

Emanuele A. Bagnaschi (DESY Hamburg)

In collaboration with Robert Harlander (U. Wuppertal), Heindrik Mantler (CERN), Marius Wiesemann (U. Zurich) and Alessandro Vicini (U. Milano)

hep-ph/1111.2854 hep-ph/1409.0531

Higgs (N)NLO MC and Tools Workshop for LHC RUN-2 17 December 2014 CERN

Talk structure

Matching fixed and all-order results

Matching scales determination in gluon fusion Partonic collinear-analysis (Bagnaschi and Vicini) High-p_T matching (Harlander, Mantler and Wiesemann)

Analytic resummation vs POWHEG vs MC@NLO in the 2HDM Light Higgs Heavy Higgs Pseudoscalar Higgs

Conclusions

p_T^H distribution

- The Higgs acquires a transverse momentum due to the recoil against QCD radiation At fixed order, the p_T^H distribution diverges in the limit $p_T^H \rightarrow 0$
- The physical behavior is restored by resumming the divergent $\log\left(\frac{p_T^{T}}{m_H}\right)$ terms, either
 - analytically or numerically (i.e. through a Parton Shower).
- problem: match the resummed and fixed order calculation

Resummation frameworks

Analytic resummation (Catani, Grazzini)

- In parameter space the cross section for multiple emissions factorizes and can be resummed. The factorization is defined at the unphysical resummation scale Q.
- Q is unphysical and the complete result does not depend on it. However, at fixed resummation-accuracy one has a residual dependency on it.
- This dependency can be used to probe the theoretically uncertainty on the resummed spectrum.

Matched NLO+PS (Frixione, Nason)

- ► Two available approaches: MC@NLO and POWHEG. Differences due to higher order effects.
- ▶ In MC@NLO, the shower scale *Q* determines the effective range of application of the resummation. It is chosen in such a way to recover the NLO behavior in the high-*p*_T region.
- ► In POWHEG we can use effectively the *b* parameter (that controls the higher order terms) to recover the NLO behavior in the high-*p*_T region.

A problem of three scales

- The inclusion of the bottom quark adds a mass scale that is much lower with respect to the others $(m_b \text{ and } m_t)$.
- We can always rewrite the full amplitude as

$$|\mathcal{M}(t+b)|^{2} = |\mathcal{M}(t)|^{2} + \left[|\mathcal{M}(t+b)|^{2} - |\mathcal{M}(t)|^{2}\right]$$

• One should introduce separate resummation scales for the top (Q_t) and the bottom (Q_b) contribution and rewrite the formula for the total cross section as

$$\sigma(t+b) = \sigma(t,Q_t) + [\sigma(t+b,Q_b) - \sigma(t,Q_b)]$$

- We can extend the same reasoning to differential distributions.
- See H. Sargsyan (U. Zurich) talk for a detailed description of the SM case.

The Two Higgs-doublet model

Coupling	Type I	Type II	Lepton specific	Flipped
λ_u^b	$\cos \alpha / \sin \beta$			
λ_d^h	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
λ_u^H	$\sin \alpha / \sin \beta$			
λ_d^H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
λ_u^A	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
λ_d^A	$-\cot\beta$	$\tan eta$	$-\cot\beta$	aneta

- Two Higgs doublets. Enlarged physical spectrum: h/H/A and H^{\pm} .
- Rescaled couplings to quarks. Change in the relative weight of the quarks in the gluon fusion process (e.g. bottom contribution larger than the top).
- If the bottom quark coupling to the Higgs is enhanced, the bottom annihilation process can be the dominant one. See the talk of M. Wiesemann (U. Zürich) on Friday for a discussion of this process.

Description of the Higgs p_T in the 2HDM

A prescription for the choice of the relevant scales is especially important when the bottom is dominant.

Bagnaschi-Vicini (BV)

- Based on the idea that the resummation should be applied when the collinear limit is a good approximation.
- Parton-level analysis of the behavior of the squared matrix elements.

Harlander-Mantler-Wiesemann (HMV)

- Assume that we want to recover the NLO behavior sufficiently fast.
- Hadronic-level analysis (positivity, NLO matching) of the transverse momentum distribution.

Analytic Resummation

MoRe-SusHi by Harlander et al.

Monte Carlo event generators

- The POWHEG-BOX gg_H_2HDM generator (Bagnaschi et al).
- The MadGraph5_aMC@NLO generator based on SusHi (M. Wiesemann).

Collinear behavior of the $gg \rightarrow Hg$ amplitudes $_{m_H = 125 \text{ GeV}}$ (BV)

$$C \equiv \frac{|\mathcal{M}_{gg \to Hg}(s, p_T^H, m_Q)|^2}{\left|\mathcal{M}_{gg \to Hg}^{div}(s, p_T^H, m_Q)/p_T^H\right|^2}$$

Relative deviation from the collinear limit.

- The p_T^H at which the deviation reach $\overline{C} = 0.9/1.1$ gives us our preferred value for the factor h.
- We choose a value of $s = s_{min} + s_{soft}$ close to the production threshold. Larger values should be PDF suppressed.
- $s_{\min} = m_H^2 + 2(p_T^H)^2 + 2p_T^H \sqrt{(p_T^H)^2 + m_H^2}$.
- \blacktriangleright *s*_{soft} is used to move away from the soft divergence.
- Results shown for the gg channel. Study of *qg* underway.

The scales vs the Higgs mass (BV)

- Manifest effect of the top threshold.
- Monotonous line for HQEFT and the bottom since no relevant scales are crossed.
- For heavy Higgs masses, our scales lower than the extrapolation of the "canonical" ones (m_H/2, m_H/1.2), currently used for a light Higgs.

High- p_T matching (HMW)

- Starts from the consideration that we want to recover the NLO description in the high-p_T region.
- ► The resummation scale Q is then the maximum scale such that this expectation is true.
- ► For Higgs masses up to $m_b = 300$ GeV, Q is the maximum scale for which the p_T -distribution is within $[0,2] d\sigma/dp_T^2$ in the range $[m_{\phi}, p_T^{max}] (p_T^{max}$ is chosen case by case).
- ► For Higgs mass larger than 800 GeV, due to numerical instabilities, the criteria is changed to requiring that $|[d\sigma^{res}/dp_T^2]/d\sigma/dp_T^2] 1| = 1/2$ at $p_T = 700$ GeV.

• $Q_0 = Q^{max}/2$, while the uncertainty interval is given by $[Q_0/2, 2Q_0]$.

Example for $m_b = 125 \text{ GeV}$ (HMW)

Decomposition of the cross section in three contributions:

 $\sigma(t+b) = \sigma(t, Q_t) + \sigma(b, Q_b) + \sigma(\text{interference}, Q_{int})$

Comparison between the approaches

 $Q_{t,b,int}$, $h_{t,b}$ vs the Higgs mass

- Similar for the bottom scale.
- Different behavior for the top quark contribution.

Comparison of hadronic predictions for $d\sigma/dp_T^H$

We studied a comparison of

Preliminary

Analytic resummation (NLO+NLL) POWHEG (NLO+LL) aMC@NLO(NLO+LL)

- ► 2HDM scenario B (hep-ph/1312.5571): $\tan \beta = 50$, $m_b = 125$ GeV, $m_H = 300$ GeV, $m_A = 270$ GeV.
- Light Higgs is top dominated; Heavy Higgs and pseudoscalar bottom dominated.
- POWHEG using BV scales
- Analytic resummation and aMC@NLO with the HMW ones.
- Comparison BV vs HMW scales in the same MC.
- We also present a remark on the comparison HQEFT result.
- We consider the shape of the distribution (i.e. $1/\sigma d\sigma/dp_T$) for *h*, *H* and *A* production.
- Uncertainty band computed by varying **only** the resummation scale/h factor/shower scale using a factor $[Q_t/2, 2Q_t] \times [Q_b/2, 2Q_b]$.

Light Higgs comparison

POWHEG		aMC@NLO/MoRe-SusHi	
Scale	Value [GeV]	Scale	Value [GeV]
b_t	55	Q_t	49
b_b	19	Q_b	23
		Q _{inf}	34

- Top-dominated SM-like Higgs, aside from the opposite sign of bottom Yukawa (change the sign of the interference term).
- Similar scales for all the programs.
- Very good agreement in the low-*p_T* region. Bands overlap throughout all the range.
- Analytic resummation reaches the NLO faster than the MCs.

Comparison with the HQEFT

2HDM (Scenario B), mh = 125 GeV, pp @ 13 TeV

- HQEFT vs 2HDM for h ($m_h = 125$ GeV).
- The plot strongly depends on the scale chosen for the HQEFT.
- Choosing a HQEFT scale equal to the scale of the dominant contribution (i.e. the top one) gives a result close to the NLO one.

Heavy Higgs comparison

POWHEG		aMC@NLO/MoRe-SusHi		
Scale	Value [GeV]	Scale	Value [GeV]	
b_t	132	Q_t	62	
b_{b}	41	Q_{h}	41	
		Q _{inf}	51	

- Bottom dominated scenario.
- Scale for the top quark is different between POWHEG and aMC@NLO/MoRe-SusHi.
- Same behavior of the MCs up to 25 GeV. In the intermediate region POWHEG is flatter, then the two curves cross at $p_T \simeq 150$ GeV.
- Overlap of the uncertainty bands.

BV vs HMW comparison

POWHEG		aMC@NLO/MoRe-SusHi		
Scale	Value [GeV]	Scale	Value [GeV]	
b_t	132	Q_t	62	
b_b	41	$\tilde{Q_b}$	41	
		Q_{inf}	51	

- We now run both MCs with the two sets of scale choice.
- Not great variations since here the dominant contribution is the bottom one for which the scale is very close.

Pseudoscalar Higgs comparison

POWHEG		aMC@NLO/MoRe-SusHi		
Scale	Value [GeV]	Scale	Value [GeV]	
b_t	132	Q_t	61	
hb	37	$\tilde{Q_b}$	40	
		Qinf	48	

- Similar to the heavy Higgs.
- The p_T spectrum of the pseudoscalar is different from the one of a scalar of equal mass.
- This could be interesting to consider for CP studies.

Pythia 8 tune sensitivity

94 09 PT^H [GeV]

- Compared Pythia8 default, CT10 tune and the default tune of aMC@NLO.
- The distortion in the shape is independent of the Higgs type.
- At most ±5%.

8

0.85

Conclusions

- Several different tools available to compute the transverse momentum spectrum in the 2HDM (POWHEG gg_H_2HDM, aMC@NLO and MoRe-SusHi).
- Two prescriptions available to determine the scales for a proper description of the Higgs boson.
- Especially for a heavy Higgs, significant difference with the standard prescription $m_b/2$ (or $m_b/1.2$).
- Even with different scale choices the MCs uncertainty bands overlap.
- The picture in the MSSM should be the same as in the 2HDM if no light squarks are present.

Backup slides

Simulation parameters

Simula	ntion setup	2HDM		
Parameter	Value	Parameter	Value	
\sqrt{s}	13 TeV	$M_h[GeV]$	125	
PDF	MSTW2008nlo68cl	$M_{H}[GeV]$	300	
m_t [GeV]	172.5	$M_A[GeV]$	270	
m_h [GeV]	4.74	$M_{H^{\pm}}[GeV]$	335	
μ_r	m_{ϕ}	$M_{12}^{2}[GeV^{2}]$	1798	
μ_f	m_{ϕ}	$\tan eta$	50	
Shower	Pythia 8	$\sin(\beta - \alpha)$	0.999001	
Tune	aMC@NLO default	λ	0	
Number of events	1000000	λ_7	0	
		α	0.0247	

NLO+PS matching

Matching in an NLO+PS framework

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_B\overline{B}^s(\Phi_b) \bigg[\Delta^s(p_\perp^{\min}) + \mathrm{d}\Phi_{R|B} \frac{R^s(\Phi_R)}{B(\Phi_B)} \Delta^s(p_T(\Phi)) \bigg] + \mathrm{d}\Phi_R R^f(\Phi_R) \\ \overline{B}^s &= B(\Phi_b) + \bigg[V(\Phi_b) + \int \mathrm{d}\Phi_{R|B} \hat{R}(\Phi_{R|B}) \bigg] \\ \Delta(\bar{\Phi}_1, p_T) &= \exp\left\{ - \int d\Phi_{\mathrm{rad}} \frac{R^s(\bar{\Phi}_1, \Phi_{\mathrm{rad}})}{B(\Phi_1)} \theta(k_T - p_T) \right\} \end{split}$$

MC@NLO

$$R^{s} \propto \frac{\alpha_{s}}{t} P_{ij}(z) B(\Phi_{B})$$
, $R^{f} = R - R^{s}$

$$R^{s} = \frac{h^{2}}{h^{2} + p_{T}^{2}}R$$
, $R^{f} = \frac{p_{T}^{2}}{h^{2} + p_{T}^{2}}R$

- The Sudakov form factor is the one from the P.S., i.e. it uses the collinear splitting function in the exponent.
- The full matrix element appears only in the regular contribution.

At low p_T R goes into collinear factorization and the Sudakov regains the splitting function in the exponent.

The two approaches differs by higher order terms.

Description of the Higgs p_T in the SM

See H. Sargsyan (U. Zurich) talk for a detailed description of the SM case. Figure courtesy of S. Frixione.

Dependence on the auxiliary parameters

- Sensitivity to the choice of \overline{C} .
- ▶ Band width comparable with the standard variation interval $[h_i/2, 2h_i]$.

Dependence on the auxiliary parameters

• Sensitivity to the value of s_{soft} .

• Less dependence than on \overline{C} . Smaller than the standard uncertainty width.

Heavy Quark Effective Field Theory (HQEFT)

In the limit $m_{top} \rightarrow \infty$ we can construct an effective Lagrangian for the interaction of the Higgs boson with the gluons

$$\mathscr{L}_{eff} = \frac{\alpha_s}{12\pi} \frac{H}{v} (1 + \Delta) \operatorname{Tr} \left[G^a_{\mu\nu} G^a_{\mu\nu} \right]$$

In this theory the heavy quark loop shrinks to a point vertex, simplifying the calculations

Validity conditions

- Total cross section, $m_H < 2m_{top}$
- Kinematic variables, as p_T^H , less than m_{top}
- No strongly coupled light particles running in the loop (e.g. bottom quark in the MSSM for large tan β)

Light Higgs comparison (large-int)

	$tan \beta$	α	interference@LO -135%	
	3.2	5.053		
POWHEG		aMC@N	LO/MoRe-SusHi	
Scale	Value [Ge	V]	Scale	Value [GeV]
h _t	55		Q_t	49
hb	19		$Q_b Q_{inf}$	23 34

- MCs almost overlap completely across all the range.
- Very different behavior from analytic resummation.

Heavy Higgs comparison (large-int)

	$\tan \beta$	α	interference@LO	
	1.8	0.528	-11	%
POWHEG		aMC@N	LO/MoRe-SusHi	
Scale	Value [Ge	V]	Scale	Value [GeV]
h _t h _b	132 41		$egin{array}{c} Q_t \ Q_b \ Q_{ m inf} \end{array}$	62 41 51

- MCs almost overlap completely across all the range.
- Very different behavior from analytic resummation.

Pseudoscalar Higgs comparison (large-int)

	$\tan \beta$	α	interfere	nce@LO
	7.1	1.694	273	3%
POWHEG		aMC@N	LO/MoRe-SusHi	
Scale	Value [Ge	Value [GeV]		Value [GeV]
h _t h _b	132 37		$egin{array}{c} Q_t \ Q_b \ Q_{ m inf} \end{array}$	61 40 48

- Bottom dominated scenario.
- Scale for the top quark is different between POWHEG and aMC@NLO/MoRe-SusHi.
- Same behavior of the MCs up to 25 GeV. In the intermediate region POWHEG is flatter, then the two curves cross at $p_T \simeq 150$ GeV.
- Overlap of the uncertainty bands.