Higgs physics in ATLAS and CMS

Beyond the standard model

Agní Bethaní NEXT meetíng, 19 November 2014

In this talk...

- The LHC, ATLAS and CMS in run 2
- Híggs mass measurement
- Híggs spín measurement
- BSM Higgs scenarios
- 2Híggs Doublet Models (2HDM), MSSM/NMSSM
- Additional Higgs bosons searches-examples
- Exotic Higgs searches

LHC schedule

fb⁻¹

Injectors

LHC

- Ready for run 2 (almost!)
 - Physics run starts next May
- What's new?
 - Energy 13 TeV
 - 25 ns bunch crossing (not straight away)
 - Expected ~100 fb⁻¹ integrated luminosity at the end of Run2
 - ATLAS and CMS upgrades

Major ATLAS upgrades

- Additional Insertable B-Layer (Pixels)
- New beam pipe
- Complete muon coverage

Number of pileup interactions

Major CMS upgrades

- Additional (4th) layer of pixels
- smaller radius beam pipe in LS1, and plan to install new pixels in extended 2016-2017 shutdown
- Hybrid Photodiodes (HPD) of HCAL are replaced with Silicon Photomultipliers (SiPM) in the barrel and endcap.
- Complete muon coverage

Higgs mass measurement

Both experiments use the H-> $\gamma\gamma$ and H->ZZ channels. 25 fb⁻¹ of data. The precision is already in the order of %, dominated by statistical uncertainty!

 $m_{\rm H} = 125.03 - 0.27 + 0.26 \text{ (stat)}_{-0.15}^{+0.13} \text{ (sys)}$ = 125.03_{-0.31}^{+0.29} GeV

Higgs Spin measurements

- The spin and parity measurements are based on exclusion of an alternative J^P hypothesis.
 - The results are consistent with the SM.
- Exotic Higgs: J=1,J=2 excluded at >95% CL by both CMS and ATLAS

120

100

80

60 40

20

-20 -40 -60

to

-2 In(L

Higgs coupling measurements

- Coupling strengths g of the Higgs to other SM particles scale with the particle mass Fermions: $g_F = \sqrt{2m_F}/v$, Gauge bosons: $g_v = 2m^2/v$
- Results consistent with the SM
- CMS found an excess with 2σ significance in the ttH production

Higgs physics in Runz

- Precísion measurements
- Searches for rare decays and processes
- Searches for new particles

Beyond the Standard Model Higgs

High mass 2HDM/MSSM

- H to yy

- H to WW to Iviv - H to WW to Ivag
- 1110 1111 10119
- H to ZZ to 4I
- H to ZZ to Ilvv
- H to ZZ to Ilqq
- H to ZZ to vvbb
- (b)tau tau (leplep, lephad, hadhad)
- (b)bb
- (b)mumu
- very high mass tautau

Charged Higgs

- taunu+jets
- taunu+lep
- tb
- CS
- AW
- Wh
- WZ to (lvqq, qqll)
- very high mass tb (allhad, lep+jets)
- H+ to Wgamma

NMSSM

- a to mumu
- 2a to 4y (multiphoton)
- 2a to 4taus
- (bb)a to (bb)tautau to (bb)emu
- 2a to tautaumumu
 H+ to aW

LFV

- tau mu
- tau e
- e mu

Heavy Higgs decays

- Zh to lltautau (leplep, lephad, hadhad)
- Zh to (II/vv)bb
- hh to yybb
- hh to 4b
- hh to bbtautau
- hh to yyVV to yy4j
- top pair
- Doubly charged Higgs

Other BSM

- mono photon
- mono Higgs
- Cascade decays H to H+W to hWW to bbWW

Invisible Higgs decays

- Mono jet.
- ZH to (II)inv
- VBF H to inv
- VH to (jj)inv
- Mono-W analysis substructure

Exotic Higgs

- Hidden valley pions
- Dark Z, H to ZdZ(d) to 4I

19/11/201-

Agní Bethaní, NEXT meeting, Sussex

multí Higgs doublet models

- The Higgs sector is the last unknown piece of the SM of particle physics.
- the Higgs sector might consist of multi-Higgs doublet fields.
- multí-Híggs models are realísed in various new physics models including supersymmetry.
- Supersymmetry is an appealing candidate for BSM physics: the introduction of a fermion-boson symmetry solves the electroweak hierarchy puzzle, offers a dark matter candidate and is consistent with grand unification
- Other models are little Higgs, twin Higgs, hidden valleys and others.

2 Higgs doublet models

- Extend SM Higgs sector by an additional electroweak doublet Five Higgs bosons:
 - two CP-even bosons h and H
 - one neutral CP-odd boson A
 - two charged bosons H±
- Híggs sector descríbed by six parameters
 - Four Higgs boson masses $(m_h, m_H, m_A \text{ and } m_{H\pm})$
 - Ratio of the vacuum expectation values, tan $\beta = v_1/v_2$
 - Mixing angle α of the two neutral, CP-even Higgs states

2 Higgs doublet models: Types

• Туре 1

Fermiophobic: all fermions couple to HI all vector bosons to H2

Type 2

MSSM-like: down type fermions couple to H1 and up type fermions to H2

• Type 3

Lépton specífic: Híggs-quark couplings like type 1 and Híggs-lepton couplings like type 2

• Type 4

Flipped model: Higgs-quark couplings like type 2 Higgslepton couplings like type 1

MSSM and NMSSM

MSSM		NMSSM	[*] Typell 2HDM	
2 Higgs doublets [*]	2 Higgs doublets ^[*]		2 Higgs doublets ^[*] + complex Higgs singlet	
$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}, H_d = \begin{pmatrix} \\ \end{pmatrix}$	$\left. \begin{array}{c} H^0_d \\ H^d \end{array} \right)$	$H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array}\right), H_d = \left(\begin{array}{c} \end{array}\right)$	$ \begin{array}{c} H^0_d \\ H^d \end{array} \right), S \end{array}$	
2 scalars:	h <i>,</i> H	3 scalars:	h ₁ , h ₂ , h ₃	
1 pseudo-scalar:	А	2 pseudo-scalars:	a ₁ , a ₂	
2 charged Higgs bosons:	H⁺, H⁻	2 charged Higgs bosons:	H⁺, H⁻	

 The NMSSM adds a gauge singlet S and allows a relaxation of the electroweak fine tuning and the naturalness conditions.

Neutral CP-even Higgs

- Usual assumption is that the 125 GeV Higgs is the lightest op-even higgs (h)
- Search for a heavier neutral CP-even partner (H) to the 125 GeV light Higgs (h)
- Very much like the SM higgs
- Searches in the same channels as the SM higgs
 - H->WW/ZZ
 - ++->γγ
- Searches in exotic signatures, such as invisible, H->hh, SUSY cascades etc.*

* Some discussed later in this talk

Heavy H->WW-> $e\nu\mu\nu$, 2HDM

- Split into 0-jet (ggF) and 2-jet (VBF) channels
- Use neural network to separate signal from background

Agní Bethaní, NEXT meeting, Sussex

Heavy H->WW->evuv, 2HDM

- No evidence for signal found in the mass range of [135, 300] Gev
- Límíts set ín $\cos(\alpha)$ vs. mH plane for Type 1 and 2 2HDM

Heavy $H \rightarrow WW \rightarrow e\nu\mu\nu$

- Generic search for neutral scalar resonance in the mass range 300 GeV-1 TeV
- Cut based analysis, optimised in categories according to the number of jets in the event
- Fínal díscrímínatíng variable m_T

Heavy H->YY

- Extension of the techniques developed for the discovery of $h(125) \rightarrow \gamma \gamma$ to search for additional narrow resonances decaying into $\gamma \gamma$ in an extended mass range
- $M_{\gamma\gamma}$ spectrum fitted with analytical descriptions of signal and background distributions

h(125) contribution is included in background

CP odd Higgs

At tree level, cp-odd pseudoscalar can decay to:

- a pair of standard model fermions $f^-f(bb, \tau\tau)$,
- Zh, ZH
- W[±]H[∓]
- or other BSM particles
- In type 1 and 2 2HDM the production and deay of the CP odd A depends only on tanβ.

$H/A - > \tau\tau$

- Channels: dífferent τ decays exploited
- Associated production with b quarks enhanced for larger values of tan β
- Both experiments use b-tag and no btag categories

- Different ways of presenting the results
 - SUSY parameter space, model independent, wir to production mechanisms

A -> Zh -> bbll

- heavy pseudoscalar Híggs A, decaying into a Z, and an h boson
- Events with opposite sing same flavour leptons and two b tagged jets.
- The analysis strategy is to fully reconstruct the Z, h, and A bosons from the visible decay products
- a narrow peak in the mubb spectrum
- Backgrounds Z+b jets, ttbar with leptonic
 W decays
- Final selection using Boosted Decision Trees

_ = 19.7 fb

Single

n₄=300 GeV

m_=325 GeV

A - > Zh - > bbll

- heavy pseudoscalar Híggs A, decaying into a Z, and an h boson
- Events with opposite sing same flavour leptons and two b tagged jets.
- The analysis strategy is to fully reconstruct the Z, h, and A bosons from the visible decay products
- a narrow peak in the mubb spectrum
- Backgrounds Z+b jets, ttbar with leptonic
 W decays
- Final selection using Boosted Decision Trees

Charged Higgs

- Charged Higgs part of SM extensions
- Not so many final states explored yet
- New results on the way; More planned for Run 2
 - $++->\tau\nu$
 - +++->tb
 - H^+ ->Wh,WZ
 - H+->cs/cb and more!

Charged Higgs ATLAS $H^+ - > \tau_h \nu$

- Backgrounds
 - ttbar
 - single top
 - w+jets,Z+jets, ww,WZ,ZZ
 - QCD multíjet
- Discriminating variable the reconstructed tau mass.
- $m_{\tau} = \sqrt{2p_T^{\tau} E_T^{miss} (1 \cos\Delta\Phi_{\tau,miss})}$
- background estimation using embedding method.* (details in the backup)
 - select events that are topologically similar to main background but contain μ instead of au
 - remove μ track, símulate τ hadroníc decay
 - merge original event and simulated $\tau \alpha$
 - reconstruct whole event

Charged Higgs ATLAS $H \rightarrow \tau_h v$

Light higgs (NMSSM)

- Light higgs boson h coupling to the H=125 GeV Higgs In the context of the NMSSM can be very light! (<10 GeV)
- Many final states and productions are being studied as we speak Many new results to come by the end of the year Many more are getting ready for Run2
- H->hh->2μ2τ
- t-> bH⁺-> baw, a->2µ
- H->hh->2b2µ
- H->hh->4τ...

ATLAS $h > aa > 4\gamma$

- 4 high energy photons
- background dominated by QCD diphotons
 - fitted to sidebands
- No excess observed

19/11/2014

$CMSh -> aa -> 4\mu$

- 2 muon pairs with o charge and similar mass
- Backgrounds
 - bbbar decays to muons
 - $di J/\Psi$ direct production
- Sideband region of $m_{\mu\mu1} \neq m_{\mu\mu2}$
 - background prediction of 3.8 +/- 2.1
- 1 event observed in signal region compatible with background prediction

 $h_{1.2}$

 μ^+

Double Higgs production

- Tev-scale resonances decaying to two Higgs bosons predicted by several models, including:
 - RSKK Graviton-hh
 - H→hh ín 2HDM
 - Enhancement of non-resonant dí-Higgs production
 - SM dí-Higgs production at HL-LHC

hh->bbbb

- Search for TeV-scale resonances decaying to a pair of Higgs bosons
- hh->bbbb, two back to back, high p_T, pairs of btagged jets.
- díjet mass must be compatible with 125GeV
- final discriminant, mass of the all four jets, m₄₁

$hh -> bb\gamma\gamma$

- 2 photons
- At least one b-tagged jet
- Background: QCD γγ+jets

$hh - > bb\gamma\gamma$

34

Events / 40 GeV

200

Higgs invisible

- Some extensions of the Standard Model allow a Higgs boson to decay to a pair of stable or long lived particles that cannot be observed
- Higgs decaying to a hidden/dark sector
 - Híggs portal (SM+sínglet) dark matter scenarío

Higgs invisible VBF

VBFH

- 2 forward jets with big rapidity gap between them and high invariant mass.
- A lot of missing transverse energy (MET)
- Backgrounds
 - $Z(\nu\nu)$ + jets
 - $W(l\nu)$ + jets, DY(ll) + jets
 - lepton veto: no ℓ with p > 10 GeV/c
 - Single top, tt, diboson
 - QCD multijets
 - Δφ(jj) < 1.0 rad

Higgs invisible VBF

VBFH

- 2 forward jets with big rapidity gap between them and high invariant mass.
- A lot of missing transverse energy (MET)
- Backgrounds
 - $Z(\nu\nu)$ + jets
 - $W(l\nu)$ + jets, DY(ll) + jets
 - lepton veto: no ℓ with p > 10 GeV/c
 - Single top, tt, diboson
 - QCD multíjets
 - Δφ(jj) < 1.0 rad

Higgs Invisible VH

- Paír of isolated leptons
- Dílepton mass near Z mass
- A lot of missing transverse energy
 Backgrounds:
- Díboson WW/ZZ/WZ
- Z->µµ/ee
- Ttbar, Wt...

Higgs Invisible VH

- Paír of isolated leptons
- Dílepton mass near Z mass
- A lot of missing transverse energy
 Backgrounds:
- Díboson WW/ZZ/WZ
- Z->µµ/ee
- ttbar, wt..

Higgs and dark matter

The results of the H->INV. Can be interpreted in the dark matter higgs portal scenario

Many more Higgs searches of interest

- SUSY cascade decays with higgs bosons
- Search for displaced signatures
- Doubly charged Higgs (part of multi higgs doublet models)
- Lepton flavour violating decays
 - $H \rightarrow \tau \mu$

Looking forward to RUN 2

ATLAS and CMS search for new physics in the Higgs sector

- Searches and measurements in parallel.
- The plan is to test all hypotheses. We have to look everywhere!
- Sophisticated analysis methods used in order to exploit every fb of data
- Aiming for discoveries and not limits!;)

Looking forward to more energy and new data!

Back-up material

Higgs Branching fractions

19/11/2014

Higgs production cross sections

Higgs portal

$$V(H,S) = -\mu^2 |H|^2 - \frac{1}{2} {\mu'}^2 S^2 + \lambda |H|^4 + \frac{1}{4} \kappa S^4 + \frac{1}{2} \zeta S^2 |H|^2.$$

if S is light enough the coupling ζ induces
 h->ss decay mode

SM Higgs measurements: conseaquenses

- Various scenarios tested
 - Asymmetric couplings to u/d type fermions
 - Asymmetric couplings to quarks/leptons
- Coupling measurements place constraints on BSM models.

Embedding method

- used to estimate background a events with true leptons in a data-driven way
- líttle dependence on theoretical and detectorrelated uncertaíntíes
- main assumption: same amount of $W\to\mu\nu$ and $W\to\tau\nu$ events, same kinematics
- \triangleright select events that are topologically similar to main background but contain μ instead of τ

- \triangleright rescale μ momentum
- \triangleright remove μ track
- \triangleright símulate μ , subtract calorímeter cells of thís μ
- \triangleright simulate $\tau \rightarrow$ had decay
- \blacktriangleright merge original event and simulated τ
- > reconstruct whole event

2HDM coupling scale factors

Coupling scale factor	Type I	Type II	Type III	Type IV
κγ	$\sin(\beta-\alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta-\alpha)$	$\sin(\beta-\alpha)$
κ_{u}	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$
κ _d	$\cos(lpha)/\sin(eta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(lpha)/\sin(eta)$	$-\sin(\alpha)/\cos(\beta)$
κ_{ℓ}	$\cos(lpha)/\sin(eta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(lpha)/\sin(eta)$

NMSSM couplings

	type-I	type-II
ξ_h^u	$\sin(\beta - \alpha) + \cos(\beta - \alpha)/\tan\beta$	$\sin(\beta - \alpha) + \cos(\beta - \alpha)/\tan\beta$
ξ_h^d	$\sin(\beta - \alpha) + \cos(\beta - \alpha)/\tan\beta$	$\sin(\beta - \alpha) - \cos(\beta - \alpha) \cdot \tan\beta$
ξ_h^l	$\sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan\beta$	$\sin(\beta - \alpha) - \cos(\beta - \alpha) \cdot \tan\beta$
ξ_{H}^{u}	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$
ξ_{H}^{d}	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) + \sin(\beta - \alpha) \cdot \tan\beta$
ξ_H^{γ}	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) + \sin(\beta - \alpha) \cdot \tan\beta$
ξ^{u}_{A}	$1/\tan\beta$	$1/\tan\beta$
ξ^d_A	$-1/\tan\beta$	tanβ
$\xi_A^{\hat{l}}$	$-1/\tan\beta$	tanβ

CP odd Higgs A->Zh multileptons

- Same flavour leptons with dilepton mass near Z
- Events classified according to the number of opposite sign-same flavour pairs
- CMS multilepton events: At least 3 leptons/max one τ ->had.
- Backgrounds Z + jets, diboson production

CP odd Higgs A->Zh multileptons

- Same flavour leptons with dilepton mass near Z
- Events classified according to the number of opposite sign-same flavour pairs
- CMS multilepton events: At least 3 leptons/max one τ ->had.
- Backgrounds Z + jets, diboson production

Charged Higgs CMS H->cb

- 2 b tagged jets
- 2 addítional jets
- Missing transverse energy
- Isolated lepton

Main background SM ttbar Looking at mass of jets without btag

120

140

M_{ii} (GeV)

H+

A->Zh->bbll

- the two b-jets originate from the decay of the scalar h boson.
- h mass has been measured with better precision than the one which can be obtained from the b-jet measurement resolution alone.
- The measured jets p_{T} , η , and φ are varied according to their resolution in a kinematic fit based on Lagrange multipliers to force the dijet invariant mass to be equal to $m_{h} = 125$ GeV.
- The x² of the fit is used in the subsequent steps of the analysis as a discriminating variable in place of the dijet mass m_{bb}.

Heavy charged Higgs toH+, H+->tb/TV

- m_{H+}>m_t
- 2 final states:
 - $-\tau_{\mu}\nu$
 - ee,eμ,μμ

τ_hμ

- ísolated μ , a hadroníc τ jet and at least one more jet, at least one b-tagged jet
- DY, ttbar

ee,eμ,μμ

- ísolated, opposítely charged leptons

LHC

ATLAS and CMS

