble collisions...

•NEED: System where vacuum energy
                 fraction of total energy   
                 
                           Neutron star

             Epochs where vacuum energy is comparable           
                     to radiation

               Cosmic phase transitions & effects on 
                   primordial gravitational waves  
        

O(1)

Steps or adjustment?



•Establish experimentally that vacuum energy of 
microscopic physics is actually what show up in 
Einstein eq - or there is an adjustment mechanism  
 
•Only care about PT’s that actually change VEVs of 
fields 

•For example recombinations at z~ 1100 is a PT 
where e+p→H, with binding energy 13.6 eV

•Decrease of energy density of matter, but not a 
change in vacuum energy - this energy density gets 
diluted with expansion, while ve does not

Goal



•Need a system which is in different phase of matter

•QCD at large densities probably has those phases: 
at low T but large chemical potential CFL phase, and 
non-CFL phase, both with VEVs different from QCD 
condensates

•Core of neutron star may have this unconventional 
QCD phase

•If adjustment mechanism at play, expect to cancel 
effect of additional cc in the core. Will modify the 
structure and M(R) relation of ns’s

1. Neutron stars for testing vacuum
energy



The phases of QCD
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FIG. 1 (Color online) A schematic outline for the phase dia-
gram of matter at ultra-high density and temperature. The
CFL phase is a superfluid (like cold nuclear matter) and has
broken chiral symmetry (like the hadronic phase).

cross-flavor pairing, and those stresses will become more
severe as the density (and hence µ̄) decreases. This will
be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that
is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density
is zero up to the onset transition where it jumps to nu-
clear density, and then rises with increasing µ. Neutron
stars are in this region of the phase diagram, although
it is not known whether their cores are dense enough to
reach the quark matter phase. Along the vertical axis the
temperature rises, taking us through the crossover from
a hadronic gas to the quark-gluon plasma. This is the
regime explored by high-energy heavy-ion colliders.

At the highest densities we find the color-flavor locked
color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks
in Cooper pairing. This is described in more detail in
Secs. II, IV, and V. It is not yet clear what happens
at intermediate density, and in Secs. III and VI we will

2 As explained in Sec. I.A, we fix Nf = 3 at all densities, to main-
tain relevance to neutron star interiors. Pairing with arbitrary
Nf has been studied (Schäfer, 2000a). For Nf a multiple of three
one finds multiple copies of the CFL pattern; for Nf = 4, 5 the
pattern is more complicated.

discuss the factors that disfavor the CFL phase at inter-
mediate densities, and survey the color superconducting
phases that have been hypothesized to occur there.

Various aspects of color superconductivity at high tem-
peratures have been studied, including the phase struc-
ture (see Sec. VI.A), spectral functions, pair-forming
and -breaking fluctuations, possible precursors to con-
densation such as pseudogaps, and various collective
phenomena (Abuki et al., 2002; Fukushima and Iida,
2005; Hatsuda et al., 2006; Kitazawa et al., 2002, 2004,
2005a,b, 2007; Voskresensky, 2004; Yamamoto et al.,
2007). However, this review centers on quark matter at
neutron star temperatures, and throughout Secs. II and
III we restrict ourselves to the phases of quark matter
at zero temperature. This is because most of the phases
that we discuss are expected to persist up to critical tem-
peratures that are well above the core temperature of a
typical neutron star, which drops below 1 MeV within
seconds of its birth before cooling down through the keV
range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suf-
ficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disrup-
tive effects of the strange quark mass can be neglected,
the most symmetric and most attractive option is the
color-flavor locked phase, where quarks of all three colors
and all three flavors form conventional zero-momentum
spinless Cooper pairs. This pattern, anticipated in early
studies of alternative condensates for zero-density chi-
ral symmetry breaking (Srednicki and Susskind, 1981),
is encoded in the quark-quark self-energy (Alford et al.,
1999b)

〈ψα
i Cγ5ψ

β
j 〉 ∝ ∆CFL(κ+1)δα

i δβ
j + ∆CFL(κ−1)δα

j δβ
i

= ∆CFLεαβAεijA + ∆CFLκ(δα
i δβ

j + δα
j δβ

i )
(5)

The symmetry breaking pattern is

[SU(3)c] × U(1)B

× SU(3)L × SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]

→ SU(3)c+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2 (6)

Color indices α, β and flavor indices i, j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. ∆CFL is the CFL gap parameter. The Dirac
structure Cγ5 is a Lorentz singlet, and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-

From Alford, Schmitt, Rajagopal, Schaefer
2008



Neutron Stars

From Coleman Miller



•Will just consider two phases, inner and outer core

•Neglect crust, envelope, athmosphere...

•Take simple polytropic EOS’s for inner and outer 
cores

•Match them up at critical pressure for phase 
transition

•Add vacuum energy in inner core (and compare to 
case w/o vacuum energy)

Toy model for neutron stars



•At zero temperature, gravitational pressure balanced 
by pressure of fluid. Metric:

•Einstein eq’s (aka Tolman-Oppenheimer-Volkoff eq):

Toy model for neutron stars

the center of neutron stars can actually be significant. This is the reason that we will focus

our attention to the dynamics of neutron stars.

Next we present our analysis of the potential effects of an adjustment mechanism of the

vacuum energy on the structure of neutron stars. We will present a toy model for a neutron

star, with just two regions: the inner core region corresponding to the QCD condensate

phase, where the vacuum is different from that of low-temperature and low-density QCD,

and an outer core region in a more conventional phase with the same condensates that

appear all through space since the temperature of the Universe fell bellow about 150 MeV.

This ordinary condensate presumably contributes to the observed CC, and we are looking

for a difference in vacuum energies. This outer layer is usually treated as a perfect Fermi

fluid phase with no extra vacuum energy. Realistic neutron star simulations are of course

much more involved, with many more layers matched onto each other. We are essentially

neglecting the crust, the envelope and the atmosphere of the neutron star, and taking

oversimplified equations of state (EoS) in the inner and outer cores that contain nearly all

the mass. We are not attempting to present a precise description of the neutron stars, rather

to establish that the presence of the QCD-scale vacuum energy at the core of the neutron

star has a significant effect on the structure of the star, which would change significantly

if the vacuum energy in the core was not present. See ref. [4] for a review of the physics of

neutron stars.

We are assuming a static neutron star in equilibrium at close to zero temperature.

Gravitational pressure is balanced by the pressure of a perfect fluid, which undergoes a

phase transition at a critical pressure pcr. The general form of the metric of a static and

spherically symmetric spacetime is given by

ds2
= eν(r)dt2 − (1− 2GM(r)/r)−1 dr2 − r2dΩ2 . (2.1)

Einstein’s equations for a static and spherically symmetric configuration of a fluid with

pressure p(r) and energy density ρ(r) are given by the Tolman-Oppenheimer-Volkoff equa-

tions:

M �(r) = 4πr2ρ(r) , (2.2)

p�(r) = − p(r) + ρ(r)

r2 (1− 2GM(r)/r)

�
GM(r) + 4πr3p(r)

�
, (2.3)

ν �(r) = − 2p�(r)

p(r) + ρ(r)
, (2.4)

where � denotes differentiation with respect to the radial coordinate r. These are three

equations for four unknown functions: p(r), ρ(r), M(r) and ν(r). The extra equation

needed to solve the system is the EoS p = p(ρ) which is the only model dependent input

sensitive to the actual phase of the fluid in the various layers of the neutron star. The radius

of the neutron star, R, is determined by the condition of vanishing pressure p(R) = 0.

Outside the radius of the neutron star r > R the solution is matched to the Schwarzschild

solution in radial coordinates with total mass M(R).
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•Radius determined by position of vanishing pressure 
p(R)=0

•Assume phase transition happens at 

•Two different EOS’s

•Junction condition:                    continuous, thus
also cont. 
  

Toy model for neutron stars

pcrit
We model the fluid and its corresponding EoS in the following way: as the pressure

increases toward the center of the neutron star, it eventually reaches a critical value pcr

at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy Λ. There are therefore two EoS’s for the two different regions:

p =p(−)(ρ) , ρ = ρ(−) , p ≥ pcr , r ≤ rcr (2.5)

p =p(+)(ρ) , ρ = ρ(+) , p < pcr , r ≥ rcr . (2.6)

The usual Israel junction conditions of continuity of the induced metric and extrinsic cur-
vature at the critical surface require ν �(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
ρ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy Λ

p(−)(ρ) =pf (ρ)− Λ = Kργ
f − Λ (2.7)

ρ(−) =ρf + Λ (2.8)

where ρf and pf = Kργ
f represent the ordinary matter partial density and pressure that

include e.g. the effect of binding energy but not the vacuum energy. Notice that K = 1/3
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where k = m4
N/32π2 and mN is the nucleon mass. Notice that at small pressure and

density the Fermi fluid behaves as polytropic fluid with γ = 5/3, whereas at high density
and pressure it becomes a relativistic perfect fluid with p = ρ/3.

The phase transition only occurs when the Gibbs free energy (density) g = ρ + p− Ts
decreases across the critical surface, δg = g(+) − g(−) > 0. Assuming zero temperature and
using the continuity of pressure, this condition is equivalent to the requirement that the
energy density decreases as we move from the outer to the inner core

δρ = ρ(+)(pcr)− ρ(−)(pcr) = ρ(+)(pcr)−
��
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K

� 1
γ

+ Λ

�
≥ 0 . (2.10)

Therefore, there exists a critical value of the vacuum energy Λcr (which depends on pcr and
the EoS’s parameters) such that δρ(Λcr) = 0. The phase transition is thermodynamically

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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•For inner core use polytropic with cc:

•For outer core just polytropic 

• The value                   reproduces the small 
pressure limit of a Fermi fluid

•The cc can not be too large negative:
Otherwise partial pressure of QCD fluid negative

Toy model for neutron stars
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The value γ+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi
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Notice that the vacuum energy can’t be too negative. Indeed, should Λ be smaller

than −pcrit, the matter partial pressure pf would become negative triggering an instability

of the fluid that would separate in more than two phases of matter. Thus one has the

condition

Λ > −pcr . (2.11)

One may expect also an upper bound on Λ by thermodynamical considerations. The

equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density

g = (ρ + p)/n − Ts and n is the total number density. It may be possible that such

equilibrium condition can not be satisfied by taking Λ at arbitrarily large values. This

upper bound is difficult to be derived since dg = dp/n−sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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•Likely also a thermodynamic upper bound to satisfy
               for Gibbs free energy in equilibrium between 
phases. Will limit upper value of       to few

•Checked nicely reproduce the characteristic M(R) 
curves for neutron stars 
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Figure 4: R-M trajectories for a two-polytropic fluid with γ− = 1 and γ+ = 5/3, for various
values of the vacuum energy in the inner core, sign(Λ)|Λ|1/4 = −90MeV (red dotdashed),
−75MeV (brown dotted), 0MeV (black solid), 50MeV (blue dashed), and 100MeV (orange
dotdashed).

figures, in particular the reduction of the maximal mass with Λ for a given critical pressure,
can be understood by noticing that a larger value of Λ implies a higher matter pressure for
the same total pressure at the center. This makes the star end faster, and with a lower mass.

At this point it is important to take into consideration the fact that there is strong
observational evidence of neutron stars with masses above 2M⊙. Such large masses have
been taken as an indication in favor of pure hadronic neutron stars, given the difficulties
for EoS’s such as the MIT bag model to reproduce them.6 We are showing here that if the
vacuum energy, which is presumably included in the MIT bag model as part of the bag
constant, was to be relaxed towards negligible values, larger values of Mmax could easily be
obtained, improving consistency with observations. Nevertheless, it is certainly crucial that
a reliable EoS for the matter component is obtained, most likely from lattice simulations,
before extracting any conclusions in this regard.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. Up to date, radii
measurements have poor accuracy, and they have only been achieved for a handful of neu-
tron stars in binary systems, and inferred from X-ray measurements. A promising avenue

6See however Ref. [11] for a more refined EoS for quark matter including interactions, and from which
higher maximal masses can be obtained.
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6See however Ref. [11] for a more refined EoS for quark matter including interactions, and from which
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Figure 5: Right: Maximum mass with varying Λ for various values of pcr. Left: Maximum

mass contour lines in the vacuum energy and critical pressure plane.

that is expected to provide new data is the detection of gravitational waves from inspiralling

binary neutron stars [12]. From the properties of the gravitational wave signatures during

coalescence, different competing models for the equation of state of the neutron star can be

distinguished from one another. Properties such as the mass-radius relationship, and the

response of the star to tidal forces are imprinted on the “chirp” gravitational wave signature

given off by the collapsing binary pair. Given input from theoretical studies of QCD at

high densities where the non-CFL phase is expected to occur, and of the nuclear superfluid

equation of state that describes the physics of the outer core, Advanced LIGO can thus test

whether or not there are BSM contributions to the equation of state that may be related to

dynamics responsible for the small observed value of the vacuum energy density. The most

challenging aspect of this program, however, is to obtain this theoretical input. Progress

on first-principles determination of the finite chemical potential portion of the QCD phase

diagram has been slow, as the typical tools for non-perturbative studies, i.e. the lattice,

are ill-suited for large baryon densities. Further development of experimental techniques to

determine properties of exotic phases of QCD, along with the aforementioned advances in

theoretical predictions are key to determine the gravitational properties of vacuum energy.

4 Conclusions

A major goal for the gravitational wave detector program should be to measure the effect of
vacuum energy at the electroweak phase transition, this will require a new experiment that

fills in the gap between eLISA and NANOgrav Since eLISA’s peak sensitivity is around

13
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2M⊙

•Check effect of changing      on M(R) curve

•Depending on parameters maximal mass can 
change significantly

•But depends very strongly on equations of state 
parameters, critical pressure...  

•Status: maximal mass appears to be bigger than

•For now radius measurements difficult, only few 
known from X-ray measurements.

•Promising: GW from inspiralling ns binaries - should 
imprint M(R), EOS on chirp... 

Λ
Sensitivities of NS’s to vacuum energy



•Can we possibly say something about the actual 
vacuum energy of the Universe?

•Need to look for periods around phase transitions

•That is only time when vacuum energy might be 
sizable

• Especially QCD PT might be interesting

•Case study: look at effect of PT’s on primordial 
gravitational waves, assuming no GW’s produced 
during PT itself

2. Effect of PT’s on Primordial GW’s



•Tensor perturbations         transverse traceless

•Perturbation of metric in expanding Universe

•Usually conformal time τ is used
where expansion equation    
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Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (γ =

4/3, K = k
−1/3

) and Fermi Fluid in the outer core, matched at pcr = 2k/3 � (200 MeV)
4
,

for Λ = 0 (solid black), (150 MeV)
4

(dashed blue), (200 MeV)
4

(dot-dashed orange),

(223 MeV)
4

(dotted red). The turn-over in the low-mass and low-radius region corresponds

to stars with central pressure barely above the critical pressure. They are almost fully

Fermi fluids. Right: the same except it shows also a gray curve corresponding to Λcr

3 Effects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring

the gravitational effects of vacuum energy by identifying a system where it constitutes

a sizeable fraction of the total energy. The downside of this approach is that does not

directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in

Appendix A. In this section we investigate the effects of the changing CC on the propagation
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where H = ȧ/a is the Hubble scale wrt to time t, and
�
means derivative wrt to τ . The

linearized Einstein equation for the tensor perturbations hij (assuming no anisotropic stress

8

! " #$ ## #%

#&$

#&'

%&$

%&'

(&$

)*+,-. !/0"

1
*.
.#
!

! " # $ % &' && &(

&)'

&)!

()'

()!

*)'

+,-./0 !12"

3
,0
0#
!

Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (γ =

4/3, K = k
−1/3

) and Fermi Fluid in the outer core, matched at pcr = 2k/3 � (200 MeV)
4
,

for Λ = 0 (solid black), (150 MeV)
4

(dashed blue), (200 MeV)
4

(dot-dashed orange),

(223 MeV)
4

(dotted red). The turn-over in the low-mass and low-radius region corresponds

to stars with central pressure barely above the critical pressure. They are almost fully

Fermi fluids. Right: the same except it shows also a gray curve corresponding to Λcr

3 Effects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring

the gravitational effects of vacuum energy by identifying a system where it constitutes

a sizeable fraction of the total energy. The downside of this approach is that does not

directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in

Appendix A. In this section we investigate the effects of the changing CC on the propagation

of primordial gravitational waves. The reason why this might present some hope is that (as

we will see shortly) the effect of the leading radiation term is strongly suppressed, opening

the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with

h
i
i = 0, and ∂kh

k
i = 0) of the metric in an expanding Universe

ds
2

= a(τ)
2
�
dτ 2 − (δij + hij)dx

i
dx

j
�

, (3.1)

where we have used conformal time τ related to ordinary time t via a(τ)dτ = dt. The

expansion equation in conformal time is given by

a
�
= aȧ = a
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•Einstein equation:

•Expand in modes:

•Rescaled modes:

•Satisfy very simple equation:

•Exciting: equation depends on trace of EM tensor!

•Might think (we did for a while) that VE will have big 
effect before PT - NOT true 

Propagation of primordial gw’s
in the perturbed Tµν) is

h��
ij + 2Hh�

ij −∇2hij = 0 (3.3)

where H = a�/a is the Hubble parameter wrt conformal time τ . The spatial Fourier

transform reads

hij =

�

σ=+,−

�
d3k

(2π)3
�(σ)
ij h(σ)

k (τ)eikx
(3.4)

and the evolution equation for the rescaled modes (omitting the polarization index σ)

χk ≡ ahk (3.5)

becomes

χ��
k + (k2 − a��

a
)χk = χ��

k +

�
k2 − 4πG

3
a2T µ

µ

�
χk = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows

that during radiation domination the leading contribution to Tµν cancels out in the trace.

For truly conformal radiation Tµν = 0, since the equation of state parameter is w =
1
3 .

However, for radiation in the standard model the trace anomaly will generate a sub-leading

contribution from radiation, which has been calculated in great detail in [5]. A simplified

expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

� ≡ 1− 3w =
5

6π2

g4

16π2

(Nc +
5
4Nf )(

11
3 Nc − 2

3Nf )

2 +
7
2

NcNf

N2
c −1

(3.7)

For example the value for QCD around the TeV scale with αs ∼ 0.1, Nc = 3, Nf = 6

corresponds to � ∼ 6·10
−3

. Thus the total contribution is approximated by T µ
µ = �ρrad+4Λ,

where Λ can be as large as the energy density of the phase transitions happening in this era

(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is

the same as the one for χk except for the scale factor 1/a2
and an overall normalization (to

achieve canonical normalization):

Ph = 16πG
|χk|

2

a2
(3.8)

The additional scale factor 1/a2
is actually crucial for understanding the qualitative features

of the spectrum. Due to this suppression χ modes that do not grow with a will be strongly

suppressed. For wavelength k2 � 4πG
3 a2T µ

µ we just have a free wave equation for χ, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have

χ��

χ =
a��

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum

is the following. The T µ
µ term sets an effective damping horizon for the gravitational waves

2π

D2
gw

=
4πG

3
a2T µ

µ ∼
4πG

3
a2

(�ρrad + 4Λ + ρmat) (3.9)
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•Interpretation: if                 just free plane wave for χ

•But actual mode is χ/a getting damped by 1/a 

•Interpretation: if                   then equation

has solution                 and actual mode χ/a is frozen

•If mode outside horizon it is frozen. Once it enters 
horizon it is damped by  1/a

Propagation of primordial gw’s
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k2 >
a��

a

k2 <
a��

a

χ��

χ
=

a��

a

χ ∝ a



•What sets the horizon?

•Naively:

•This horizon is larger than Hubble horizon - 
suggests can not have any physical effect

•Indeed when entering this ``naive horizon” velocity 
of solution still very large - will keep expanding until 
reaches actual Hubble horizon

•Real condition: rate of entering actual horizon                  

Propagation of primordial gw’s

a��

a
=

4πG

3
a2Tµ

µ



•The physical quantity: 

•The power spectrum:

•Transfer function      :

•         is the primordial amplitude, usually assumed to 
have constant power 

Energy density in GW’s
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When considering primordial perturbations created during inflation, it is convenient to define the

transfer function T (τ, k) such that
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P
k T (τ, k) (11)

where the primordial amplitude from inflation h
P
k has a (approximately) constant power,
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which remains constant once the modes exit the horizon during inflation. H� is the Hubble constant

at horizon exit. We then have
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2T 2
(τ, k) (13)

Furthermore, we can write

ρh(τ) =
1
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It is then customary to work with the energy density per logarithmic scale, normalized to the critical
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(τ, k) (16)

It will be convenient for the arguments below to approximate T �
above assuming that the wave

modes are deep inside the horizon kτ � 1 (or k � aH), in which case

T �2
(τ, k) � k

2 T 2
(τ, k) (17)

As it is to be expected from the energy density carried by radiation.

There are two key points in order to understand the behavior of Ωh. First, all the modes of

interest became super horizon, k � aH, during inflation, and once outside the horizon their power

spectrum ∆2
h froze to the value set by inflation, independent of k, Eq. (12). This means that once

a mode reenters the horizon (for the first time) at τ = τhc, it does it asymptotically with the same

power, irrespective of when it enters. Thus we will approximate [T (τhc, k)]
2 � 1. Second, gravitons

are already decoupled from the thermal bath from the very start of the expansion. This is why,

once they are inside the horizon, and in the absence of sources, the evolution of the energy density
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•The energy density can then be written in terms of 
the transfer function

•The most commonly used quantity: energy density 
per log scale normalized to critical density

•Most useful expression: 

Energy density in GW’s
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•Assuming mode deep inside horizon:

•Given our previous discussion, after inflation modes 
start out outside the horizon and are frozen

•Mode enters at                   after which energy 
density gets diluted as radiation

•Approximate expression:  

Energy density in GW’s
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τ = τhc

for a given mode k should scale with the expansion as radiation ρh(τ) ∼ ρ̃h(τ, k) ∼ a
−4(τ). This

implies, from Eq. (14) and Eq. (17), that [T (τ < τhc, k)]2 ∼ a
−2(τ). And taking into account the

value of the transfer function at horizon crossing, we have1

T 2
(τ < τhc, k) � a

2(τhc)

a2(τ)
(18)

With this approximation,

Ωh(τ, k) � (∆P
h )2

12

k
2

H2(τ)

a
2(τhc)

a4(τ)
(19)

which we will use to understand several important behaviors below.

2 Interesting examples

2.1 Case 1

Consider a mode that entered the horizon during the radiation dominated era τhc < τeq, and k > keq.

Recall that during radiation domination a ∝ τ , H ∝ a
−2. Then, at a time still during radiation

domination, that is τ < τeq

Ωh(τ < τeq, k > keq) ∝ k
2
a

2
(τhc) ∝ 1 (20)

given that H
2
a

4 ∝ 1 and a
2(τhc) ∝ (aH)−2(τhc) � 1/k2. Consider now the same mode at a time

τ > τeq, that is during matter domination, where a ∝ τ 2 and H ∝ a
−3/2

Ωh(τ > τeq, k > keq) ∝
k

2
a

2(τhc)

a(τ)
∝

τ 2
eq

τ 2
(21)

given that H
2
a

4 ∝ a and we matched the scale factors from radiation to matter domination at

τ = τeq. Notice that the proportionality factor is the same for any mode k that entered during

radiation domination, thus Ωh(τ > τeq, k > keq)/Ωh(τ > τeq, k
�
> keq) � 1.

2.2 Case 2

Consider a mode that entered during matter domination, τhc > τeq and k < keq. One then has,

during that same era

Ωh(τ > τeq, k < keq) ∝
k

2
a

2(τhc)

a(τ)
∝ 1

(kτ)2
(22)

1We are neglecting the oscillation here.

3

for a given mode k should scale with the expansion as radiation ρh(τ) ∼ ρ̃h(τ, k) ∼ a
−4(τ). This

implies, from Eq. (14) and Eq. (17), that [T (τ < τhc, k)]2 ∼ a
−2(τ). And taking into account the

value of the transfer function at horizon crossing, we have1

T 2
(τ < τhc, k) � a

2(τhc)

a2(τ)
(18)

With this approximation,

Ωh(τ, k) � (∆P
h )2

12

k
2

H2(τ)

a
2(τhc)

a4(τ)
(19)

which we will use to understand several important behaviors below.

2 Interesting examples

2.1 Case 1

Consider a mode that entered the horizon during the radiation dominated era τhc < τeq, and k > keq.

Recall that during radiation domination a ∝ τ , H ∝ a
−2. Then, at a time still during radiation

domination, that is τ < τeq

Ωh(τ < τeq, k > keq) ∝ k
2
a

2
(τhc) ∝ 1 (20)

given that H
2
a

4 ∝ 1 and a
2(τhc) ∝ (aH)−2(τhc) � 1/k2. Consider now the same mode at a time

τ > τeq, that is during matter domination, where a ∝ τ 2 and H ∝ a
−3/2

Ωh(τ > τeq, k > keq) ∝
k

2
a

2(τhc)

a(τ)
∝

τ 2
eq

τ 2
(21)

given that H
2
a

4 ∝ a and we matched the scale factors from radiation to matter domination at

τ = τeq. Notice that the proportionality factor is the same for any mode k that entered during

radiation domination, thus Ωh(τ > τeq, k > keq)/Ωh(τ > τeq, k
�
> keq) � 1.

2.2 Case 2

Consider a mode that entered during matter domination, τhc > τeq and k < keq. One then has,

during that same era

Ωh(τ > τeq, k < keq) ∝
k

2
a

2(τhc)

a(τ)
∝ 1

(kτ)2
(22)

1We are neglecting the oscillation here.

3



•This is the most relevant case for studying PT’s, 
both QCD and EW happen in that epoch

•Condition for entering: 

•During RD

•Thus

•Spectrum for modes entering during RD constant!   

Modes entering during RD
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H
2 ∝ 1/a4

k2a2(τhc) ∝ const.



•Depart from pure RD during PT  

•Traditional description: changing number of rel. 
degrees of freedom in equilibrium

•Assuming PT is second order adiabatic (entropy 
conserved):

•For radiation

S =
ρ+ p

T
a3 = const.

ρ+ p ∝ g∗T
4

Effect of Phase transition

given that H
2
a

4 ∝ a and a
2(τhc) ∝ (aH)−4(τhc) � 1/k4. Again, the proportionality factor is the

same for any mode k that entered during matter domination, thus Ωh(τ > τeq, k < keq)/Ωh(τ >

τeq, k
�

< keq) � (k�/k)2. Actually, the proportionality factor is the same as for the modes that

entered during radiation domination, thus

Ωh(τ > τeq, k < keq)

Ωh(τ > τeq, k > keq)
� 1

(τeqk)2
(23)

Notice that, as expected, for modes that enter at matter-radiation equality, kτeq = 1, the ratio is

one.

2.3 Case 3

Let us consider a departure from pure radiation, due to quantum interactions, that is the trace

anomaly. In such a case p = ωρ with ω = (1 − �)/3, � parametrizing the departure from pure

radiation. Then it follows H
2 ∝ ρ ∝ a

−(4−�) and a ∝ τ 1/(1−�/2). For a mode entering the horizon

during this epoch

Ωh(τ < τeq, k > keq) ∝
k

2
a

2(τhc)

a�
∝ 1

(kτ)�
(24)

given that H
2
a

4 ∝ a
� ∝ τ � and a

2(τhc) ∝ (aH)−2/(1−�/2)(τhc) � 1/k2+�, for �� 1. This also implies

that, after matter-radiation equality, two different modes that entered during radiation domination

will have a relative spectral density

Ωh(τ > τeq, k > keq)

Ωh(τ > τeq, k
� > keq)

�
�

k
�

k

��

(25)

for � � 1. Given � > 0, modes that entered the horizon before will be more damped than those

that entered after.

2.4 Case 4

Let us now consider a localized departure from pure radiation, at a given time τt, due to a reduction

of the relativistic degrees of freedom in thermal equilibrium,

g�,a ≡ g�(τ > τt) �= g�(τ < τt) ≡ g�,b (26)

Assuming that entropy per unit comoving volume is conserved, s(T )a3(T ) = ct., and given that

s(T ) = (ρ + p)/T , it follows a ∝ T
−1

g
−1/3
� . Therefore H

2 ∝ ρ ∝ g
−1/3
� a

−4 (and a ∝ τ), before or

after the phase transition (but not during), the only difference being in g�. Then, even though the

4



•Expansion rate:

•Hubble:

•Energy density: 

•Depends only on # of DOF’s 

•Expect to see a step in GW density 

Ωh ∝ k
2
a
2(τhc) ∝ a

4(τhc)H
2
hc ∝ g

−1/3
∗

Effect of Phase transition

a ∝ T−1g−1/3
∗

H
2 ∝ ρ ∝ 1

a4
g
−1/3
∗



•Numerical evaluation

•Lattice simulations:

•       is vacuum energy that is changing from
to almost zero

•Valid between 100 MeV
 and 1 GeV

Θ = TrT = T 4

�
1− 1

(1 + e(T−c1)/c2)2

��
d2
T 2

+
d4
T 4

�

O(Λ4
QCD)

QCD Phase transition

d4
! "



•A typical result:

•Size of step given by change in DOF 60→20 under 
QCD, HUGE step 

QCD Phase transition
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•If all VE (ie. change EOS for Θ)

•Almost no difference. Effect of VE (vs. changing 
DOF’s) not measurable in QCD PT

QCD Phase transition
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•Simplified discussion: assume VE jumps at some 
time 

•Assume (for now) horizon monotonic (no mode re-
enters)

•Expansion

•Modes entering much before & after transition 
unaffected

Condition for strong effect of VE

τt

modes that enter the horizon before, k > kt = (aH)(τt), and after k < kt the transition are damped

at the same pace ρ̃h ∝ a
−4 (given that gravitons are decoupled from the thermal bath), they enter

the horizon at different rates, due to the difference in degrees of freedom in equilibrium

Ωh(τ > τt, k > kt)

Ωh(τ > τt, k
� < kt)

� k
2
a

2(τhc)

k�2a2(τ �hc)
=

�
g�,a

g�,b

�1/3

(27)

given that a
2(τhc) ∝ (aH)−2(τhc)g

−1/3
� (τhc) � 1/k2

g
1/3
� (τhc). Therefore, we expect a step in the

spectral density at kt. The actual shape of the step depends on the details of the transition.

Nevetheless, notice that the comoving horizon (aH)2 ∝ a
2ρ ∝ g

1/3
� T

2 is a continuously decreasing

function of temperature through the phase transition, and therefore we do not expect any peak in the

spectrum. Besides, during the Universe expands by an amount a(τa)/a(τb) � (Tb/Ta)(g�,b/g�,a)1/3.

2.5 Case 5a

If pure radiation domination is distorted by the presence of a non-vanishing cosmological constant,

the spectral density also suffers important deviations from the flatness obtained in Section 2.1.

During this era, the comoving horizon is given by

a
2
H

2 ∝ ρΛa
2 + ρ̄Ra

−2 (28)

where ρΛ = −pΛ ≡ Λ4 = ct.. Notice that an important change of behavior might happen if

at some point during the expansion the horizon changes monotonicity with a, from decreasing,

when ρ̄R/ρΛ > 1, to increasing ρ̄R/ρΛ < 1. For a fixed ρΛ and ρ̄R, this will eventually happen at

a = (ρ̄R/ρΛ)1/4. We will assume here that this point is never reached (but see Subsection 2.8), in

particular because of a jump down in the cosmological constant

ρΛ,a ≡ ρΛ(τ > τt) < ρΛ(τ < τt) ≡ ρΛ,b (29)

This jumps takes place at τt such that a(τt) < (ρ̄R/ρΛ)1/4. In this situation, no mode reexits the

horizon at any moment of the expansion, but they keep entering at k � aH. Before or after the

transition, the scale factor as a function of the horizon is given by

a
2 ∝ 2ρ̄R

(aH)2

�
1 +

�

1− 4
ρΛ

ρ̄R

�
ρ̄2

R

(aH)4

��−1

(30)

In this expression we have taken units such that 8πG/3 = 1. As expected, in the limit ρΛ → 0, we

reproduce a
2 ∝ (aH)−2. Therefore, for modes that entered the horizon after the transition, taking

ρΛ,a � 0, we have

Ωh(τ > τt, k � kt) ∝ k
2
a

2(τhc) ∝ 1 (31)

5

modes that enter the horizon before, k > kt = (aH)(τt), and after k < kt the transition are damped

at the same pace ρ̃h ∝ a
−4 (given that gravitons are decoupled from the thermal bath), they enter

the horizon at different rates, due to the difference in degrees of freedom in equilibrium

Ωh(τ > τt, k > kt)

Ωh(τ > τt, k
� < kt)

� k
2
a

2(τhc)

k�2a2(τ �hc)
=

�
g�,a

g�,b

�1/3

(27)

given that a
2(τhc) ∝ (aH)−2(τhc)g

−1/3
� (τhc) � 1/k2

g
1/3
� (τhc). Therefore, we expect a step in the

spectral density at kt. The actual shape of the step depends on the details of the transition.

Nevetheless, notice that the comoving horizon (aH)2 ∝ a
2ρ ∝ g

1/3
� T

2 is a continuously decreasing

function of temperature through the phase transition, and therefore we do not expect any peak in the

spectrum. Besides, during the Universe expands by an amount a(τa)/a(τb) � (Tb/Ta)(g�,b/g�,a)1/3.

2.5 Case 5a

If pure radiation domination is distorted by the presence of a non-vanishing cosmological constant,

the spectral density also suffers important deviations from the flatness obtained in Section 2.1.

During this era, the comoving horizon is given by

a
2
H

2 ∝ ρΛa
2 + ρ̄Ra

−2 (28)

where ρΛ = −pΛ ≡ Λ4 = ct.. Notice that an important change of behavior might happen if

at some point during the expansion the horizon changes monotonicity with a, from decreasing,

when ρ̄R/ρΛ > 1, to increasing ρ̄R/ρΛ < 1. For a fixed ρΛ and ρ̄R, this will eventually happen at

a = (ρ̄R/ρΛ)1/4. We will assume here that this point is never reached (but see Subsection 2.8), in

particular because of a jump down in the cosmological constant

ρΛ,a ≡ ρΛ(τ > τt) < ρΛ(τ < τt) ≡ ρΛ,b (29)

This jumps takes place at τt such that a(τt) < (ρ̄R/ρΛ)1/4. In this situation, no mode reexits the

horizon at any moment of the expansion, but they keep entering at k � aH. Before or after the

transition, the scale factor as a function of the horizon is given by

a
2 ∝ 2ρ̄R

(aH)2

�
1 +

�

1− 4
ρΛ

ρ̄R

�
ρ̄2

R

(aH)4

��−1

(30)

In this expression we have taken units such that 8πG/3 = 1. As expected, in the limit ρΛ → 0, we

reproduce a
2 ∝ (aH)−2. Therefore, for modes that entered the horizon after the transition, taking

ρΛ,a � 0, we have

Ωh(τ > τt, k � kt) ∝ k
2
a

2(τhc) ∝ 1 (31)

5

transition, as

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b (35)

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,a (36)

thus presenting a step as it was shown in Subsection 2.4. The uncertainty here is if there will be a

peak in the spectrum or not due to the change in the cosmological constant. As shown in Subsection

2.5, the peak is associated to the fact that k
�
t = (aH)a(τt) < kt = (aH)b(τt), which implies that the

bunch of modes with k ∈ (k�t, kt) enter the horizon all at once. When, besides the change in ρΛ,

there is a change in g�, one has

k
�
t =

kt√
1 + ξ

�
g�,b

g�,a

�1/6

(37)

Therefore the shape of the step in the spectral density depends then on the relation between ξ and

g�,b/g�,a. If g�,b > (1 + ξ)3
g�,a, one has k

�
t > kt and this just means that there is no peak in the

spectrum, being completely covered by the step in g�. On the other hand, if g�,b < (1+ξ)3
g�,a, there

will be a peak in the spectrum for a range of k’s close to k
�
t < kt. In this latter case, the spectrum

in between very large and very small wave numbers compared to kt is given by

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b

�
1 + ξ

�
kt

k

�4
�

(38)

Ωh(τ > τt, k
�
t � k � kt) ∝ g

−1/3
�,b

k
2

k
2
t

(1 + ξ) (39)

2.7 Case 5c

If we also include a departure of the radiation energy density from ω = 1/3, due to the trace

anomaly, as in Subsection 2.3.

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b

�√
ρ̄R,b

k

��b

(40)

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,a

�√
ρ̄R,a

k

��a

(41)

where we have considered a different trace anomaly contribution before and after the phase tran-

sition, �b and �a respectively, and �a, �b � 1. As in the case with � = 0, the magnitude of k
�
t with

respect to kt will determine if there is a peak in the spectrum. Now such a relation reads

k
�
t �

kt√
1 + ξ

�
g�,b

g�,a

�1/6 �
kt√
ρ̄R,b

�(�b−�a)/2

(1 + ξ)�a/4
(42)
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•However modes entering around transition

•Enhancement of modes

•Magnitude of peak set by     the maximal ratio of VE 
to radiation

•However if step much larger than peak, peak will be 
washed out, case for QCD - VE never becomes 
comparable to radiation & large change in DOF’s   

ρΛ,b/ξ = ρ̄R,b/a
4

Condition for strong effect of VE

modes that enter the horizon before, k > kt = (aH)(τt), and after k < kt the transition are damped

at the same pace ρ̃h ∝ a
−4 (given that gravitons are decoupled from the thermal bath), they enter

the horizon at different rates, due to the difference in degrees of freedom in equilibrium

Ωh(τ > τt, k > kt)

Ωh(τ > τt, k
� < kt)

� k
2
a

2(τhc)

k�2a2(τ �hc)
=

�
g�,a

g�,b

�1/3

(27)

given that a
2(τhc) ∝ (aH)−2(τhc)g

−1/3
� (τhc) � 1/k2

g
1/3
� (τhc). Therefore, we expect a step in the

spectral density at kt. The actual shape of the step depends on the details of the transition.

Nevetheless, notice that the comoving horizon (aH)2 ∝ a
2ρ ∝ g

1/3
� T

2 is a continuously decreasing

function of temperature through the phase transition, and therefore we do not expect any peak in the

spectrum. Besides, during the Universe expands by an amount a(τa)/a(τb) � (Tb/Ta)(g�,b/g�,a)1/3.

2.5 Case 5a

If pure radiation domination is distorted by the presence of a non-vanishing cosmological constant,

the spectral density also suffers important deviations from the flatness obtained in Section 2.1.

During this era, the comoving horizon is given by

a
2
H

2 ∝ ρΛa
2 + ρ̄Ra

−2 (28)

where ρΛ = −pΛ ≡ Λ4 = ct.. Notice that an important change of behavior might happen if

at some point during the expansion the horizon changes monotonicity with a, from decreasing,

when ρ̄R/ρΛ > 1, to increasing ρ̄R/ρΛ < 1. For a fixed ρΛ and ρ̄R, this will eventually happen at

a = (ρ̄R/ρΛ)1/4. We will assume here that this point is never reached (but see Subsection 2.8), in

particular because of a jump down in the cosmological constant

ρΛ,a ≡ ρΛ(τ > τt) < ρΛ(τ < τt) ≡ ρΛ,b (29)

This jumps takes place at τt such that a(τt) < (ρ̄R/ρΛ)1/4. In this situation, no mode reexits the

horizon at any moment of the expansion, but they keep entering at k � aH. Before or after the

transition, the scale factor as a function of the horizon is given by

a
2 ∝ 2ρ̄R

(aH)2

�
1 +

�

1− 4
ρΛ

ρ̄R

�
ρ̄2

R

(aH)4

��−1

(30)

In this expression we have taken units such that 8πG/3 = 1. As expected, in the limit ρΛ → 0, we

reproduce a
2 ∝ (aH)−2. Therefore, for modes that entered the horizon after the transition, taking

ρΛ,a � 0, we have

Ωh(τ > τt, k � kt) ∝ k
2
a

2(τhc) ∝ 1 (31)

5

transition, as

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b (35)

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,a (36)

thus presenting a step as it was shown in Subsection 2.4. The uncertainty here is if there will be a

peak in the spectrum or not due to the change in the cosmological constant. As shown in Subsection

2.5, the peak is associated to the fact that k
�
t = (aH)a(τt) < kt = (aH)b(τt), which implies that the

bunch of modes with k ∈ (k�t, kt) enter the horizon all at once. When, besides the change in ρΛ,

there is a change in g�, one has

k
�
t =

kt√
1 + ξ

�
g�,b

g�,a

�1/6

(37)

Therefore the shape of the step in the spectral density depends then on the relation between ξ and

g�,b/g�,a. If g�,b > (1 + ξ)3
g�,a, one has k

�
t > kt and this just means that there is no peak in the

spectrum, being completely covered by the step in g�. On the other hand, if g�,b < (1+ξ)3
g�,a, there

will be a peak in the spectrum for a range of k’s close to k
�
t < kt. In this latter case, the spectrum

in between very large and very small wave numbers compared to kt is given by

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b

�
1 + ξ

�
kt

k

�4
�

(38)

Ωh(τ > τt, k
�
t � k � kt) ∝ g

−1/3
�,b

k
2

k
2
t

(1 + ξ) (39)

2.7 Case 5c

If we also include a departure of the radiation energy density from ω = 1/3, due to the trace

anomaly, as in Subsection 2.3.

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,b

�√
ρ̄R,b

k

��b

(40)

Ωh(τ > τt, k � kt) ∝ g
−1/3
�,a

�√
ρ̄R,a

k

��a

(41)

where we have considered a different trace anomaly contribution before and after the phase tran-

sition, �b and �a respectively, and �a, �b � 1. As in the case with � = 0, the magnitude of k
�
t with

respect to kt will determine if there is a peak in the spectrum. Now such a relation reads

k
�
t �

kt√
1 + ξ

�
g�,b

g�,a

�1/6 �
kt√
ρ̄R,b

�(�b−�a)/2

(1 + ξ)�a/4
(42)
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•Even for other (hypothetical) PT’s form strongly 
constrained by basic conditions if adiabatic

•Positive entropy 

•Positive energy densities

•No contracting solutions

•Apply first condition:    

Condition for strong effect of VE

ρ+ p ≥ 0 → dp

dT
≥ 0

ρ > 0

ρΛ ≥ 0

1 On thermal equilibrium and entropy conservation

p + ρ

T
� ∆pT

∆T
> 0 (1)

∆pR

∆T
=

∆g

∆T

π2

90
T 4 + g

π2

90
4T 3 =

π2

90
(T

∆g

∆T
+ 4g)T 3 > 0 (2)

∆pΛ

∆T
= −∆V

∆T
(3)

∆pR/∆T

∆pΛ/∆T
= −π2

90
(T

∆g

∆T
+ 4g)

∆T

T

T 4

∆V
= −1

3
(T

∆g

∆T
+ 4g)

∆T

T

1

g∆V/ρR
> 1 (4)

∆g

∆T
T � 4g ,

∆pR/∆T

∆pΛ/∆T
� −gi − gf

3gi

1

∆V/ρR
=

gi − gf

3gi

1

ρΛ/ρR
> 1 ⇒ ρΛ/ρR <

gi − gf

3gi
(5)

∆g

∆T
T � 4g ,

∆pR/∆T

∆pΛ/∆T
� −4

3

∆T

T

1

∆V/ρR
=

4

3

∆T

T

1

ρΛ/ρR
> 1 ⇒ ρΛ/ρR <

4

3

∆T

T
(6)

ρΛ/ρR <
4

3

∆T

T
� 1

3

∆g

g
� (

gi

gf
)1/3 (7)

2 Basics

The energy density contained in gravitational waves at a given conformal time τ is given by,

ρh(τ) =
1

16πGa2(τ)

�
d3k

(2π)3
|h�

σ,k|2 (8)

where the integral runs over comoving wave numbers k, � ≡ ∂/∂τ , summation over polarizations

σ = +,× is understood, and hσ,k is the spatial average of the Fourier transform of the tensor

perturbation of the metric hij,

�hσ,khσ�,k�� = (2π)3δσσ�δ(k + k
�)|hσ,k|2 , hij(τ,x) =

�
d3k

(2π)3
�σ
ijhσ,k(τ)eik·x (9)

The associated power spectrum is given by

∆2
h =

4k3

2π2
|hk|2 , |hk|2 = |hσ,k|2 . (10)

1
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The associated power spectrum is given by

∆2
h =

4k3

2π2
|hk|2 , |hk|2 = |hσ,k|2 . (10)

1



•Two options:

•                                          no peak at all                 

•                                                          possibly limited                   
                                                                    peak

•Best example we found so far for a peak due to VE:

•Hypothetical PQ PT with few scalars, one sets VEV 
other sets quartic (and hence critical Temp). 

Condition for strong effect of VE

1 On thermal equilibrium and entropy conservation

p + ρ

T
� ∆pT
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> 0 (1)

∆pR
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2 Basics

The energy density contained in gravitational waves at a given conformal time τ is given by,

ρh(τ) =
1

16πGa2(τ)
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d3k

(2π)3
|h�

σ,k|2 (8)
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•Best example with peak so far: 

•PQ-like PT at            GeV, DOF 119→108, Λ as large 
as possible >1/3 of radiation

A peak in the GW spectrum
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•Depends on the time scale for the adjustment

•If very quick - might just set VE to zero always. In 
this case hard to make any distinction in QCD & EW  

•Other possibility: adjustment time scale somewhat 
larger than that of PT

•In this case expect a period where VE dominates 
after the PT

•Could have a short inflation-like period after PT

Effect of adjustment mechanism



•Some of the modes that entered will leave again

•Some modes will only enter later
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•Some of the modes that entered will leave again

•Some modes will only enter later
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•Some of the modes that entered will leave again

•Some modes will only enter later
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•Affected modes will be enhanced

•Expect to see a peak which can be large depending 
on the duration of the VE domination

•Very crude sketch for QCD with adjustment 
(preliminary!)

Effect of short inflation
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Sensitivity of future experiments



•An important part of our standard picture of 
cosmology & particle physics: VE should change 
during PT’s

•Never dominates - how could we check 
experimentally?

•Look for systems where vacuum energy is sizeable 
fraction
Neutron stars - should cause measurable deviation in 
maximal mass of NS’s

•Look for effect during PT where VE sizable:
Primordial gravitational waves - hard to see VE in 
standard scenario, possible peaks with adjustment?

Summary


