ATLAS Jet-Veto study in Run I and Wishlist for Run-II

B. Di Micco Università degli Studi di Roma Tre I.N.F.N. sezione di Roma Tre [on the behalf of the ATLAS collaboration]

Jet veto for background supression.

The case of $H \rightarrow WW^* \rightarrow lvlv$ (arXiv:1412.2641), that is the most affected by such uncertainties. ×10³

• Large background from $pp \rightarrow t\overline{t} \rightarrow W^+W^-b\overline{b} \rightarrow l^+\nu l^-\overline{\nu}b\overline{b}$ producing at least 2 b-jets plus additional light jets from QCD radiation.

The top background impact is strongly reduced by binning the analysis in jet bins (final selection, background normalised with data driven estimates)

Estimating higher order uncertainties.

Renormalisation scale ansatz.

 $\sigma_{\rm tot} \sim \alpha_{\rm S}^k \{1$ -

 $+\alpha_{\rm S}$

 $+\alpha_{\rm S}^2$

 $+\mathcal{O}(\alpha_{\rm S}^3)\}$

 α_s is computed at a paricular scale that depends from the process $\alpha_s(\mu_R)$ μ_R : renormalization scale

scale uncertainty sillogism

full expantion available

no μ_R dependence

big contribution from higher order terms

large μ_R dependence

 σ_{tot} depends on μ_R through $\alpha_s(\mu_R)$

Scale uncertainty with Jet Veto.

[YR2 and W. Stewart, J. Tackmann, PRD85, 034011 (2012)]

Let's assume to veto any jet with $p_T > 25$ GeV (ggF) or 20 GeV (VBF, CJV).

$$\sigma_{\rm tot} = \sigma_0 (p_{\rm T}^{\rm cut}) + \sigma_{\geq 1} (p_{\rm T}^{\rm cut})$$

 α_s multiplies large logarithms, therefore scale uncertainties give an idea of the size of the missing terms.

$$\sigma_0(p^{\text{cut}}) = \sigma_{\text{total}} - \sigma_{\ge 1}(p^{\text{cut}})$$

$$\simeq \sigma_B \left\{ \left[1 + \alpha_{\text{s}} + \alpha_{\text{s}}^2 + \mathcal{O}(\alpha_{\text{s}}^3) \right] - \left[\alpha_{\text{s}}(L^2 + L + 1) + \alpha_{\text{s}}^2(L^4 + L^3 + L^2 + L + 1) + \mathcal{O}(\alpha_{\text{s}}^3 L^6) \right] \right\}$$

There are cancellations among α_s and the logarithms, depending on the p_T^{cut} we can tune the α_s dependence to zero.

Cancellation effects in scale variation.

Cancellation happens for different threshold values depending on the perturbative order.

How to solve the problem..

	Comparing JVE to S&T at fixed order.									
S&T		m _H = 125 GeV			JVE					
	i	$f_i = \sigma_i / \sigma_{tot}$	σ_i (pb)	$\Delta\sigma_i/\sigma_i$		i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	Δfi/fi	
	≥0	-	19.3	8%		≥0	-	19.3	8%	
	≥I	-	7.44	20%		0	0.61	7.44	22%	
exclusive	0	0.61	12	18%		0	0.61	12	23%	

At fixed order JVE gives larger uncertainties than S&T [a very good motivation to not use it :-)]

		Comp	85							
S&T		m _H = 12	m _H = 125 GeV			Г				
	i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta\sigma_i/\sigma_i$		i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta f_i/f_i$	
	≥0	-	19.3	8%		≥0	-	19.3	8%	Contraction of the second
	≥I	-	7.44	20%		0	0.61	7.44	22%	
exclusive	0	0.61	12	18%		0	0.61	12	23%	

Comparing IVE to S&T at fixed order.

At fixed order JVE gives larger uncertainties than S&T [a very good motivation to not use it :-)] But recently new resummed calculation of ε_{\circ} became available.

100

S&T		m _H = 125 GeV				JVE (resummed)				
	i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta\sigma_i/\sigma_i$		i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta f_i/f_i$	
	≥0	-	19.3	8%		≥0	-	19.3	8%	
	≥I	-	7.44	20%		0	0.61	7.44	12%	
exclusive	0	0.61	12	18%		0	0.61	I2	14%	

Comparing IVE to S&T at fixed order.

At fixed order JVE gives larger uncertainties than S&T [a very good motivation to not use it :-)] But recently new resummed calculation of ε_{\circ} became available.

90 10 p^{cut}_T [GeV]

100

Going beyond o jet.

Extension to multi-jets.

[D. Hall thesis, CERN-THESIS-2014-130]

S&T

i	$f_i = \sigma_i / \sigma_{tot}$	σ_i (pb)	$\Delta\sigma_i/\sigma_i$
≥0	-	19.3	8%
≥I	-	7.4	20%
≥2	-	2.3	70%
0	0.61	12	18%
Ι	0.27	5.2	43%
≥2	0.12	2.3	70%

$$\sigma_0 = \sigma_{\ge 0} - \sigma_{\ge 1}$$

$$\delta^2 \sigma_0 = \delta^2 \sigma_{\ge 0} + \delta^2 \sigma_{\ge 1}$$

$$\sigma_1 = \sigma_{\geq 1} - \sigma_{\geq 2}$$

$$\delta^2 \sigma_1 = \delta^2 \sigma_{\geq 1} + \delta^2 \sigma_{\geq 2}$$

 $\delta^2 \sigma_{>2}$

JVE (extension from the 0 jet case)

$z_1^{(c)} = 1 - $	$-\frac{\sigma^{\mathrm{NLO}}_{\geq 2}}{\sigma^{\mathrm{LO}}_{\geq 1}}+$	$\left(\frac{\sigma_{\geq 1}^{\rm NLO}}{\sigma_{\geq 1}^{\rm LO}}\right)$	-1	$\frac{\sigma_{\geq 2}^{\rm LO}}{\sigma_{\geq 1}^{\rm LO}}$
•				

Resummation missing

In the \circ jet case $\varepsilon_{\circ}^{(b)} < \varepsilon_{\circ}^{(a)} < \varepsilon_{\circ}^{(c)}$, assuming that this is preserved in 1 jet, we don't really need (a).

Assumption verified for σ_{r-jet}^{NNLO} gg only using Petriello (arXiv:1302.6216)

$$\epsilon_1^{(a)} = 0.831 \quad \epsilon_1^{(b)} = 0.761 \quad \epsilon_1^{(c)} = 0.843$$

Procedure to estimate ε_{I} uncertainty:

Take the envelope among $[\epsilon_{I}(b)+\epsilon_{I}(c)]/2$ scale uncertainties, $\epsilon_{I}(b)$ and $\epsilon_{I}(c)$.

ε_{o} and ε_{I} curves.

Extension to multi-jets.

S&T

JVE

i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta \sigma_i / \sigma_i$
≥0	-	19.3	8%
≥I	-	7.4	20%
≥2	-	2.3	70%
0	0.61	12	18%
Ι	0.27	5.2	43%
≥2	0.12	2.3	70%

$$\sigma_0 = \sigma_{\ge 0} - \sigma_{\ge 1}$$

$$\delta^2 \sigma_0 = \delta^2 \sigma_{\ge 0} + \delta^2 \sigma_{\ge 1}$$

i	val		∆~val/val
σ₂₀	19.3 pb		8%
fo	0.61		12%
f_{I}	0.69		15%
i	$f_i = \sigma_i / \sigma_{tot.}$	σ_i (pb)	$\Delta\sigma_i/\sigma_i$
0	0.61	12	14%
I	0.27	5.2	25%
≥2	0.12	2.3	39%

$$\epsilon_1^{(b)} = 1 - \frac{\sigma_{\geq 2}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{NLO}}} \quad \epsilon_1^{(c)} = 1 - \frac{\sigma_{\geq 2}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{LO}}} + \left(\frac{\sigma_{\geq 1}^{\text{NLO}}}{\sigma_{\geq 1}^{\text{LO}}} - 1\right) \frac{\sigma_{\geq 2}^{\text{LO}}}{\sigma_{\geq 1}^{\text{LO}}}$$

Use MCFM NLO cross section.

 $\sigma_{1} = \sigma_{\geq 1} - \sigma_{\geq 2}$ $\delta^{2}\sigma_{1} = \delta^{2}\sigma_{\geq 1} + \delta^{2}\sigma_{\geq 2}$ $\delta^{2}\sigma_{\geq 2} \quad \text{Use HNNLO LO cross section.}$

		Obaar	1.00	Obcom	-1.02
	2822	Obser	$\mu = 1.09$		$\mu_{\rm ggF} = 1.02$
Source	Er	ror	Plot of error	Error	Plot of error
	+	-	(scaled by 100)	+ -	(scaled by 100)
Data statistics	0.16	0.15		0.19 0.19	
Signal regions	0.12	0.12		$0.14 \ 0.14$	
Profiled control regions	0.10	0.10		$0.12 \ 0.12$	
Profiled signal regions	-	-		0.03 0.03	+
MC statistics	0.04	0.04	+	0.06 0.06	+
Theoretical systematics	0.15	0.12		0.19 0.16	
Signal $H \to WW^* \mathcal{B}$	0.05	0.04	+	$0.05 \ 0.03$	
Signal ggF cross section	0.09	0.07	+	0 13 0.09	Acceptance
Signal ggF acceptance	0.05	0.04	+	0.06 0.05	+ systematics abo
Signal VBF cross section	0.01	0.01	+		- 1/2 of total cros
Signal VBF acceptance	0.02	0.01	+		- section systema
Background WW	0.06	0.06	+	0.08 0.08	
Background top quark	0.03	0.03	+	0.04 0.04	+
Background misid. factor	0.05	0.05	+	0.06 0.06	+
Others	0.02	0.02	+	$0.02 \ 0.02$	+
Experimental systematics	0.07	0.06	+	0.08 0.08	
Background misid. factor	0.03	0.03	+	0.04 0.04	+
Bkg. $Z/\gamma^* \rightarrow ee, \ \mu\mu$	0.02	0.02	+	0.03 0.03	+
Muons and electrons	0.04	0.04	+	0.05 0.04	+
Missing transv. momentum	0.02	0.02	+	$0.02 \ 0.01$	+
Jets	0.03	0.02	+	0.03 0.03	+
Others	0.03	0.02	+	0.03 0.03	+
Integrated luminosity	0.03	0.03	+	0.03 0.02	+
Total	0.23	0.21		0.29 0.26	
			-30-15 0 15 30		-30-15 0 15 30

Procedure for ggF+2jets (S&T).

1) Look at the event yield at the BDT preselection:

all preselection cuts (except CJV) applied plus $O_{BDT} > -0.48$.

2) estimate $\delta \sigma_{\geq 2_VBF}$ scale uncertainty (variation of events passing (1) with the usual renormalisation and factorisation scale variation: factor 2 between m_H/4 and m_H avoiding extremes $\mu_R = m_H/4$: $\mu_F = m_H$, $\mu_R = m_H:\mu_F = m_H/4$;

3) estimate $\delta \sigma_{\geq_3_VBF-CJV}$: events having a third jet, with $p_T > 20$ GeV, with rapidity inside the tagging VBF jets;

$$\sigma_{2j\,\text{VBF}-\text{CJV}} = \sigma_{\geq 2\text{-VBF}} - \sigma_{\geq 3\text{-VBF}-\text{CJV}}$$
$$\delta^2 \sigma_{2j\,\text{VBF}-\text{CJV}} = \delta^2 \sigma_{\geq 2\text{-VBF}} + \delta^2 \sigma_{\geq 3\text{-VBF}-\text{CJV}}$$

At this point cancellation effect has been taken into account, use naive scale variation to evaluate the O_{BDT} shape uncertainties.

Uncertainties computed	Uncertainty source	$n_j = 0$	$n_j = 1$	$n_j \ge 2$ ggF	$n_j \ge 2$ VBF	BDT preselection
and Eviets	Gluon fusion					/
ggr2jets.	Total cross section	10	10	10	7.2	/
	Jet binning or veto	11	25	33	(29)	
ggF2jets in VBF 8 events	Acceptance				\leq	- 0 1
respect to 76 events in	Scale	1.4	1.9	3.6	(48).	UBDT shape
the gist him no need to	PDF	3.2	2.8	2.2	\smile	
the 2 jet bill: no need to	Generator	2.5	1.4	4.5	-1111111111.	
preserve normalisation.	UE/PS	6.4	2.1	1.7	15	

Impact on µVBF

	Observe	d $\mu_{\rm VBF} = 1.27$
Source	Error	Plot of error
	+ -	(scaled by 100)
Data statistics	0.44 0.40	
Signal regions	0.38 0.35	
Profiled control regions	0.21 0.18	
Profiled signal regions	0.09 0.08	+
MC statistics	0.05 0.05	+
Theoretical systematics	0.22 0.15	
Signal $H \to WW^* \mathcal{B}$	0.07 0.04	+
Signal ggF cross section	0.03 0.03	+
Signal ggF acceptance	0.07 0.07	
Signal VBF cross section	0.07 0.04	+
Signal VBF acceptance	0.15 0.08	+
Background WW	0.07 0.07	+
Background top quark	0.06 0.06	+
Background misid. factor	$0.02 \ 0.02$	ŧ
Others	0.03 0.03	+
Experimental systematics	0.18 0.14	+-
Background misid. factor	$0.02 \ 0.01$	ł
Bkg. $Z/\gamma^* \rightarrow ee, \ \mu\mu$	0.01 0.01	+
Muons and electrons	0.03 0.02	+
Missing transv. momentum	$0.05 \ 0.05$	+
Jets	0.15 0.11	+
Others	0.06 0.06	+
Integrated luminosity	0.05 0.03	+
Total	0.53 0.45	
		60-30 0 30 60

ggF acceptance uncertainty impacts VBF at the same level of VBF cross section.

Could be interesting to reduce such ucertainty on the long run, when high data statistics will be available.

Run-II: JVE extension to ggF bkg in VBF. (More aestethic than substantial with the first data statistics.)

available in GoSam [Phys. Lett. B721 (2013)]

Most likely $\sigma_{\geq 2}$ @NNLO will not be available, we could try the present approach used for 1 jet, using only schemes b) and c).

Run-II: full resummed JVE in 1 jet? (More aestethic than substantial with the first data statistics.)

Not available, but part of the NNNLO calculation on σ_{tot} that is absolutely needed.

	and the second second and the second s	
	Observed $\mu = 1.09$	Observed $\mu_{ggF} = 1.02$
Source	Error Plot of error $+$ - (scaled by 100)	$\begin{array}{ccc} & \text{Error} & \text{Plot of error} \\ + & - & (\text{scaled by 100}) \end{array}$
Theoretical systematics Signal $H \rightarrow WW^* \mathcal{B}$ Signal ggF cross section Signal ggF acceptance	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19 0.16 0.05 0.03 0.13 0.09 0.06 0.05

Prelminary estimates: Petriello, arXiv:1302.6216 [gg only, 1 jet NNLO]

Run-II: going beyond S&T and JVE.

From the correlation point of view:

S&T: uncertainties on $\sigma_{\geq N}$ are uncorrelated. JVE: uncertainties on $\sigma_{\geq 0}$, ε_0 and ε_1 are uncorrelated.

Both of them are reasonable and unjustified at the same time. Attempt to attack the correlation problem (R. Boughezal et al., arXiv:1312.4535)

$$C_{y}(\{\sigma_{0},\sigma_{1},\sigma_{\geq 2}\}) = \begin{pmatrix} (\Delta_{0}^{y})^{2} & \Delta_{0}^{y}\Delta_{1}^{y} & \Delta_{0}^{y}\Delta_{\geq 2}^{y} \\ \Delta_{0}^{y}\Delta_{1}^{y} & (\Delta_{1}^{y})^{2} & \Delta_{1}^{y}\Delta_{\geq 2}^{y} \\ \Delta_{0}^{y}\Delta_{\geq 2}^{y} & \Delta_{1}^{y}\Delta_{\geq 2}^{y} & (\Delta_{\geq 2}^{y})^{2} \end{pmatrix}$$
 yield uncertainties, uncorrelated.

$$C_{\rm cut}(\{\sigma_0, \sigma_1, \sigma_{\geq 2}\}) = \begin{pmatrix} \Delta_{0\,{\rm cut}}^2 & -\Delta_{0\,{\rm cut}}^2 + C_{01\,{\rm cut}} & -C_{01\,{\rm cut}} \\ -\Delta_{0\,{\rm cut}}^2 + C_{01\,{\rm cut}} & \Delta_{0\,{\rm cut}}^2 + \Delta_{1\,{\rm cut}}^2 - 2C_{01\,{\rm cut}} & -\Delta_{1\,{\rm cut}}^2 + C_{01\,{\rm cut}} \\ -C_{01\,{\rm cut}} & -\Delta_{1\,{\rm cut}}^2 + C_{01\,{\rm cut}} & \Delta_{1\,{\rm cut}}^2 \end{pmatrix}$$

 $N \rightarrow N+1$ migrations they sum up to zero in the total cross section.

1 jet resummation.

Together with the 1 jet bin resummation could become the basis for Run-II.

Problem of resummation in 1 jet:

3 scales problem: p_T^{cut} , p_T^J , m_H resummation works typically with 2 scales: can resum only one log(p_T/m_H).

Resummation performed in the $p_T^j > m_H$ case [X. Liu, F. Petriello, Phys. Rev. D87, 094027 (2013)]

Partial resummation available in 1312.4535 Need to come to an agreement on the usability of such results in the next year.

i	JVE	1312.4535
0	14%	10%
I	25%	16%
≥2	39%	17%

The gain is numerically important. Need to follow up in next months.

Using just MC?

ATLAS (going to be made public)

Table 3: Uncertainties in percent due to different scale choices evaluated for different cut scenarios with the POWHEG NNLOPS samples. The uncertainties include normalization and shape effects.

Scale Variation	no cut	0 jets	≥ 1 jet	1 jet	≥ 2 jets	$p_{\rm T}(H) < 20 { m GeV}$	$p_{\rm T}(H) > 100 {\rm ~GeV}$
$\mu(NNLO)$							
$0.5 \cdot m_H$	10%	12%	8%	9%	6%	12%	4%
$2 \cdot m_H$	-10%	-11%	-7%	-7%	-4%	-12%	-4%
μ (MINLO)							
$0.5 \cdot \mu_{\text{def.}}$ (MINLO)	~0.0%	-4%	8%	7%	12%	-3%	18%
$2 \cdot \mu_{\text{def.}}$ (MINLO)	~0.0%	4%	-8%	-6%	-12%	6%	16%

i	JVE	1312.4535
0	14%	10%
I	25%	16%
≥2	39%	17%

Using MINLO (with quadratic sum) could give uncertinties of the same size of the new resummed approach.

Confirmation that this is the good direction? Need to check with uncorrelated μ_R , μ_F scale variations.

Conclusions.

• Jet acceptance uncertainty quite sub-dominant, at this point, both in ggF and VBF channels using the most recent developments;

• Jet-bin uncertainties can become relevant if the total cross section uncertainties will be reduced (both scale using NNNLO and PDFs);

• At the end of Run-II we could have enough statistics for which it would be needed to reduce the present level of uncertainties, need to work in the next year through the new proposal on resummation and the use of 3j NLO, now available calculations.