Quasi-Degenerate neutrinos and Tri-Bi-Maximal mixing

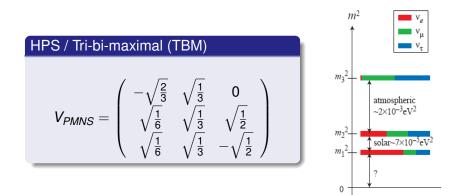
Ivo de Medeiros Varzielas

Centro de Física Teórica de Partículas Instituto Superior Técnico

DISCRETE '08, 2008/12/13

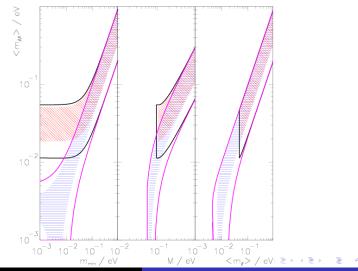
Outline

Introduction


- The data
- Quasi-Degenerate neutrinos
- 2 QD Neutrinos and TBM mixing
 - Radiative Running
 - Family Symmetry
 - Quasi-Degeneracy
 - Vacuum alignment

3 Conclusions

- Radiative Running
- Quasi-Degeneracy


The data Quasi-Degenerate neutrinos

Summary of lepton mixing data

The data Quasi-Degenerate neutrinos

Neutrinoless beta decay plot

Ivo de Medeiros Varzielas

Quasi-Degenerate neutrinos and Tri-Bi-Maximal mixing

Radiative Running Family Symmetry Quasi-Degeneracy /acuum alignment

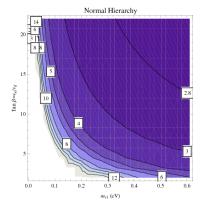
Based on

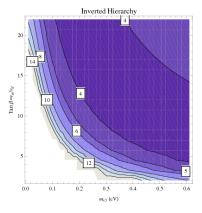
arXiv 0811.2226

- Graham Ross (University of Oxford)
- Mario Serna (University of Oxford, now in the U.S.)

イロト イポト イヨト イヨト

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment


Limiting the high-energy scale


Emphasis on the energy scale

- Start at high-energy with exact TBM mixing
- Demand the low-energy angles to be viable
- Identify highest energy scales in $m_{\nu}/\tan\beta$
- Useful for model building

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

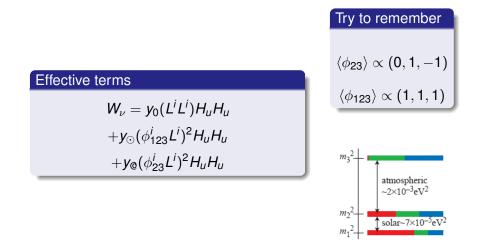
Normal and Inverted Hierarchy contour plots

Ivo de Medeiros Varzielas Quasi-Degenerate neutrinos and Tri-Bi-Maximal mixing

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

Family assignments

Underlying SO(3) F.S.


- The familons ϕ_A^i are family triplets
- The doublet Lⁱ is a family triplet
- e^c , μ^c , τ^c are family singlets

Desired vevs

 $egin{aligned} &\langle \phi_3
angle \propto (0,0,1) \ &\langle \phi_{23}
angle \propto (0,1,-1) \ &\langle \phi_{123}
angle \propto (1,1,1) \end{aligned}$

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

Effective neutrino Lagrangian

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

Charged leptons

Charged leptons don't spoil TBM mixing

$$egin{aligned} & W_{e} = \lambda_{e}(L^{i}\phi_{123}^{i})e^{c}H_{d} \ & +\lambda_{\mu}(L^{i}\phi_{23}^{i})\mu^{c}H_{d} \ & +\lambda_{ au}(L^{i}\phi_{3}^{i}) au^{c}H_{d} \end{aligned}$$

Try to remember

Once again:

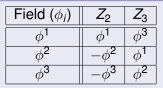
イロト イポト イヨト イヨト

 $\langle \phi_{\mathbf{3}}
angle \propto (\mathbf{0},\mathbf{0},\mathbf{1})$

$$egin{aligned} &\langle \phi_{23}
angle \propto (0,1,-1) \ &\langle \phi_{123}
angle \propto (1,1,1) \end{aligned}$$

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

$\Delta(12)$ family symmetry


Why is it interesting?

- Small subgroup of SO(3)_f
- Added invariants useful for vacuum alignment
- Discrete family symmetries don't have associated D-terms

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

$\Delta(12)$ invariants

Transformation properties

- Allowed: all $SO(3)_f$ invariants (e.g. $L^i L^i$)
- Allowed: higher order discrete invariants (e.g. $\varphi^{i\dagger}\varphi^{i}\varphi^{i\dagger}\varphi^{i})$

イロト イポト イヨト イヨト

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

Soft radiative breaking

Continuous Breaks

•
$$V_{cr} = -m^2(\varphi^i \varphi^\dagger_i)$$

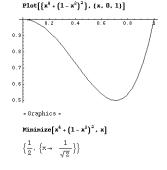
Continuous symmetry, continuum of vacuum

• No specified $\langle \varphi \rangle$ direction

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

Soft alignment

2 generation case


Discrete symmetry, discrete vacuum

•
$$V = V_{cr} \pm m_{3/2}^2 (\varphi^{i\dagger} \varphi^i \varphi^{i\dagger} \varphi^i)$$

• Extremise $|\varphi_1|^4 + |\varphi_2|^4$ (with set magnitude)

• + , VEV
$$\propto$$
 (1,1) $ightarrow$ $V \sim + 2 v^4/4$

• - , VEV
$$\propto$$
 (0, 1) $ightarrow$ $V \sim -v^4$

イロト 不得 とくほ とくほ とう

ъ

Radiative Running Family Symmetry Quasi-Degeneracy Vacuum alignment

$$\phi_3$$
 and ϕ_{123}

Quartic term minimisation

•
$$V = V_{cr} \pm m_{3/2}^2 (\varphi^{i\dagger} \varphi^i \varphi^{i\dagger} \varphi^i)$$

• For
$$\varphi = \phi_{123}$$
, $+ \rightarrow \langle \phi_{123} \rangle \propto (1, 1, 1)$

• For
$$\varphi = \phi_3, - \rightarrow \langle \phi_3 \rangle \propto (0, 0, 1)$$

イロン イロン イヨン イヨン

ъ

Radiative Running Quasi-Degeneracy

RR: Old and New

ON

- Radiative corrections matter, particularly for QD neutrinos (Old)
- Highest energy scales that preserve hints of TBM at low scale (New)

イロト イポト イヨト イヨト

1

Radiative Running Quasi-Degeneracy

QD: Older, Old and New

OON

- SO(3) FS can give QD (Older)
- $\Delta(12)$ FS can give TBM (Old)
- $\Delta(12)$ FS can give QD TBM (New)

ヘロン 人間 とくほ とくほ とう

э.