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Symmetry vs. Broken Symmetry

Masslessness from symmetry or broken symmetry ?

Gauge Symmetries
Generator of unbroken gauge symmetry ⇒ massless vector boson

General Relativity
Diffeomorphism invariance ⇒ massless gravitons

Spontaneously Broken Global Symmetry
Spontaneously broken global symmetry ⇒ massless Nambu-Goldstone
boson
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Symmetry vs. Broken Symmetry

Linearized “Cardinal” dynamics1

gravitons as Nambu-Goldstone modes

L = 1
2CµνKµναβCαβ + V (Cµν , ηµν)

Kµναβ = −∂2(ηµαηνβ − 1
2ηµνηαβ) + ∂µηνα∂β + ∂νηµα∂β

Kµναβ : ghost-free quadratic kinetic operator for spin 2
Cµν : tensor density; ηµν : flat background metric
V : scalar potential built out of the 4 independent scalars
X1 = Cµνηνµ, X2 = (C · η · C · η)µ

µ,. . .
V acquires minimum for Cµν = cµν ≡ 〈Cµν〉 6= 0: spontaneous
breaking of Lorentz symmetry
fluctuations around vev: Cµν = cµν + hµν

1V.A. Kostelecky and R.P., GRG 37 (2005) 1675
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Symmetry vs. Broken Symmetry

Linearized “Cardinal” dynamics

At low energy, assume V can be approximated by sum of delta-functions
that fix the 4 independent scalars: V =

∑4
n=1

λn
n Xn

linearized equations of motion:

Kµναβhαβ − λ1ηµν − λ2(ηcη)µν − λ3(ηcηcη)µν − λ4(ηcηcηcη)µν = 0

constraints:
Lagrange multiplier terms force the constraints
hµ

µ = 0 cµνhµν = 0 (cηc)µνhµν = 0 (cηcηc)µνhµν = 0

Low-energy dynamics of hµν-fluctuations around v.e.v. equivalent to
linearized general relativity in axial-type gauge, with possible
Lorentz-violating source term from Lagrange multiplier terms
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Symmetry vs. Broken Symmetry

Counting degrees of freedom

Propagating massless degrees of freedom
Can be considered Nambu-Goldstone modes of spontanously broken
Lorentz generators:

hµν = Eµ
αcαν + Eν

αcµα

Equations of motion imply masslessness ∂2hµν = 0 and Lorenz
conditions ∂µhµν = 0
Number of propagating massless degrees of freedom: 6− 4 = 2
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Symmetry vs. Broken Symmetry

Linear coupling to matter

Linear coupling to matter

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor
linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν
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Bootstrap

consistent coupling

consistent coupling to total EM tensor
require coupling to total EM tensor, including contribution of
gravitational fluctuations

Kµναβhαβ = τ
(1)
h µν

τ
(1)
h µν corresponds to cubic term of total lagrangian

cubic term yields new contribution to EM-tensor τ
(2)
h µν ⇒ quartic

term in Lagrangian
etc., etc.
This alternative non-geometrical “bootstrap” principle to deriving GR
was proposed by Kraichnan, Feynman and others in 1950’s
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Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap

1-step bootstrap
bootstrap can be done in one step using procedure invested by Deser
uses trace-reverted field: Cµν → −Cµν + 1

2ηµνCα
α

employs first-order quadratic Lagrangian

Cµν(Γα
µν,α − Γµ,ν) + ηµν(Γα

µνΓα − Γα
βµΓβ

αν)

final result for kinetic term
recursive process yields nonlinear bootstrapped kinetic action

Skin =

∫
d4x(η + C )µνRµν(Γ)

Thus (η + C )µν is naturally interpreted as curved-space metric density!

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 9 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .

R. Potting (Algarve) Gravity from Breaking of Local Lorentz Symmetry DISCRETE08 10 / 15



Bootstrap

Bootstrap of matter EM tensor and scalar potential

matter energy-momentum tensor
Bootstrap can also be applied to flat-space matter Lagrangian
Result: curved-space matter lagrangian, with metric density (η + C )µν

Example: LEM = − 1
4
√

|η+C |
(η + C )αγ(η + C )βδFαβFγδ

scalar potential V
Assume flat-space V built out of independent scalars X1, X2, X3, X4

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 −
X 2

1
2

, X3 −
3X1X2

4
+

X 3
1
8

, . . .
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Bootstrap

Bootstrap of scalar potential

integrable scalar potentials
Particularly interesting: Scalar potentials of the form

V ({Xi}) =
1
2

∑
i ,j

mij(Xi − xi )(Xj − xj) +O(Xi − xi )
3

with local minimum at Xi = xi (i = 1 . . . 4)
Represent possibly stable vacuum
Integrability and stability highly nontrivial conditions (work in progress)
Expect limit mij →∞ to correspond to bootstrap of linearized limit

V L = λ1X1 + λ2(X2 −
X 2

1
2

) + λ3(X3 −
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Vacuum EM tensor

Vacuum energy-momentum tensor

Bootstrapped Lagrangian

(η + CµνRµν(Γ)−
√
−|η + C |V (X1, X2, X3, X4) + Lmatter (C , η, φi , ∂µφi )

Linearized equations of motion

Kµναβhαβ = (ηµν∂1 + 2ηµαcαβηβν∂2 + ...)V + τ (m)
µν (η, φi , ∂µφi )

∂n ≡
∂

∂Xn
Xn = (C · η)n (n = 1 . . . 4)

“vacuum energy-momentum tensor”

T (vac)
µν = τ (vac)

µν − 1
2
ηµν

(
τ (vac)

)α

α
.

where
τ (vac)
µν = (ηµν∂1 + 2ηµαCαβηβν∂2 + ...)V
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Vacuum EM tensor

Vacuum energy-momentum tensor (cont.)

Explicit solutions
Explicit solutions of linearized equations of motion can be obtained for
hµν with nonzero vacuum energy-momentum tensor
Initial/boundary values can be defined on suitable initial
timelike/spacelike spacetime slices (4 independent functions)

Conservation and initial conditions
If matter EM tensor conserved independently, same is true for vacuum EM
tensor

then
Choosing T (vac)

µν to be zero at suitable initial timelike/spacelike spacetime
slices ensures it is zero at all spacetime
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Conclusions and outlook

Conclusions

Construction of alternative theory of gravity possible
Massless gravitons can be interpreted as Nambu-Goldstone modes of
spontaneously broken Lorentz symmetry
Nonlinear lagrangian from requirement of consistent coupling to total
energy-momentum tensor
Low-energy Lagrangian corresponds to Einstein-Hilbert action
Full Lagrangian includes 4 massive graviton modes
Integrability conditions for potential very restrictive
Formalism gives rise to “vacuum energy-momentum tensor”
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Conclusions and outlook

Outlook

Classify all integrable and bootstrapped potentials
Effect of “massive modes”: near singularities, or at high temperature?
Quantum theory ?
Cosmological implications of vacuum energy-momentum tensor? Dark
energy?
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