Effects of Ligthest ν Mass in Leptogenesis

DISCRETE '08 Symposium on Prospects in the Physics of Discrete Symmetries

Emiliano Molinaro

SISSA e INFN-Sezione di Trieste, Trieste I-34014, Italia

IFIC, Valencia, 11th Dicember 2008

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

Introduction

- Leptogenesis Scenario and CP-Violation
- See-Saw Mechanism

2 Flavour Effects in Leptogenesis

- Neutrino Yukawa Couplings
- CP-Violation in Flavoured Leptogenesis
- Low Energy CP-Violation

3 Lightest ν Mass Contribution

- Inverted Ordering $m_3 < m_1 < m_2$
- Normal Ordering $m_1 < m_2 < m_3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Observed Baryon Asymmetry (per entropy density): $Y_B \equiv \frac{n_B - n_B}{s} \approx 8.6 \times 10^{-11}$

- <u>E. M.</u>, <u>S.T. Petcov</u>, <u>T. Shindou</u> and <u>Y. Takanishi</u>, "Effects of Lightest Neutrino Mass in Leptogenesis", Nucl.Phys.B797:93-116,2008
 - We work in the context of "flavoured" thermal leptogenesis.
 - In this framework CP-violation necessary for the generation of the observed baryon asymmetry (matter-antimatter) of the Universe can be due exclusively to the Dirac and/or Majorana CP-violating phases in the $U_{\rm PMNS}$ neutrino mixing matrix \implies connection between leptogenesis and "low energy" CP-violation in the lepton (neutrino) sector (neutrino oscillations, $(\beta\beta)_{0\nu}$ -decay, etc.).

S. Pascoli, S.T. Petcov, A. Riotto, Phys. Rev. D75 083511 (2007)

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

 The case of inverted hierarchical light ν mass spectrum is investigated in detail.

Type I See-Saw Scenario and Leptogenesis

$$\mathcal{L}^{\mathrm{lep}}(x) = \mathcal{L}_{\mathrm{CC}}(x) + \mathcal{L}_{\mathrm{Y}}(x) + \mathcal{L}_{\mathrm{M}}^{\mathrm{N}}(x)$$

$$\begin{aligned} \mathcal{L}_{\rm CC}(x) &= -\frac{g}{\sqrt{2}} \overline{\ell_L}(x) \, \gamma_\alpha \, \nu_{\ell L}(x) \, W^{\alpha \dagger}(x) + {\rm h.c.} \\ \mathcal{L}_{\rm Y}(x) &= \lambda_{i\ell} \, \overline{N_i}(x) \, H^{\dagger}(x) \, \psi_{\ell L}(x) + h_\ell \, H^c(x) \, \overline{\ell_R}(x) \, \psi_{\ell L}(x) + {\rm h.c.} \\ \mathcal{L}_{\rm M}^{\rm N}(x) &= -\frac{1}{2} \, M_i \, \overline{N_i}(x) \, N_i(x) \,, \qquad i = 1, 2, 3 \end{aligned}$$

 At energies below the heavy Majorana neutrino mass scale M₁, the heavy Majorana neutrino fields are integrated out ⇒ Majorana mass term for the LH flavour neutrinos at E ~ M_Z:

$$m_{
u} = v^2 \lambda^T M^{-1} \lambda = U^* Diag(m_1, m_2, m_3) U^{\dagger}$$

Type I See-Saw Scenario and Leptogenesis

- Light LH Majorana ν masses introduce a new physical scale: $M\sim 10^{14}\,{\rm GeV}.$
- RH heavy Majorana neutrinos N_j, j = 1, 2, 3, are produced in thermal scattering after inflation (thermal leptogenesis). Hierarchical spectrum of heavy Majorana neutrinos is assumed: M₁ ≪ M_{2,3}.
- A lepton asymmetry is dynamically generated through the out of equilibrium decay of the lightest RH Majorana neutrino, N_1 , and then converted into a baryon asymmetry, Y_B , due to (B + L)-violating sphaleron interactions which exist within the SM.
- Lepton flavour contribution to the generation of the asymmetry can be significant.

Orthogonal Parametrization of λ

- Charged lepton Yukawa interactions enter equilibrium for $T \sim M_1 \lesssim 10^{12} \,\mathrm{GeV} \Longrightarrow$ flavoured leptogenesis.
- Orthogonal parametrization: $RR^T = R^T R = 1$:

J.A. Casas, A. Ibarra, Nucl. Phys. B 618 (2001) 171

$$\lambda = \frac{1}{v} \sqrt{M} R \sqrt{m} U^{\dagger} \quad v = 174 \,\mathrm{GeV}$$

Flavour basis in which the charged lepton Yukawa matrix and the RH neutrino Majorana mass matrix are diagonal.

- At low energy, $E \sim M_Z$, $U \equiv U_{\rm PMNS}$.
- We want to understand the source of CP-violation generating the CP-asymmetries in the RH neutrino decays:
 - "Low Energy" CP-Violation encoded in U.
 - "High Energy" CP-Violation encoded in *R*.

Orthogonal Parametrization of λ

- Charged lepton Yukawa interactions enter equilibrium for $T \sim M_1 \lesssim 10^{12} \,\mathrm{GeV} \Longrightarrow$ flavoured leptogenesis.
- Orthogonal parametrization: $RR^T = R^T R = 1$:

J.A. Casas, A. Ibarra, Nucl. Phys. B 618 (2001) 171

$$\lambda = \frac{1}{v} \sqrt{M} R \sqrt{m} U^{\dagger} \quad v = 174 \,\mathrm{GeV}$$

Flavour basis in which the charged lepton Yukawa matrix and the RH neutrino Majorana mass matrix are diagonal.

- At low energy, $E \sim M_Z$, $U \equiv U_{\rm PMNS}$.
- We want to understand the source of CP-violation generating the CP-asymmetries in the RH neutrino decays:
 - "Low Energy" CP-Violation encoded in U.
 - "High Energy" CP-Violation encoded in *R*.

• Under CP-invariance, N_j and ν_k have definite CP-parities, $\eta_j^{\text{NCP}} = \pm i$, $\eta_k^{\nu \text{CP}} = \pm i$, and transform in the following way under the CP-symmetry transformation:

$$\begin{aligned} U_{\rm CP} \, \boldsymbol{N}_j(x) \, U_{\rm CP}^{\dagger} &= \eta_j^{N \rm CP} \, \gamma_0 \, \boldsymbol{N}_j(x') \,, \quad \eta_j^{N \rm CP} = i \rho_j^N = \pm i \,, \\ U_{\rm CP} \, \boldsymbol{\nu}_k(x) \, U_{\rm CP}^{\dagger} &= \eta_k^{\nu \rm CP} \, \gamma_0 \, \boldsymbol{\nu}_k(x') \,, \quad \eta_k^{\nu \rm CP} = i \rho_k^\nu = \pm i \,. \end{aligned}$$

• CP-invariance of \mathcal{L}_{Y} ($\eta^{\ell CP} = i, \ \eta^{HCP} = 1$):

$$\lambda_{j\ell}^* = \lambda_{j\ell} \, (\eta_j^{N \text{CP}})^* \, \eta^{\ell \text{CP}} \, \eta^{H \text{CP}*} \,, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau, \qquad (1)$$

• If CP-invariance holds at low energy $(E \sim M_Z)$:

$$U_{\ell j}^{*} = U_{\ell j} \rho_{j}^{\nu}, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau.$$
(2)

• Under CP-invariance, N_j and ν_k have definite CP-parities, $\eta_j^{\text{NCP}} = \pm i$, $\eta_k^{\nu \text{CP}} = \pm i$, and transform in the following way under the CP-symmetry transformation:

$$\begin{aligned} U_{\rm CP} \, N_j(x) \, U_{\rm CP}^{\dagger} &= \eta_j^{N \rm CP} \, \gamma_0 \, N_j(x') \,, \quad \eta_j^{N \rm CP} = i \rho_j^N = \pm i \,, \\ U_{\rm CP} \, \nu_k(x) \, U_{\rm CP}^{\dagger} &= \eta_k^{\nu \rm CP} \, \gamma_0 \, \nu_k(x') \,, \quad \eta_k^{\nu \rm CP} = i \rho_k^\nu = \pm i \,. \end{aligned}$$

• CP-invariance of \mathcal{L}_{Y} ($\eta^{\ell CP} = i, \ \eta^{HCP} = 1$):

$$\lambda_{j\ell}^* = \lambda_{j\ell} \left(\eta_j^{\mathsf{NCP}} \right)^* \eta^{\ell \mathrm{CP}} \eta^{\mathsf{HCP}*}, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau, \tag{1}$$

• If CP-invariance holds at low energy $(E \sim M_Z)$:

$$U_{\ell j}^{*} = U_{\ell j} \rho_{j}^{\nu}, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau .$$
(2)

• Under CP-invariance, N_j and ν_k have definite CP-parities, $\eta_j^{\text{NCP}} = \pm i$, $\eta_k^{\nu \text{CP}} = \pm i$, and transform in the following way under the CP-symmetry transformation:

$$\begin{aligned} U_{\rm CP} \, N_j(x) \, U_{\rm CP}^{\dagger} &= \eta_j^{N \rm CP} \, \gamma_0 \, N_j(x') \,, \quad \eta_j^{N \rm CP} = i \rho_j^N = \pm i \,, \\ U_{\rm CP} \, \nu_k(x) \, U_{\rm CP}^{\dagger} &= \eta_k^{\nu \rm CP} \, \gamma_0 \, \nu_k(x') \,, \quad \eta_k^{\nu \rm CP} = i \rho_k^\nu = \pm i \,. \end{aligned}$$

• CP-invariance of \mathcal{L}_{Y} ($\eta^{\ell CP} = i, \ \eta^{HCP} = 1$):

$$\lambda_{j\ell}^* = \lambda_{j\ell} \left(\eta_j^{\mathsf{NCP}} \right)^* \eta^{\ell \mathrm{CP}} \eta^{\mathsf{HCP}*}, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau, \tag{1}$$

• If CP-invariance holds at low energy $(E \sim M_Z)$:

$$U_{\ell j}^{*} = U_{\ell j} \rho_{j}^{\nu}, \quad j = 1, 2, 3, \ \ell = e, \mu, \tau.$$
(2)

CP-Violation in Flavoured Leptogenesis

• (1) and (2) \implies R CP-conserving: $R_{jk}^* = R_{jk} \rho_i^N \rho_k^\nu j, k = 1, 2, 3.$

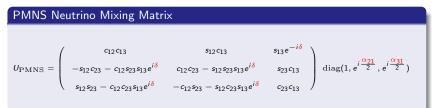
• The violation of CP-symmetry necessary for leptogenesis can be due exclusively to the CP-violating phases in $U_{\rm PMNS}$:



"low energy" CP-violation in the leptonic sector implies: $\delta \neq \pi q$ (Dirac CPV) or $\alpha_{21} \neq \pi q'$, $\alpha_{31} \neq \pi q''$ (Majorana CPV), q, q', q'' = 0, 1, 2, ...

CP-Violation in Flavoured Leptogenesis

- (1) and (2) \implies R CP-conserving: $R_{jk}^* = R_{jk} \rho_j^N \rho_k^\nu j, k = 1, 2, 3.$
- The violation of CP-symmetry necessary for leptogenesis can be due exclusively to the CP-violating phases in U_{PMNS}:



"low energy" CP-violation in the leptonic sector implies: $\delta \neq \pi q$ (Dirac CPV) or $\alpha_{21} \neq \pi q'$, $\alpha_{31} \neq \pi q''$ (Majorana CPV), q, q', q'' = 0, 1, 2, ...

CPV in flavoured thermal leptogenesis is triggered by the following quantity:

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m.$$

If CP-invariance holds then P_{jkml} is real:

$$P_{jkml}^{*} = P_{jkml} \left(\rho_{j}^{N} \right)^{2} \left(\rho_{k}^{\nu} \right)^{2} \left(\rho_{m}^{\nu} \right)^{2} = P_{jkml} \,, \quad \mathrm{Im}(P_{jkml}) = 0 \,.$$

- We consider in detail the case of a real orthogonal matrix *R*.
- We consider the two possible spectra allowed by data:
 - normal ordering: $m_1 < m_2 < m_3$
 - inverted ordering: $m_3 < m_2 < m_1$

• Analysis performed under the condition of negligible RG running from M_Z to M_1 of m_j and of the parameters in $U_{\text{PMNS}} \Longrightarrow \min(m_j) \lesssim 0.10 \text{eV}.$

CPV in flavoured thermal leptogenesis is triggered by the following quantity:

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m.$$

If CP-invariance holds then P_{jkml} is real:

$$P_{jkml}^{*} = P_{jkml} \left(\rho_{j}^{N} \right)^{2} \left(\rho_{k}^{\nu} \right)^{2} \left(\rho_{m}^{\nu} \right)^{2} = P_{jkml} \,, \quad \mathrm{Im}(P_{jkml}) = 0 \,.$$

• We consider in detail the case of a real orthogonal matrix *R*.

- We consider the two possible spectra allowed by data:
 - normal ordering: $m_1 < m_2 < m_3$
 - inverted ordering: $m_3 < m_2 < m_1$

• Analysis performed under the condition of negligible RG running from M_Z to M_1 of m_j and of the parameters in $U_{\text{PMNS}} \Longrightarrow \min(m_j) \lesssim 0.10 \text{eV}.$

CPV in flavoured thermal leptogenesis is triggered by the following quantity:

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m.$$

If CP-invariance holds then P_{jkml} is real:

$$P_{jkml}^{*} = P_{jkml} \left(\rho_{j}^{N} \right)^{2} \left(\rho_{k}^{\nu} \right)^{2} \left(\rho_{m}^{\nu} \right)^{2} = P_{jkml} , \quad \text{Im}(P_{jkml}) = 0 .$$

- We consider in detail the case of a real orthogonal matrix *R*.
- We consider the two possible spectra allowed by data:
 - normal ordering: $m_1 < m_2 < m_3$
 - inverted ordering: $m_3 < m_2 < m_1$

• Analysis performed under the condition of negligible RG running from M_Z to M_1 of m_j and of the parameters in $U_{\text{PMNS}} \Longrightarrow \min(m_j) \lesssim 0.10 \text{eV}.$

CPV in flavoured thermal leptogenesis is triggered by the following quantity:

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m.$$

If CP-invariance holds then P_{jkml} is real:

$$P_{jkml}^{*} = P_{jkml} \left(\rho_{j}^{N} \right)^{2} \left(\rho_{k}^{\nu} \right)^{2} \left(\rho_{m}^{\nu} \right)^{2} = P_{jkml} \,, \quad \text{Im}(P_{jkml}) = 0 \,.$$

- We consider in detail the case of a real orthogonal matrix *R*.
- We consider the two possible spectra allowed by data:
 - normal ordering: $m_1 < m_2 < m_3$
 - inverted ordering: $m_3 < m_2 < m_1$
- Analysis performed under the condition of negligible RG running from M_Z to M_1 of m_j and of the parameters in $U_{\text{PMNS}} \Longrightarrow \min(m_j) \lesssim 0.10 \text{eV}.$

Low Energy CP-Violation

For real or purely imaginary $R_{1j}R_{1k}$, $j \neq k$, the CP asymmetries ϵ_{ℓ} is given by

$$\begin{aligned} \epsilon_{\ell} &= -\frac{3M_{1}}{16\pi v^{2}} \frac{\sum_{k} \sum_{j>k} \sqrt{m_{k}m_{j}} (m_{j} - m_{k}) \rho_{kj} |R_{1k}R_{1j}| \operatorname{Im} (U_{\ell k}^{*} U_{\ell j})}{\sum_{i} m_{i} |R_{1i}|^{2}}, & \operatorname{Im} (R_{1k}R_{1j}) = 0 \\ \epsilon_{\ell} &= -\frac{3M_{1}}{16\pi v^{2}} \frac{\sum_{k} \sum_{j>k} \sqrt{m_{k}m_{j}} (m_{j} + m_{k}) \rho_{kj} |R_{1k}R_{1j}| \operatorname{Re} (U_{\ell k}^{*} U_{\ell j})}{\sum_{i} m_{i} |R_{1i}|^{2}}, & \operatorname{Re} (R_{1k}R_{1j}) = 0 \end{aligned}$$

with $R_{1j}R_{1k} = \rho_{jk} |R_{1j}R_{1k}|$ and $R_{1j}R_{1k} = i\rho_{jk} |R_{1j}R_{1k}|$, $\rho_{jk} = \pm 1$, $j \neq k$.

- Real (purely imaginary) $R_{1k}R_{1j}$ and purely imaginary (real) $U_{\ell k}^* U_{\ell j}$, $j \neq k$, implies violation of CP-invariance by the matrix R. e.g. $\delta = 0$, $\alpha_{31} = \pi$ and $\alpha_{21} = 0$ and real R_{1i} , j = 1, 2, 3.
- CP-symmetry is broken at low energies if and only if both $\operatorname{Re}(U_{\ell k}^* U_{\ell j}) \neq 0$ and $\operatorname{Im}(U_{\ell k}^* U_{\ell j}) \neq 0$.

G.C. Branco, M.N. Rebelo, Acta Phys.Polnon.B38:3819-3850,2007.

A D > 4 目 > 4 目 > 4 目 > 4 目 > 9 Q Q

Introduction

- Leptogenesis Scenario and CP-Violation
- See-Saw Mechanism
- 2 Flavour Effects in Leptogenesis
 Neutrino Yukawa Couplings
 CP-Violation in Flavoured Leptogenesis
 Leur Fragmer CD Violation
 - Low Energy CP-Violation
- 3 Lightest ν Mass Contribution
 - Inverted Ordering $m_3 < m_1 < m_2$
 - Normal Ordering $m_1 < m_2 < m_3$

Inverted hierarchical Light ν mass spectrum $(m_3 \ll m_1 \cong m_2 \cong \sqrt{\Delta m_A^2})$

- In one-flavour approximation the lepton asymmetry is strongly suppressed by the factor $\Delta m_{\odot}^2 / \Delta m_{\rm A}^2 \cong 0.032$ and leptogenesis can reproduce the observed baryon asymmetry for $M_1 \gtrsim 7 \times 10^{12} \, {\rm GeV}$.
- In flavoured leptogenesis, IH light $\nu's$ and real matrix R, the CP asymmetry is suppressed w.r.t. the one in the NH case by a factor $\sim (\Delta m_{\odot}^2 / \Delta m_{\rm A}^2)^{3/4}$. The observed baryon asymmetry can be generated in the case of purely imaginary $R_{11}R_{12}$ or in the supersymmetric version of leptogenesis.
- Baryon asymmetry can be reproduced in flavoured leptogenesis and real *R* if one considers a non negligible lightest neutrino mass *m*₃.
- If Y_B is produced in the two-flavour regime (10⁹ GeV $\lesssim M_1 \lesssim 10^{12}$ GeV) the terms $\propto \sqrt{m_3}$ in ϵ_ℓ will be dominant if:

$$2\left(\frac{m_3}{\sqrt{\Delta m_{\odot}^2}}\right)^{\frac{1}{2}} \left(\frac{\Delta m_A^2}{\Delta m_{\odot}^2}\right)^{\frac{3}{4}} \frac{|R_{13}|}{|R_{11(12)}|} \gg 1.$$
 (5)

 $\implies R_{11} \rightarrow 0$ or $R_{12} \rightarrow 0$ and if m_3 is sufficiently large. No suppression due to the factor $\Delta m_{\odot}^2 / \Delta m_{\rm A}^2 \cong 0.032$.

Inverted Ordering Normal Ordering

Inverted hierarchical Light ν mass spectrum $(m_3 \ll m_1 \cong m_2 \cong \sqrt{\Delta m_A^2})$

- In one-flavour approximation the lepton asymmetry is strongly suppressed by the factor $\Delta m_{\odot}^2 / \Delta m_{A}^2 \cong 0.032$ and leptogenesis can reproduce the observed baryon asymmetry for $M_1 \gtrsim 7 \times 10^{12} \, \text{GeV}$.
- In flavoured leptogenesis, IH light $\nu's$ and real matrix R, the CP asymmetry is suppressed w.r.t. the one in the NH case by a factor $\sim (\Delta m_\odot^2/\Delta m_A^2)^{3/4}$. The observed baryon asymmetry can be generated in the case of purely imaginary $R_{11}R_{12}$ or in the supersymmetric version of leptogenesis.
- Barvon asymmetry can be reproduced in flavoured leptogenesis and real
- If Y_B is produced in the two-flavour regime (10⁹ GeV $\lesssim M_1 \lesssim 10^{12}$ GeV)

$$2\left(\frac{m_3}{\sqrt{\Delta m_{\odot}^2}}\right)^{\frac{1}{2}} \left(\frac{\Delta m_A^2}{\Delta m_{\odot}^2}\right)^{\frac{3}{4}} \frac{|R_{13}|}{|R_{11(12)}|} \gg 1.$$
 (5)

A D > 4 目 > 4 目 > 4 目 > 4 目 > 9 Q Q

Inverted hierarchical Light ν mass spectrum $(m_3 \ll m_1 \cong m_2 \cong \sqrt{\Delta m_A^2})$

- In one-flavour approximation the lepton asymmetry is strongly suppressed by the factor $\Delta m_{\odot}^2 / \Delta m_A^2 \cong 0.032$ and leptogenesis can reproduce the observed baryon asymmetry for $M_1 \gtrsim 7 \times 10^{12} \text{ GeV}$.
- In flavoured leptogenesis, IH light $\nu's$ and real matrix R, the CP asymmetry is suppressed w.r.t. the one in the NH case by a factor $\sim (\Delta m_{\odot}^2 / \Delta m_{\rm A}^2)^{3/4}$. The observed baryon asymmetry can be generated in the case of purely imaginary $R_{11}R_{12}$ or in the supersymmetric version of leptogenesis.
- Baryon asymmetry can be reproduced in flavoured leptogenesis and real *R* if one considers a non negligible lightest neutrino mass *m*₃.
- If Y_B is produced in the two-flavour regime (10⁹ GeV $\lesssim M_1 \lesssim 10^{12}$ GeV) the terms $\propto \sqrt{m_3}$ in ϵ_ℓ will be dominant if:

$$2\left(\frac{m_{3}}{\sqrt{\Delta m_{\odot}^{2}}}\right)^{\frac{1}{2}}\left(\frac{\Delta m_{A}^{2}}{\Delta m_{\odot}^{2}}\right)^{\frac{3}{4}}\frac{|R_{13}|}{|R_{11(12)}|} \gg 1.$$
 (5)

 $\implies R_{11} \rightarrow 0$ or $R_{12} \rightarrow 0$ and if m_3 is sufficiently large. No suppression due to the factor $\Delta m_{\odot}^2 / \Delta m_{\rm A}^2 \cong 0.032$.

Introduction Flavour min(m_{ν}) Inverted Ordering Normal Ordering Inverted ordering ($m_3 < m_2 < m_1$) with $10^{-10} \text{ eV} \le m_3 \le 0.05 \text{ eV}$:

• IH mass spectrum $(10^{-6} \text{eV} \leq m_3 \leq 5 \times 10^{-3} \text{eV},$ $m_3 \ll m_1 < m_2, m_{1,2} \cong \sqrt{|\Delta m_A^2|})$ and real elements R_{1j} . The effects are particularly large for $R_{11} \cong 0$ or $R_{12} \cong 0 \implies$ enhancement by a factor ~ 100 with respect to the case $m_3 \cong 0$.

S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 739 (2006) 208

- Baryon asymmetry for CP-violation due to effective Majorana phase $\alpha_{32} \equiv \alpha_{31} \alpha_{21} \implies M_1 \gtrsim 3.0 \times 10^{10} \,\text{GeV}.$
- Baryon asymmetry for CP-violation due to Dirac phase δ is obtained fo $M_1 \gtrsim 10^{11} \,\text{GeV}$.
- Successful "flavoured" leptogenesis for Dirac CP-violation gives the following bounds: sin θ₁₃ ≥ (0.04 0.09),
 |J_{CP}| ≡ |Im{U_{e1}U_{µ2}U^{*}_{e2}U^{*}_{µ1}}| ≥ (0.009 0.020).

A D > 4 目 > 4 目 > 4 目 > 4 目 > 9 Q Q

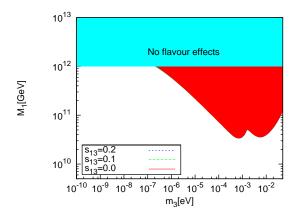


Figure: Values of m_3 and M_1 for which the "flavoured" leptogenesis is successful, generating baryon asymmetry $|Y_B| = 8.6 \times 10^{-11}$ (red/dark shaded area). Light neutrino mass spectrum with inverted ordering (hierarchy), $m_3 < m_1 < m_2$, and real elements R_{1j} of the matrix R. CP-violation due to the Majorana phases in the PMNS matrix. The results shown are obtained using the best fit values of neutrino oscillation parameters: $\Delta m_{\odot}^2 = 8.0 \times 10^{-5} \text{ eV}^2$, $\Delta m_A^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{12} = 0.30$ and $\sin^2 2\theta_{23} = 1$.

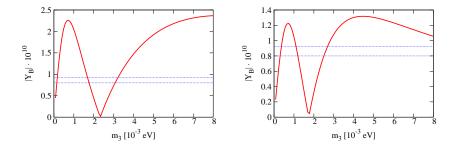


Figure: The dependence of $|Y_B|$ on m_3 in the case of IH spectrum, real $R_{1j}R_{1k}$, Majorana CP-violation, $R_{11} = 0$, $\alpha_{32} = \pi/2$, $s_{13} = 0$, $M_1 = 10^{11}$ GeV, and for i) $\operatorname{sgn}(R_{12}R_{13}) = +1$ (left panel), and ii) $\operatorname{sgn}(R_{12}R_{13}) = -1$ (right panel). The baryon asymmetry $|Y_B|$ is computed for a given m_3 , using the value of $|R_{12}|$, for which the CP-asymmetry $|\epsilon_{\tau}|$ is maximal. The horizontal dotted lines indicate the allowed range of $|Y_B|$, $|Y_B| = (8.0 - 9.2) \times 10^{-11}$.

A D > 4 目 > 4 目 > 4 目 > 4 目 > 9 Q Q

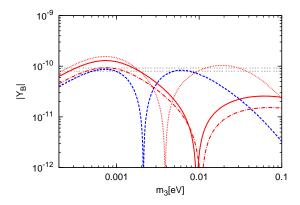


Figure: The dependence of $|Y_B|$ on m_3 in the case of spectrum with inverted ordering (hierarchy), real $R_{1j}R_{1k}$ and Dirac CP-violation, for $R_{11} = 0$, $\delta = \pi/2$, $s_{13} = 0.2$, $\alpha_{32} = 0$, $M_1 = 2.5 \times 10^{11}$ GeV and $\operatorname{sgn}(R_{12}R_{13}) = +1$ (-1) (red lines (blue dashed line)). The baryon asymmetry $|Y_B|$ was calculated for a given m_3 , using the value of $|R_{12}|$, for which the CP-asymmetry $|\epsilon_{\tau}|$ is maximal. The results shown for $\operatorname{sgn}(R_{12}R_{13}) = +1$ are obtained for $\sin^2 \theta_{23} = 0.50$; 0.36; 0.64 (red solid, dotted and dash-dotted lines), while those for $\operatorname{sgn}(R_{12}R_{13}) = -1$ correspond to $\sin^2 \theta_{23} = 0.5$.

• For $m_1 \lesssim 7.5 \times 10^{-3} \, {\rm eV}$, Y_B is the same as in the case $m_1 = 0$.

• For $m_1 \gtrsim 10^{-2} \, {\rm eV}$, the lightest neutrino mass has a suppressing effect on the asymmetry Y_B .

• If $R_{12} \cong 0$, Y_B has qualitatively the same depedence on the lightest neutrino mass as in the IH spectrum. It is possible to produce the observed baryon asymmetry for CP-violation due to Majorana phases in $U_{\rm PMNS}$ and $M_1 \gtrsim 5.3 \times 10^{10} \, {\rm GeV}$.

A D > 4 目 > 4 目 > 4 目 > 4 目 > 9 Q Q

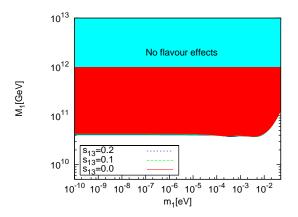


Figure: Values of m_1 and M_1 for which the "flavoured" leptogenesis is successful and baryon asymmetry $Y_B = 8.6 \times 10^{-11}$ can be generated (red shaded area). Light neutrino mass spectrum with normal ordering. The **CP-violation** necessary for leptogenesis is due to the Majorana and Dirac phases in the PMNS matrix. The results shown are obtained using the best fit values of neutrino oscillation parameters: $\Delta m_{\odot}^2 = 8.0 \times 10^{-5} \text{ eV}^2$, $\Delta m_A^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{12} = 0.30$ and $\sin^2 2\theta_{23} = 1$.

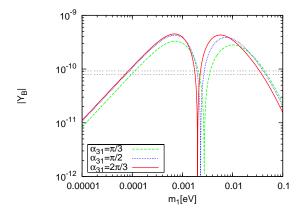


Figure: The dependence of $|Y_B|$ on m_1 in the case of neutrino mass spectrum with normal ordering and real $R_{1j}R_{1k}$, for $R_{12} = 0$, $s_{13} = 0$, $M_1 = 3 \times 10^{11}$ GeV and $\text{sgn}(R_{11}R_{13}) = -1$. The red solid, the blue dotted, and the green dashed lines correspond to $\alpha_{31} = 2\pi/3$, $\pi/2$, and $\pi/3$ respectively. The figure is obtained for $\theta_{23} = \pi/4$.

< □ > < □ > < □ > < □ > < □ > .

= 900