ATLAS Higgs off-shell and interferometry in Run 1 and wish list for Run 2

R. Di Nardo LNF INFN

Higgs (N)NLO MC and Tools Workshop for LHC RUN-2 December 17-19 2014, CERN

Introduction

- High mass region of $H \rightarrow VV$ above the $2m_V$ threshold sensitive to the Higgs boson production through off-shell and background interference effects
 - characterize the properties of the Higgs boson through off-shell signal strength and off-shell Higgs boson couplings
 - Sensitivity to new physics that change interaction between the Higgs and SM particle in this region
- $\sigma_{\text{offshell}} \sim g_g^2 g_V^2$ and not depends on total width Γ_H as σ_{onshell}
- In terms of couplings modifiers

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$

$$\frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}, \text{SM}}^{gg \to H \to ZZ}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

- Assuming the on-peak and off-peak couplings are the same, we can reinterpret the limit on $\mu_{offshell}$, combined with $\mu_{onshell}$ measurement, as a limit on Γ_{H}
 - direct limits with H \rightarrow ZZ* \rightarrow 4l and H $\rightarrow\gamma\gamma$ $\Gamma_{\rm H} < 600 \Gamma_{\rm H}^{\rm SM}$

Interference effects and MC generators

 In the high mass region off-shell Higgs production and non resonant gg→ VV background (box diagram)

- Interference between the two processes sizable and negative in SM
 - Taken into account in the analysis
- Similar for $qq \rightarrow VV+2j$ and VBF production

ggF production mechanism

- MCFM and gg2VV (LO, $\mu R\mu F=m_{ZZ}/2$)
 - $gg \rightarrow (H^*) \rightarrow ZZ gg \rightarrow H^* \rightarrow ZZ, gg \rightarrow ZZ$
- Sherpa (0j+1j) for $p_{T(ZZ)}$ description

VBF production mechanism

• MG5 and Phantom used

$\mu_{offshell}$ dependence and K-factors

• Possible to obtain a sample with an arbitrary value of $\mu_{offshell}$ combining the SM expectations for $gg \rightarrow (H^*) \rightarrow ZZ \ gg \rightarrow H^* \rightarrow ZZ \ and \ gg \rightarrow ZZ$

$$MC_{gg \to (H^* \to)ZZ}(\mu_{\text{off-shell}}) = \left(K^{H^*}(m_{ZZ}) \cdot \mu_{\text{off-shell}} - K^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{R^B_{H^*} \cdot \mu_{\text{off-shell}}} \right) \cdot MC^{\text{SM}}_{gg \to H^* \to ZZ}$$
$$+ \left(K^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{R^B_{H^*} \cdot \mu_{\text{off-shell}}} \cdot MC^{\text{SM}}_{gg \to (H^* \to)ZZ} \right)$$
$$+ \left(K^{H^*}_{gg}(m_{ZZ}) \cdot \left(R^B_{H^*} - \sqrt{R^B_{H^*} \cdot \mu_{\text{off-shell}}} \right) \cdot MC^{\text{cont}}_{gg \to ZZ},$$

K^{H*}(**m**_{ZZ}) : NNLO/LO K factor for the signal

- Includes contribution from qg qq initial states
- Calculated inclusively (integrated over jet p_T and $p_T(ZZ)$ induced by higher order QCD corrections)
- 20-30% QCD scale uncertainty
- $K^{H*}_{gg}(m_{ZZ})$: NNLO/LO K factor for the gg initiated process
- Only gg contribution and larger uncertainty wrt $K^{\rm H*}(m_{ZZ})$
- $K^{H*}(m_{ZZ})$ scale uncertainties applied correlated for $K^{H*}(m_{ZZ})$ and $K^{H*}_{gg}(m_{ZZ})$ and the difference in quadrature scorrelated for $K^{H*}_{gg}(m_{ZZ})$

Roberto Di Nardo – INFN Laboratori nazionali di Frascati

$\mu_{offshell}$ dependence and K-factors

• Possible to obtain a sample with an arbitrary value of $\mu_{offshell}$ combining the SM expectations for $gg \rightarrow (H^*) \rightarrow ZZ \ gg \rightarrow H^* \rightarrow ZZ \ and \ gg \rightarrow ZZ$

$$MC_{gg \to (H^* \to)ZZ}(\mu_{\text{off-shell}}) = \left(K^{H^*}(m_{ZZ}) \cdot \mu_{\text{off-shell}} - K^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{R^B_{H^*}} \cdot \mu_{\text{off-shell}} \right) \cdot MC^{\text{SM}}_{gg \to H^* \to ZZ} + K^{H^*}_{gg}(m_{ZZ}) \cdot \sqrt{R^B_{H^*}} \cdot \mu_{\text{off-shell}} \cdot MC^{\text{SM}}_{gg \to (H^* \to)ZZ} + K^{H^*}_{gg}(m_{ZZ}) \cdot \left(R^B_{H^*} - \sqrt{R^B_{H^*}} \cdot \mu_{\text{off-shell}} \right) \cdot MC^{\text{cont}}_{gg \to ZZ},$$

$$\mathbf{R}^{\mathbf{B}}_{\mathbf{H}^{\mathbf{*}}}:\mathbf{K}^{\mathbf{B}}/\mathbf{K}^{\mathbf{H}^{*}}_{gg}(\mathbf{m}_{ZZ})$$

- Kfactor for $gg \rightarrow ZZ$ unknown
- In soft collinear approximation ~1 with 10% uncertainty on K^{B}
 - » Studied in Phys. Rev. D88 (2013) 034032 for WW process
- ATLAS result given as function of $R^{B}_{H^{*}}$ [0.5-2]
- Additional 30% uncertainty considered for the interference terms
 - Uncorrelated with of R^B_{H*} (otherwise cancellation between the negative interference and positive gg background)

ľ

ATLAS Higgs off-shell production measurement (ZZ final state) ATLAS-CONF-2014-042

- 4l analysis designed to be mostly inclusive wrt additional QCD activity
- Selection similar as the one used for the on-shell coupling results
- 4 leptons (e/ μ) with p_T>20,15,10,6(7) GeV
- m_{ll} >50GeV and compatible with m_Z
- Measurement of the $\mu_{offshell}$ performed in the region 220 GeV<m_{4l}<1 TeV
- Main backgrounds (gg \rightarrow ZZ and qq \rightarrow ZZ) from MC simulation
 - NLO EW and NNLO QCD correction (m_{ZZ}) available for $qq \rightarrow ZZ$
 - Reducible background (Z+X,tt) <0.5% of the total background \rightarrow neglected
- Sensitivity improved by using ME
- 4 channels combined (4e, 4µ, 2e2µ,

2µ2e)

ME discriminant for 41 analisys

- A LO ME based discriminant used to enhance the sensitivity to the gg→H^{*}→ZZ signal
 - Wrt the gg \rightarrow ZZ and qq \rightarrow ZZ backgrounds
- $m_{41} m_{Z1} m_{Z2}$ and 5 production/decay angles used to calculate the ME for the different processes with MCFM

$$\mathrm{ME} = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right)$$

•
$$P_{H} = gg \rightarrow H^{*} \rightarrow ZZ \rightarrow 4l$$

- $P_{gg} = gg \rightarrow (H^*) \rightarrow ZZ \rightarrow 41$
- $P_{qq} = qq \rightarrow ZZ \rightarrow 41$
 - c=0.1 to balance the SBI and qqZZ xsec
- MLE fit to the ME discriminant shape to extract the limit on μ_{offshell}

ME Discriminant

41 analysis Results

- Event yield expected and observed for m_{4l}>220 GeV and for the signal region (m_{4l}>400 GeV)
 - Deficit observed wrt SM expectations

Process	$220 \text{ GeV} < m_{4\ell} < 1000 \text{ GeV}$	$400 \text{ GeV} < m_{4\ell} < 1000 \text{ GeV}$
$gg \to H^* \to ZZ$ (S)	2.2 ± 0.5	1.1 ± 0.3
$gg \rightarrow ZZ(B)$	30.7 ± 7.0	2.7 ± 0.7
$gg \rightarrow (H^* \rightarrow)ZZ$	29.2 ± 6.7	2.3 ± 0.6
$gg \rightarrow (H^* \rightarrow)ZZ \ (\mu_{\text{off-shell}} = 10)$	40.2 ± 9.2	9.0 ± 2.5
$VBF H^* \to ZZ (S)$	0.2 ± 0.0	0.1 ± 0.0
VBF ZZ (B)	2.2 ± 0.1	0.7 ± 0.0
$VBF(H^* \rightarrow)ZZ$	2.0 ± 0.1	0.6 ± 0.0
VBF ($H^* \rightarrow$)ZZ ($\mu_{\text{off-shell}} = 10$)	3.0 ± 0.2	1.4 ± 0.1
$q\bar{q} ightarrow ZZ$	168 ± 13	21.3 ± 2.1
Reducible backgrounds	1.4 ± 0.1	0.1 ± 0.0
Total Expected (SM)	200 ± 15	24.3 ± 2.2
Observed	182	18

- Limit on $\mu_{offshell}$ given as function of the relative gg \rightarrow ZZ background K-factor $\mathbb{R}^{B}_{H^{*}}$
- Limit observed lower than expected
- Poorly dependent on R^B_{H*}
- R^B_{H*} ~1 in the soft collinear approximation
- Small impact of the experimental uncertainties

	Observed		Median expected			
$R^B_{H^*}$	0.5	1.0	2.0	0.5	1.0	2.0
cut-based	10.8	12.2	14.9	13.6	15.6	19.9
ME-based discriminant analysis	6.1	7.2	9.9	8.7	10.2	14.0

Systematic uncertainties in 41 analysis

- Impact of systematic uncertainties considered (theoretical and experimental) on the 95% CL limit on $\mu_{offshell}$ (K^B_{H*}=1)
 - Limit worst by 17% due to the systematic uncertainties
- Negligible impact on the limit of the experimental uncertainties
- Main impact of QCD scale systematic uncertainties for $gg \rightarrow ZZ$ and $gg \rightarrow (H^*) \rightarrow ZZ \rightarrow 41$ interference

Source of systematic uncertainties	95% CL on $\mu_{\text{off-shell}}$
QCD scale for $gg \rightarrow ZZ$	9.5
QCD scale for the $gg \rightarrow (H^* \rightarrow)ZZ$ interference	9.2
QCD scale for $q\bar{q} \rightarrow ZZ$	8.8
PDF for $pp \rightarrow ZZ$	8.7
EW for $q\bar{q} \rightarrow ZZ$	8.7
Luminosity	8.8
electron efficiency	8.7
μ efficiency	8.7
All systematic	10.2
No systematic	8.7

212v analysis

- Similar sensitivity as the 4l analysis
 - Profit of factor 6 higher BR
- Selection cuts:
 - $E_T^{miss} > 150 \text{ GeV}, 76 \le m_{ll} \le 106 \text{ GeV}$
 - Signal region: 350GeV<m_T<1TeV
- Simple cut based analysis
- Main backgrounds
 - $qq \rightarrow ZZ$: MC based estimation
 - WZ: MC based estimation
 - WW/tt/Z $\tau\tau$: estimated inclusively with eµ events
 - Z+jets: data-driven with ABCD method
- Slightly more events observed in the signal region wrt the SM expectation

 m_{T} [GeV]

Process	Total
$gg \to H^* \to ZZ(S)$	$4.8 \pm 0.04 \pm 1.5$
$gg \rightarrow ZZ(B)$	$9.2 \pm 0.8 \pm 2.7$
$gg \to (H^* \to)ZZ$	$7.4 \pm 0.1 \pm 2.2$
$gg \rightarrow (H^* \rightarrow)ZZ(\mu_{\text{off-shell}} = 10)$	$34.7 \pm 0.2 \pm 10.4$
$VBF H^* \to ZZ (S)$	$0.5 \pm 0.07 \pm 0.02$
VBF ZZ (B)	$1.8 \pm 0.1 \pm 0.1$
$VBF(H^* \rightarrow)ZZ$	$1.4 \pm 0.1 \pm 0.1$
VBF $(H^* \rightarrow)ZZ(\mu_{\text{off-shell}} = 10)$	$3.7 \pm 0.2 \pm 0.1$
$q\bar{q} \rightarrow ZZ$	$54.4 \pm 0.9 \pm 5.7$
WZ	$21.1 \pm 0.7 \pm 2.3$
WW, $t\bar{t}$, Wt, and $Z \rightarrow \tau \tau$	$2.8 \pm 1.7 \pm 0.2$
$Z \rightarrow ee, \mu\mu$	$9.6 \pm 3.5 \pm 4.0$
Other backgrounds	$3.3 \pm 0.8 \pm 0.4$
Total Expected (SM)	$100 \pm 4 \pm 10$
Observed	104 11

2l2v analysis result

- Event selection for the 2l2v indirect influence on jet emission and $p_T(ZZ)$
 - Additional acceptance uncertainty
 - LO vs 0j+1J (Sherpa+OpenLoops)
 - Knowledge of signal and bkg processes at higher order is crucial

- Limit on $\mu_{offshell}$ from 2l2v final state given as function of the relative gg \rightarrow ZZ background K-factor R^B_{H*}
- $\mu_{offshell} < 11.3$ at 95% CL for R^B _{H*}=1
- Expected: $\mu_{offshell} < 9.9 @ 95\%$ CL

Combined result

Source of systematic uncertainties	95% CL on $\mu_{\text{off-shell}}$
QCD scale for $gg \rightarrow ZZ$	6.7
QCD scale for the $gg \rightarrow (H^* \rightarrow)ZZ$ interference	6.7
QCD scale for $q\bar{q} \rightarrow ZZ$	6.4
Z BG systematic	6.2
Luminosity	6.2
PDF for $pp \rightarrow ZZ$	6.1
Sum of remaining systematic uncertainties	6.2
No systematic	6.0
All systematic	7.9

- Limit on $\mu_{offshell}$ obtained with the combination of the 4l and 2l2v analyses
- Main theoretical uncertainties from QCD scale for the qq and gg initiated processes
- Main experimental uncertainties:
 - Luminosity
 - Z bg estimate for the 2l2v channel

Limit on the Higgs width

- Obtained by combining the on-shell 4l and off-shell 4l-llvv signal strength measurements
 - measured $\mu_{onshell}$ =1.5 with
 - $H \rightarrow ZZ^* \rightarrow 4l$
 - Limit valid under the assumption that on-peak and off-peak couplings are the same
 - Assumed $\mu_{ggf}/\mu_{VBF}=1$
 - Other approaches possible i.e. profiling μ_{ggf} and μ_{VBF} from 8 TeV coupling measurement

• $\Gamma_{\rm H} / \Gamma_{\rm H,SM} < 4.8$ at 95% CL (R^B _{H*}=1)

- < 6 @ 95% CL for R^B_{H*}=2
- Expected (R^B _{H*}=1, $\mu_{onshell}$ =1.5):

- Precious lesson from Run 1 analysis
- During Run 2 same sensitivity will be reached with ~10fb⁻¹
- With the increase of the statistics, it will be crucial to have as best as possible accurate theoretical prediction
 - Theoretical uncertainties on cross-section and shapes of the different components
- Essential to move from LO to NLO MC development for $gg \rightarrow VV$ process
 - Introduce less "QCD-inclusive" analysis
 - Might help if category for VBF and VH-like production modes introduced
- Equally important the development of MC generators for the main $qq \rightarrow VV$ background
 - pp \rightarrow WW/ZZ* at NNLO cross sections and NNLO MC development

Looking forward...

- Increasing integrated luminosity \rightarrow high statistical power of the measurement
- Simple scaling of the current 1σ stat only uncertainty at 14 TeV assuming ~2.7 higher xsec for the signal

 $\mu_{offshell}$ measurement @ 20-30% level (stat only) with 3000fb ⁻¹

- "differential" knowledge (ME,m_{ZZ},m_T) of the signal and background processes will be more and more crucial
 - Shape analysis solve the two possible solution from simple cut and count analysis
 - i.e. higher order EW corrections need to be taken also into account

Conclusions

- Off-shell production of the Higgs boson gives interesting extra information of the coupling structure of the Higgs boson
- Analysis performed by ATLAS using the 8TeV data (20.3 fb⁻¹) with the 4l and llvv final states
 - Similar sensitivities
 - $-\,\mu_{offshell} < 6.7~$ 95% CL for $R^B_{\ H*} = 1$
 - Studied also as function of the $R^B_{\ H*}\left[0.5\text{ , }2\right]$
- With theoretical caveats, this might interpret as a limit on the Higgs width when off-shell and on-shell measurement are combined together
 - $\Gamma_{\rm H}/\Gamma_{\rm H,SM}$ < 4.8 at 95% CL
 - \sim 2 order of magnitudes better than direct limits on the width
 - Similar limit for CMS
- Very interesting measurement to perform with RUN2 data (and HL-LHC)
 - $\mu_{offshell}$ measurement sensitivity @ 20-30% level with 3000fb⁻¹ (stat only)
 - Very important the theoretical knowledge of the gg→(H*)→VV process and the backgrounds at higher orders in QCD

backup

14

 $\Gamma_{\rm H}\!/\Gamma_{\rm H}^{\rm SM}$