Resummation of jet (veto) observables

Frank Tackmann

Deutsches Elektronen-Synchrotron

ATLAS Higgs workshop December 17, 2014

Introduction

Frank Tackmann (DESY)

2014-12-17 0 / 22

< **∂** >

Event Categorization

Data separated into exclusive kinematic categories to optimize S/B and gain access to different production channels

Requires theory predictions for each exclusive category

- Heavily relies on MC predictions
- In the end, want to combine results from all categories
- ⇒ Consistent theory description, treatment of uncertainties and their correlations are essential

Frank Tackmann (DESY)

Resummation of jet (veto) observables

Exclusive Region

- QCD final state is restricted to "LO-like" kinematics
- Only soft or collinear (ISR or FSR) emissions are allowed that turn the primary hard partons into jets (but don't produce additional hard jets)
 - In MC equivalent to parton-shower regime

Why we care about this region in practice

- Signal region of interest is typically defined by the LO topology
- This is also where most of the signal cross section is

Frank Tackmann (DESY)

Resummation of jet (veto) observables

2014-12-17 2/22

< A >

Types of Kinematic Variables

Important to distinguish two types of kinematic variables

- Hard kinematics: Describe the underlying LO-like kinematics
- "Resolution" variables *p*_{res}: Determine how exclusive we are, i.e. restrict/characterize additional soft/collinear emissions:
 - Without additional emissions (tree level): $p_{\rm res} = 0$
 - ightarrow Forcing $p_{
 m res}
 ightarrow 0$ restricts final-state into exclusive LO-like region

For example

hard process	hard kinematics	resolution variables		
gg ightarrow H	Y _H	$p_T^H, p_T^{ ext{jet1}} ~ (E_T, \mathcal{T}_f^{ ext{jet1}},)$		
$gg ightarrow H\!+\!1$ jet	$Y_H, y_{ ext{jet1}}, m_{Hj} \ p_T^H, p_T^{ ext{jet1}},$	$p_T^{Hj}, p_T^{ m jet2}, m_j,$		

 $\Rightarrow p_T^H, p_T^{\rm jet1}, ...$ change role from resolution in H to hard in H+1 jet

Large Logarithms

For any type of exclusive measurement or restriction

• Constraining radiation causes large logs of $\alpha_s^n \ln^m (p_{\rm res}/m_H)$ (due to sensitivity to soft/collinear divergences)

Example: jet p_T veto in $gg \rightarrow H + 0$ jets

• Restricts ISR to $p_{
m res} \equiv p_T < p_T^{
m cut}$

$$\sigma_0(p_T^{
m cut}) \propto 1 - rac{lpha_s}{\pi} \, C_A 2 \ln^2 rac{p_T^{
m cut}}{m_H} + \cdots$$

⇒ Perturbative corrections grow large for decreasing p_T^{cut} (stronger restriction) ⇒ Should be resummed to all orders to obtain reliable precise predictions

Frank Tackmann (DESY)

< A >

New Jet Observables

Perturbative Regions of Phase Space

Resummation region (in MC: parton shower regime)

- Differential spectrum at low $p_{\rm res} \ll m_H$:
 - resum large logs $\alpha_s^n \ln^m (p_{\rm res}/m_H)$
- Excl. $H\!+\!0$ -jet cross section: integral up to $p_{
 m res} \leq p^{
 m cut} \ll m_H$
 - resum large logarithms $lpha_s^n \ln^m (p^{
 m cut}/m_H)$

New Jet Observables

Perturbative Regions of Phase Space

Fixed-order region (no logs, in MC: fixed-order matrix elements)

- Differential spectrum at high $p_{\rm res} \sim m_H$:
 - Hard kinematics of inclusive $H + (\geq 1)$ -jet process
- Integral up to $p_{
 m res} \leq p^{
 m cut} \sim m_H$
 - Inclusive $H + (\geq 0)$ -jets cross section

New Jet Observables

Perturbative Regions of Phase Space

Transition region (in MC: where ME+PS matching comes in)

- Often experimentally the most relevant while theoretically the most subtle
- Best prediction for entire spectrum requires properly matched resummation+fixed order calculation: NLL+NLO, NNLL+NNLO, ...
 - Consistent treatment of theory uncertainties across spectrum (for both differential and integrated in pres) is very nontrivial because it requires nontrivial correlations

Frank Tackmann (DESY)

Introduction

Jet **p**_T Resummation

New Jet Observables

Theory Uncertainties in Jet Binning

where $L = \ln(p_T^{\rm cut}/m_H)$

⇒ Same logarithms appear in the exclusive 0-jet and inclusive (≥ 1)-jet cross section and cancel in their sum

Frank Tackmann (DESY)

Resummation of jet (veto) observables

Theory Uncertainties in Jet Binning

$$\sigma_{ ext{total}} = \int_0^{p_T^{ ext{cut}}} \mathrm{d}p_T \, rac{\mathrm{d}\sigma}{\mathrm{d}p_T} + \int_{p_T^{ ext{cut}}}^\infty \mathrm{d}p_T \, rac{\mathrm{d}\sigma}{\mathrm{d}p_T} \equiv \sigma_0(p_T^{ ext{cut}}) + \sigma_{\geq 1}(p_T^{ ext{cut}})$$

Complete description requires full theory covariance matrix for $\{\sigma_0, \sigma_{\geq 1}\}$

 General physical parametrization in terms of 100% correlated and 100% anticorrelated pieces

$$C = \begin{pmatrix} (\Delta_0^{\mathbf{y}})^2 & \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} \\ \Delta_0^{\mathbf{y}} \Delta_{\geq 1}^{\mathbf{y}} & (\Delta_{\geq 1}^{\mathbf{y}})^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\mathrm{cut}}^2 & -\Delta_{\mathrm{cut}}^2 \\ -\Delta_{\mathrm{cut}}^2 & \Delta_{\mathrm{cut}}^2 \end{pmatrix}$$

• Overall "yield" uncertainty is fully correlated between bins

- $\Delta_{\text{total}}^{y} = \Delta_{0}^{y} + \Delta_{\geq 1}^{y}$ reproduces fixed-order uncertainty in σ_{total}
- "Migration" uncertainty Δ_{cut}
 - Induced by binning cut and drops out in sum $\sigma_0 + \sigma_{\geq 1}$
 - ▶ $p_T^{ ext{cut}} \ll m_H$: $\Delta_{ ext{cut}} \sim$ uncertainty in $\ln(p_T^{ ext{cut}}/m_H)$ series

Migration Uncertainty at Fixed Order

In a pure fixed-order calculation separating Δ^y and $\Delta_{\rm cut}$ is ambiguous so we have to make some assumptions

- naive scale variation: sets $\Delta_{cut} = 0 \rightarrow$ becomes wrong for small p_T^{cut}
- ST method: take $\Delta_{\text{cut}} \equiv \Delta^{\text{FO}}(\sigma_{\geq 1}), \Delta_0^{\text{y}} \equiv \Delta^{\text{FO}}(\sigma_{\text{total}})$
 - ▶ results in treating $\Delta^{\rm FO}(\sigma_{\rm total})$ and $\Delta^{\rm FO}(\sigma_{\geq 1})$ as uncorrelated
- JVE method: take $\Delta_{\text{cut}} = \sigma_{\text{total}} \Delta(\epsilon_0), \Delta_0^{\text{y}} \equiv \epsilon_0 \Delta^{\text{FO}}(\sigma_{\text{total}})$
 - assumes that σ_{total} and 0-jet effiency ϵ_0 are uncorrelated

 \Rightarrow Resumming p_T^{cut} logs is necessary to cure bad behavior at small p_T^{cut}

Frank Tackmann (DESY)

< A >

Frank Tackmann (DESY)

Resummation of jet (veto) observables

2014-12-17 8 / 22

< 17 >

Resummation for $p_T^{ m jet}$

For $R^2 \ll 1$ local jet clustering algorithm factorizes into purely soft and collinear jets [Becher, Neubert, Rothen; Tackmann, Walsh, Zuberi]

Allowing to factorize cross section for $p_T^{\rm jet} < p_T^{\rm cut}$

 $\sigma_0(p_T^{\text{cut}}) = H_{gg}(m_H^2, \mu) B_g(p_T^{\text{cut}}, R, \mu, \nu) B_g(p_T^{\text{cut}}, R, \mu, \nu) S_{gg}(p_T^{\text{cut}}, R, \mu, \nu)$

Logarithms are split apart and resummed using coupled RGEs in μ and ν [Using SCET-II with rapidity RGE by Chiu, Jain, Neill, Rothstein]

Introduction

Jet *p*_{*T*} Resummation

Profile Scales

[Ligeti, FT, Stewart '08; Abbate et al. '10; Berger et al. '10]

Resummation region: Large logs are resummed using canonical scaling

 $egin{aligned} \mu_H &\sim -\mathrm{i}m_H \ \mu_S &\sim p_T^{\mathrm{cut}},
u_S &\sim p_T^{\mathrm{cut}}, \ \mu_B &\sim p_T^{\mathrm{cut}},
u_B &\sim m_H \end{aligned}$

• FO region: Resummation must be turned off by taking

 $\mu_B, \mu_S,
u_S,
u_B
ightarrow \mu_{
m FO} \sim m_H$

- Transition region: Profile scales $\mu_i = \mu_i(p_T^{\text{cut}})$ and $\nu_i \equiv \nu_i(p_T^{\text{cut}})$ provide smooth matching between both limits
 - ⇒ Ambiguity is a scale uncertainty

New Jet Observables

Uncertainties from Profile Scale Variations

Resummation framework is flexible and general enough to allow estimating full theory uncertainty matrix [Stewart, FT, Walsh, Zuberi '13]

$$C = \begin{pmatrix} \Delta_{\mu 0}^2 & \Delta_{\mu 0} \, \Delta_{\mu \ge 1} \\ \Delta_{\mu 0} \, \Delta_{\mu \ge 1} & \Delta_{\mu \ge 1}^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\rm resum}^2 & -\Delta_{\rm resum}^2 \\ -\Delta_{\rm resum}^2 & \Delta_{\rm resum}^2 \end{pmatrix}$$

- Requires no assumptions on correlations between cross sections (as are made in JVE or fixed-order ST)
- Can study nontrivial correlations, e.g. between $\sigma_0, \epsilon_0, \sigma_{\text{total}}$

$\Delta_{\mu i}$: Collective overall scale variation

(+ where resum. turns off)

- FO unc. within resummed prediction
- leaves scale ratios and resummed logs invariant
- Reproduces usual FO scale variation for large p_T^{cut} and σ_{tot}
- ⇒ Naturally identified with yield uncertainy

New Jet Observables

Uncertainties from Profile Scale Variations

Resummation framework is flexible and general enough to allow estimating full theory uncertainty matrix [Stewart, FT, Walsh, Zuberi '13]

$$C = \begin{pmatrix} \Delta_{\mu 0}^2 & \Delta_{\mu 0} \, \Delta_{\mu \ge 1} \\ \Delta_{\mu 0} \, \Delta_{\mu \ge 1} & \Delta_{\mu \ge 1}^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\text{resum}}^2 & -\Delta_{\text{resum}}^2 \\ -\Delta_{\text{resum}}^2 & \Delta_{\text{resum}}^2 \end{pmatrix}$$

- Requires no assumptions on correlations between cross sections (as are made in JVE or fixed-order ST)
- Can study nontrivial correlations, e.g. between $\sigma_0, \epsilon_0, \sigma_{\text{total}}$

$\Delta_{\rm resum}$: Resummation scale variations

- Envelope of separately varying all profile scales (within canonical constraints)
- Directly probes size of logs and ٠ uncertainties in resummed log series
- Vanishes for large p_T^{cut} as resummation turns off
- \Rightarrow Naturally identified with Δ_{cut} migration

2014-12-17

New Jet Observables

Resummed Results for Higgs + 0-jet Bin

- New updated results at $13 \, {
 m TeV}$ (using MSTW2008, $R=0.4, \, m_t$ EFT)
- Resummation yields much improved precision: small uncertainties and good convergence
 - PDF+ α_s uncertainties are not shown, and start to dominate now

< 67 ►

New Jet Observables

Inclusive Cross Section

Imaginary scale choice avoids large constant terms in gluon form factor

 $(\pi^2 \text{ resummation [Parisi, Sterman, Magnea; Ahrens et al.]})$

- Significant improvement in exclusive 0-jet region extends to total cross section
- π²-improved NNLO cross section very consistent with approx. N³LO estimates [see e.g. de Florian, Mazzitelli, Moch, Vogt]

Comparison with ATLAS differential measurements

Direct comparison at cross section level

- No K-factor for total cross section
- Only relevant corrections factors are $BR(H \rightarrow \gamma \gamma)$ and photon acceptance (basically flat in p_T^{jet})
- Uncertainties also include 5% ${
 m BR}(H \to \gamma \gamma)$ and flat 8% PDF

New Jet Observables

Resummation for Higgs + 1-jet Bin

[Liu Petriello; Boughezal, Liu, Petriello, FT, Walsh]

1-jet bin is more complicated due to additional scale involved

 $p_T^{
m jet2}$ resummation $(p_T^{
m jet1} > p_T^{
m off}$ treated in fixed order)

 p_T^{jet1} resummation $(p_T^{\text{jet1}} < p_T^{\text{off}})$ required for consistent combination with resummed 0-jet bin $(p_T^{\text{jet2}}$ treated at fixed order)

- Important consistency check: results must be insensitive to p_T^{off}
- Uncertainty framework extends to $\{\sigma_0, \sigma_1, \sigma_{\geq 2}\}$ 3x3 case

 $C = C^{\text{yield}} + C(0/1 \text{-migration}) + C(1/2 \text{-migration})$

Frank Tackmann (DESY)

< 67 →

New Jet Observables

Combined 0-jet and 1-jet Bin Resummation

- 0-jet bin: NNLL'+NNLO with $\mu_H = -im_H$
- 1-jet bin: NLL'+NLO plus H + j NNLO₁ virtuals
- \Rightarrow Getting consistent results depends (sensitively) on how $lpha_s^3$ corrections are treated

Important consistency checks

New Jet Observables

Side Remark: VBF-enhanced Categories

Best VBF sensitivity comes from exclusive 2-jet region with 2 forward jets

- Hard kinematics: Two jets with large m_{jj} and/or $\Delta \eta_{jj}$
- Various possible 2-jet resolution variables: p_T^{jet3} , p_T^{Hjj} , $\pi \Delta \phi_{H-jj}$

Best VBF sensitivity comes from exclusive 2-jet region with 2 forward jets

- Hard kinematics: Two jets with large m_{jj} and/or $\Delta \eta_{jj}$
- Various possible 2-jet resolution variables: p_T^{jet3} , p_T^{Hjj} , $\pi \Delta \phi_{H-jj}$

All of this happens inside a multivariate analysis (MVA)

- Even if MVA only knows hard-kinematics variables, it can construct itself a resolution variable, e.g. $E_T^{Hjj} = p_T^H + p_T^{jet1} + p_T^{jet1}$
- ⇒ Crucial to ensure that the MVA does not cut arbitrarily into exclusive resummation regions, otherwise one can easily loose all theory control

New Jet Observables

New Jet Observables

[Shireen Gangal, Maximilian Stahlhofen, FT, arXiv:1412.4792]

Frank Tackmann (DESY)

Resummation of jet (veto) observables

2014-12-17 17 / 22

< 67 ►

Introduction 00000000 Jet **p**_T Resummation

New Jet Observables •0000

Rapidity-Dependent Jet (Veto) Variables

Starting point: Set J(R) of jets clustered with radius R

 $egin{aligned} p_{ ext{res}} : & p_T^{ ext{jet}} = \max_{j \in J(R)} \left\{ p_{Tj} \, heta(|y_j| < y_{ ext{cut}})
ight\} \ 0 ext{-jet bin} (ext{jet veto}) : & p_T^{ ext{jet}} < p_T^{ ext{cut}} \ & \geq 1 ext{-jet bin} : & p_T^{ ext{jet}} > p_T^{ ext{cut}} \end{aligned}$

Generalize to include rapidity weighting function $f(y_j)$

define:
$$\mathcal{T}_{fj} = p_{Tj} f(y_j) \quad \Rightarrow \quad p_{\mathrm{res}}: \quad \mathcal{T}^{\mathrm{jet}}_f = \max_{j \in J(R)} \ \mathcal{T}_{fj}$$

Can now classify and veto jets according to T_{fj}

$$\begin{array}{ll} \text{0-jet bin (jet veto)}: & \mathcal{T}_{f}^{\text{jet}} < \mathcal{T}^{\text{cut}} \\ & \geq 1\text{-jet bin}: & \mathcal{T}_{f}^{\text{jet}} > \mathcal{T}^{\text{cut}} \end{array}$$

Introduction 0000000C Jet **p**_T Resummation

New Jet Observables

Rapidity Weighting Functions

Correspond to rapidity-weighted p_{Tj} veto

 \Rightarrow insensitive to forward rapidities, resummable to same level as $p_T^{\rm jet}$

Frank Tackmann (DESY)

Resummation for $\mathcal{T}_{f}^{\mathrm{jet}}$

Factorized cross section for $\mathcal{T}_{f}^{\text{jet}} < \mathcal{T}^{\text{cut}}$

 $\sigma_0(\mathcal{T}^{\text{cut}}) = H_{gg}(m_H^2, \mu) \left[B_g(m_H \mathcal{T}^{\text{cut}}, R, \mu) \right]^2 S_{gg}^{B,C}(\mathcal{T}^{\text{cut}}, R, \mu)$

Resummation and unc. framework is the same

 \Rightarrow logarithmic/RGE structure very different from $p_T^{\rm jet}$

$${\ln^2}rac{\mathcal{T}^{ ext{cut}}}{m_H} = 2 {\ln^2}rac{m_H}{\mu} - {\ln^2}rac{\mathcal{T}^{ ext{cut}}m_H}{\mu^2} + 2 {\ln^2}rac{\mathcal{T}^{ ext{cut}}}{\mu}$$

• Canonical: $\mu_H \sim -im_H, \mu_B^2 \sim \mathcal{T}^{cut} m_H, \mu_S \sim \mathcal{T}^{cut}$

Frank Tackmann (DESY)

 $\mu_B(\beta = 0)$

 $\mu_{s}(\beta=0)$

 $\cdot \cdot \mu_B(\beta = \pm 1/6$

80

First Results at NLL'+NLO

- Full NNLL'+NNLO will come
 - expect significant reduction in unc.
- Comparison to ATLAS differential measurements of $\mathcal{T}_C^{\text{jet}}$
 - No K factor for total cross section
 - Same corrections and unc. applied as in p_T^{jet} case

Summary and Outlook

Jet observables can be resummed to high accuracy

- Turning "scale variations" into "theory unc." is nontrivial, particularly in resummed perturbation theory
- To "validate" uncertainties need to be able to check convergence and coverage at lower orders

Next steps

- Include full quark mass dependence
- Public code release (likely early next year)
 - Aiming to be fast, modular, and extendable
 - Will have access to full set of profile scale variations for studying uncertainties

Generalized jet (veto) observables

- Provide more general way to divide up phase space (complementary to p_{T}^{jet})
 - Can be utilized to optimize jet-binning (\rightarrow optimal $f(y_i)$?)
 - Also probe a complementary region of theory/resummation space
 - Can be measured/tested in many processes (Higgs, Drell-Yan, diphoton, ...)

Backup Slides

< 67 ►

Resummation + FO Matching and Counting

ant

$\ln \sigma_0(p_T^{\text{cut}}) \sim \sum_n \alpha_s^n \ln^{n+1} \frac{p_T^{\text{cut}}}{m_H} (1 + \alpha_s + \alpha_s^2 + \cdots) \sim \text{LL} + \text{NLL} + \text{NNLL} + \cdots$										
	Resummation	Fixed-order corrections		Resummation input						
	conventions:	matching (sing.)	full FO (+ nons.)	$\gamma^{\mu, u}_{H,B,S}$	Γ_{cusp}	β				
	LL	1	-	-	1-loop	1-loop				
	NLL	1	-	1-loop	2-loop	2-loop				
	NLL+NLO	1	$lpha_s$	1-loop	2-loop	2-loop				
	NLL'+NLO	$lpha_s$	$lpha_s$	1-loop	2-loop	2-loop				
	NNLL+NLO	α_s	$lpha_s$	2-loop	3-loop	3-loop				
	NNLL+NNLO	α_s	$lpha_s^2$	2-loop	3-loop	3-loop				
	NNLL'+NNLO	$lpha_s^2$	$lpha_s^2$	2-loop	3-loop	3-loop				
	N ³ LL+NNLO	α_s^2	$lpha_s^2$	3-loop	4-loop	4-loop				

 "matching": singular FO corrections that act as boundary conditions in the resummation (αⁿ_s corrections to *H*, *B*, *S* reproduces full αⁿ_s singular)

• "full FO": adds FO nonsingular terms not included in the resummation

Frank Tackmann (DESY)

Backup

2014-12-17 23 / 22

< 67 ►