

Charge Asymmetries of Top Quarks: a Window to New Physics at Hadron Colliders

Paola Ferrario

Instituto de Física Corpuscular UVEG-CSIC

Discrete '08, Valencia, December 12

P. Ferrario, G. Rodrigo, Phys. Rev. D 78, 094018 (2008)

LHC is starting soon! (hopefully...)

Runs

•
$$\sqrt{s} = 14$$
 TeV, $\mathcal{L} = 10$ fb⁻¹/year
• $\sqrt{s} = 14$ TeV, $\mathcal{L} = 100$ fb⁻¹/year in a second phase

Paola Ferrario

LHC is starting soon! (hopefully...)

Huge production of top quarks

- More top-antitop quark pairs than in the whole Tevatron life
- Possibility of new physics discovery thanks to the high statistics
- $\sqrt{s} = 14$ TeV, $\sigma = 950$ pb \rightarrow for $\mathcal{L} = 10$ fb⁻¹/year 10 millions of events per year!

Charge asymmetry

Difference in top-antitop production

$$\frac{N_t - N_{\overline{t}}}{N_t + N_{\overline{t}}}$$

- In QCD it is different from zero at $\mathcal{O}(\alpha^3)$.
- Tops are produced mostly in the direction of the quarks.
- It arises mostly from $q\bar{q}$ and small contribution of qg events, because gg is symmetric.

- New physics color-octet resonances have been predicted to be detected at LHC by decaying to top-antitop. Masses under around 1 TeV already ruled out at Tevatron.
- Resonances appear as a **peak in the cross section** → we could observe these resonances in events with invariant masses close to the resonance mass.

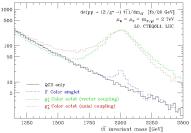


Figure: R. Frederix, F. Maltoni

Paola Ferrario

- High momenta top pairs are difficult to distinguish from light quark jets, because the decay products are more collimated. Standard reconstruction algorithms are not efficient anymore at $p_T > 400$ GeV. Studies for new algorithms see
 - * Kaplan, Rehermann, Schwartz and Tweedie, arXiv:0806.0848 [hep-ph]
 - * Thaler and Wang, JHEP 0807 (2008) 092
 - * L. G. Almeida, S. J. Lee, G. Perez, G. Sterman, I. Sung and J. Virzi, arXiv:0807.0234 [hep-ph]

- High momenta top pairs are difficult to distinguish from light quark jets, because the decay products are more collimated. Standard reconstruction algorithms are not efficient anymore at $p_T > 400$ GeV. Studies for new algorithms see
 - * Kaplan, Rehermann, Schwartz and Tweedie, arXiv:0806.0848 [hep-ph]
 - * Thaler and Wang, JHEP 0807 (2008) 092
 - * L. G. Almeida, S. J. Lee, G. Perez, G. Sterman, I. Sung and J. Virzi, arXiv:0807.0234 [hep-ph]
- Resonances can produce asymmetries. Since these arise from interference terms, they are more sensitive to higher masses than the differential cross section, because they are less suppressed.

- High momenta top pairs are difficult to distinguish from light quark jets, because the decay products are more collimated. Standard reconstruction algorithms are not efficient anymore at $p_T > 400$ GeV. Studies for new algorithms see
 - * Kaplan, Rehermann, Schwartz and Tweedie, arXiv:0806.0848 [hep-ph]
 - * Thaler and Wang, JHEP 0807 (2008) 092
 - * L. G. Almeida, S. J. Lee, G. Perez, G. Sterman, I. Sung and J. Virzi, arXiv:0807.0234 [hep-ph]
- Resonances can produce asymmetries. Since these arise from interference terms, they are more sensitive to higher masses than the differential cross section, because they are less suppressed.
- This makes more effective studying asymmetries than cross sections.

- At Tevatron charge asymmetry = forward–backward asymmetry $\simeq 5\%$
- *pp* is symmetric → no FB asymmetry BUT it's possible to look for a charge asymmetry in an appropriate kinematic region appendix
- Main problem: 85% of the events is $gg \to t\bar{t}$ (symmetric)

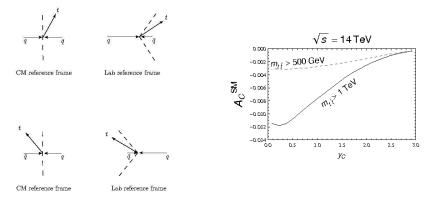
- At Tevatron charge asymmetry = forward–backward asymmetry $\simeq 5\%$
- *pp* is symmetric → no FB asymmetry BUT it's possible to look for a charge asymmetry in an appropriate kinematic region appendix
- Main problem: 85% of the events is $gg \to t\bar{t}$ (symmetric)
- At low x the gluon contribution dominates → cuts on the top-antitop invariant mass eliminate low x momenta where gluon density is bigger than the quark one.

- At Tevatron charge asymmetry = forward–backward asymmetry $\simeq 5\%$
- *pp* is symmetric → no FB asymmetry BUT it's possible to look for a charge asymmetry in an appropriate kinematic region appendix
- Main problem: 85% of the events is $gg \to t\bar{t}$ (symmetric)
- At low x the gluon contribution dominates → cuts on the top-antitop invariant mass eliminate low x momenta where gluon density is bigger than the quark one.
- Asymmetry is enhanced, even with less statistic.

- At Tevatron charge asymmetry = forward–backward asymmetry $\simeq 5\%$
- *pp* is symmetric → no FB asymmetry BUT it's possible to look for a charge asymmetry in an appropriate kinematic region appendix
- Main problem: 85% of the events is $gg \rightarrow t\bar{t}$ (symmetric)
- At low x the gluon contribution dominates → cuts on the top-antitop invariant mass eliminate low x momenta where gluon density is bigger than the quark one.
- Asymmetry is enhanced, even with less statistic.

Not a problem at LHC

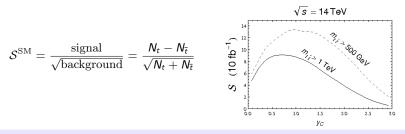
Pure QCD


• Central asymmetry, built choosing a limited rapidity region

$$A_C(y_C) = \frac{N_t(|y| \le y_C) - N_{\overline{t}}(|y| \le y_C)}{N_t(|y| \le y_C) + N_{\overline{t}}(|y| \le y_C)}$$

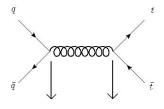
• Cut on the top-antitop invariant mass $m_{t\bar{t}}$ to have more $q\bar{q}$, gq events.

Pure QCD


QCD predicts that tops (antitops) are produced mostly in the direction of the incoming quarks (antiquarks)

For low y_C only the region with more abundant antitops is selected \longrightarrow the asymmetry is negative and decreases in magnitude with y_C

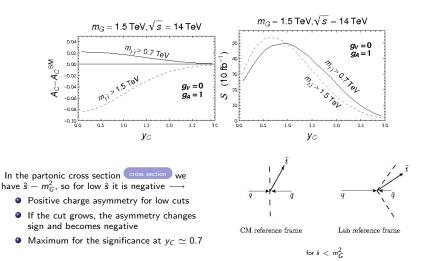
Paola Ferrario


Pure QCD: significance

- Significance is greater for lower cuts → identifying soft tops is easier than the highly boosted ones
- The higher statistic compensates the smaller asymmetry
- True for all values of the cut
- The maximum is around $y_C \simeq 0.7 1$ and it has a high value

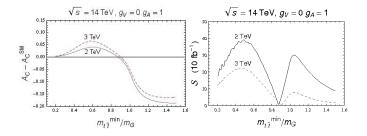
Paola Ferrario

Color-octet boson resonance exchange



$$\left(g_V + g_A \gamma_5\right) \gamma_\mu$$

- Arbitrary couplings g_V , $g_A \in [0, 2]$
- Couplings independent on flavour $g_{V(A)}^q = g_{V(A)}^t$
- Examples: axigluon ($g_V = 0$, $g_A = 1$), KK gluon

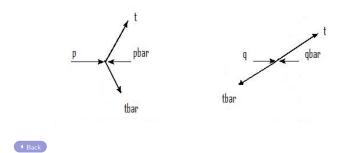

Paola Ferrario

Color-octet boson resonances

Paola Ferrario

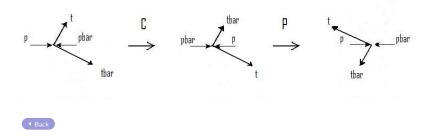
Varying $m_{t\bar{t}}^{\min}$

- A_C goes from positive to negative $\rightarrow S$ reaches a maximum there and goes to zero.
- A_C grows negative $\rightarrow S$ increases again and has another maximum before the number of events becomes small.
- The maxima are at $m_{t\bar{t}}^{\min}/m_G = 0.5$ and $m_{t\bar{t}}^{\min}/m_G = 0.8 1$ for almost all couplings \rightarrow a low cut is enough for a good statistical significance
- The maxima position does not depend on the mass

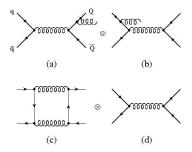

Paola Ferrario

Conclusions

- Charge asymmetry in top-antitop production in QCD and through a color-octet massive resonance exchange
- @LHC
 - Pure QCD analysis: the statistical significance is greater with no cuts in the invariant mass
 - Resonances: a cut of 1/2 the resonance mass is enough to see the asymmetry and detect or exclude these particles


¡Gracias!

• Pair asymmetry


Paola Ferrario

Tevatron

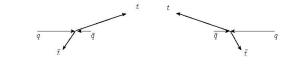
Paola Ferrario

• Interference contributions to QCD charge asymmetry

◀ Back

Paola Ferrario

• Cross section and FB asymmetry


$$\sigma = \int_{1}^{-1} d\cos\hat{\theta} \frac{d\sigma}{d\cos\hat{\theta}} + \int_{-1}^{1} d\cos\hat{\theta} \frac{d\sigma}{d\cos\hat{\theta}}$$

 \rightarrow only even terms in $\cos \hat{\theta}$ contribute.

$$A_{\rm FB} \propto \frac{d\sigma(\cos\hat{\theta})}{d\cos\hat{\theta}} - \frac{d\sigma(-\cos\hat{\theta})}{d\cos\hat{\theta}}$$

 \rightarrow only odd terms in $\cos\hat{\theta}$ contribute.

Paola Ferrario

• Charge asymmetry at LHC

▲ Back

Paola Ferrario

Color-octet boson resonance: differential cross section

$$\begin{split} \frac{d\sigma^{q\bar{q} \to t\bar{t}}}{d\cos\hat{\theta}} &= \alpha_s^2 \, \frac{T_F C_F}{N_C} \, \frac{\pi\beta}{2\hat{s}} \Biggl(1 + c^2 + 4m^2 + \frac{2\hat{s}(\hat{s} - m_G^2)}{(\hat{s} - m_G^2)^2 + m_G^2 \Gamma_G^2} \, \left[g_V^q g_V^t \times \right. \\ &\times \left. (1 + c^2 + 4m^2) + 2g_A^q g_A^t c \right] + \frac{\hat{s}^2}{(\hat{s} - m_G^2)^2 + m_G^2 \Gamma_G^2} \times \right. \\ &\times \left[\left((g_V^q)^2 + (g_A^q)^2 \right) \left((g_V^t)^2 (1 + c^2 + 4m^2) + \right. \\ &+ \left. (g_A^t)^2 (1 + c^2 - 4m^2) \right) + 8g_V^q g_A^q g_V^t g_A^t c \right] \Biggr) \right] \\ c &\equiv \sqrt{1 - 4\frac{m_t^2}{\hat{s}}} \cos\hat{\theta} \quad \text{appendix} \end{split}$$

🔹 🖣 Back

Paola Ferrario