

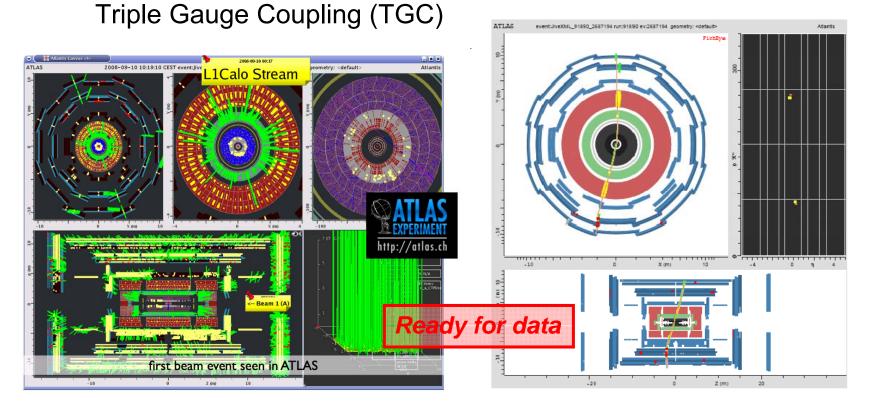
Associated production of weak bosons at LHC with the ATLAS detector

Discrete 08 – Valencia - 12.12.2008

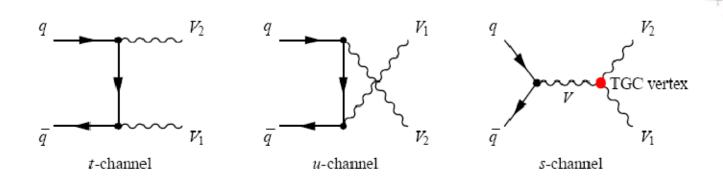
Marius Groll

University of Mainz

for the ATLAS Collaboration



Outline

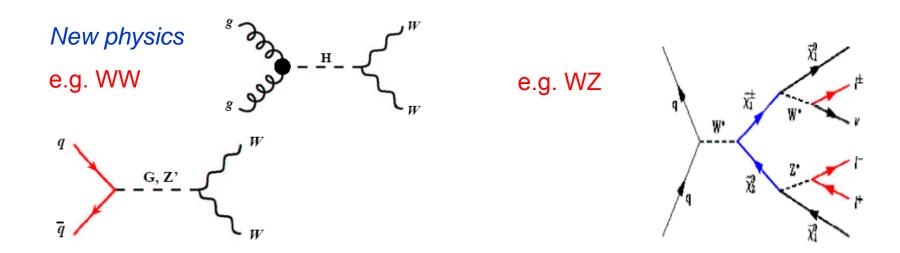

- Diboson production at LHC
- Event selection
- Triple gauge boson couplings

ATLAS sensitivity to Diboson production and

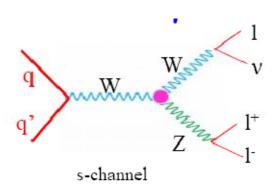
Diboson production at the LHC

- LO Feynman diagram: V₁, V₂, V = Z, W, γ → WW, ZW, ZZ, Wγ, Wγ
- Only s-channel has three boson vertex
- \bullet Diboson final states have predictable σ -production and manifest the gauge boson coupling

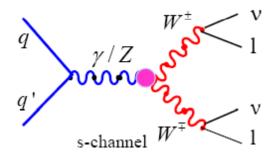
SM:


- Pure neutral vertexes ZZZ, ZZ γ are forbidden (Z/ γ carry no charge and weak isospin that needed for gauge bosons couple)
- Only charged couplings WWγ, WWZ are allowed

Motivation



- Measure diboson production σ and TGCs
- Explore none-Abelian SU(2) x U(1) gauge structure of SM
- Probe **new physics** if production cross section, or TGCs deviate from SM prediction (deviations of $10^{-3} 10^{-4}$)
- Understand the backgrounds of many important physics analyses
 Search for Higgs, SUSY, graviton and study of ttbar



Examples: WZ, WW

- s-channel dominates: $\sigma(SM) = 47.8 \text{ pb}$
- Sensitive to WWZ
- Clean signal eee, eeμ, μμe, μμμ
- 3 isolated high p_T -leptons with large missing E_T
- invariant mass from e⁺e⁻ or μ⁺μ⁻ pairs within Z mass window

- $\sigma(SM) = 111.6 \text{ pb}$
- Sensitive to WWZ and WWγ
- Clean signal ee, μμ,eμ
- 2 isolated high p_T-leptons with opposite charge and large missing E_T
- Z mass veto

SM Cross sections of dibosons

		$p\overline{p}$	pp
Diboson mode	Conditions	$\sqrt{s} = 1.96 \text{ TeV}$ $\sigma[pb]$	$\sqrt{s} = 14 \text{ TeV}$ $\sigma[pb]$
W^+W^- [14]	<i>W</i> -boson width included	12.4	111.6
$W^{\pm}Z^{0}$ [14]	Z and W on mass shell	3.7	47.8
$Z^{0}Z^{0}$ [14]	Z's on mass shell	1.43	14.8
$W^{\pm}\gamma$ [15]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	19.3	451
$Z^0\gamma$ [16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	4.74	219

Measurements of the Tevatron experiments are consistent with the SM (NLO)

Production rate at LHC will be at least 100x higher at Tevatron. 10x higher cross section and at least 10x higher luminosity. Theoretical uncertainties around 5%

- → Probes much higher energy region 7x
- → Increased sensitivity to anomalous TGCs

Event Selection

Two approaches: cut-based on kinematic quantities & multivariate Boosted-Decision-Trees (BDT)

- improvement of detection sensitivity
- Pattern recognition on a set of distributions
- Classification with weighting and score sum
- W's and Z's leptonic decay final states provide experimentally *clean signals* (only e and μ considered)
- Identification of W and Z bosons are well established
 - Observation of a Z peak will be one of the early tests of a properly working detector
- Z and W (transverse) masses provide valuable constraints
- They are good sources of high P_T leptons
 - Efficient observation with low background
 - Trigger at low momentum threshold

Physics Objects

electrons, photons, muons, missing E_T & had. jets

Electons: 1 electron: E_T> 25 GeV

2 electrons: E_T>10 GeV

 $|\eta|$ <2.5, isolated & track/cluster correlation

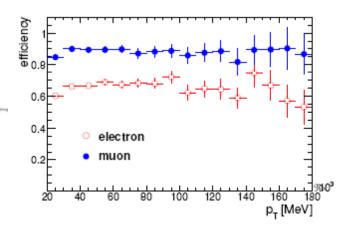
ID: 75% barrel, 60% endcaps

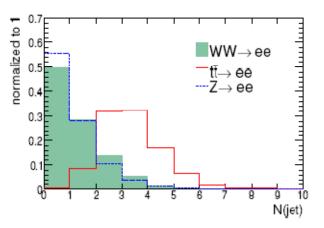
Muons: $P_T > 5$ GeV, $|\eta| < 2.5$,

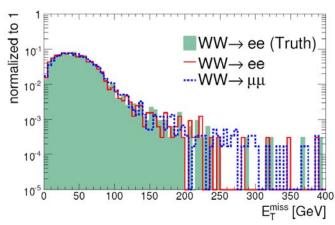
tracking algorithm (muon spectrometer & ID & CALO)

ID: **95%**

Jets: fixed-cone jet algorithm (0.7), min. Jet E_T ~20 GeV

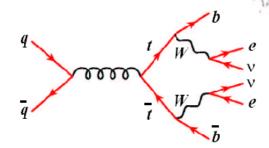

Missing transverse energy: CALO + muon

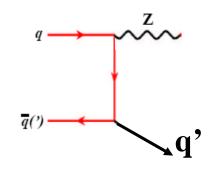

WW: MET resolution ~6.5 GeV

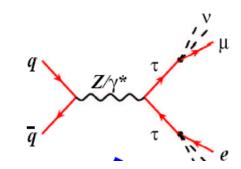

Trigger efficiency: $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$

high trigger efficiency

	1e25i			1mu20	1e25i or 1mu20		
W^+W^-	L1	L1 & HLT	L1	L1 & HLT	L1	L1 & HLT	
ee	100.0	98.2	0.0	0.0	100.0	98.2	
$\mu\mu$	13.5	0.0	98.4	95.9	98.5	95.9	
$e\mu$	99.7	87.9	85.3	79.3	100.0	97.4	


Event selection summary


$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	2 isolated leptons with $P_T > 25$ GeV, opposite charges, $\Delta R(\ell) > 0.2$,				
G - 111 4 mb	Missing transverse energy > 30 GeV, M _z -Mee/μμ > 30 GeV				
$\sigma_{WW} = 111.6 \text{ pb}$	N_{jet} (E _T >30 GeV) < 2, Vector-sum (lep, MET) <100GeV				
$WZ \rightarrow \ell \nu \ell^+ \ell^-$	3 isolated leptons with $P_{T(max)} > 25$ GeV, $\Delta R(\mathcal{U}) > 0.2$				
= 20.4 nb	vertex cut for each lepton pair: Δ Z<1mm, Δ A<0.1mm				
σ_{W+Z} = 29.4 pb	MET > 30 GeV, $ M_z$ -Mee/ $\mu\mu$ < 10 GeV, 40GeV < M_T < 250GeV				
σ_{W-Z} = 18.4 pb	N _{jet} (E _T >30 GeV) < 2, Vector-sum (lep, MET) <: 120GeV				
$ZZ \rightarrow \ell^+\ell^- \ell^+\ell^-$	4 isolated leptons with at least one P _T > 20 GeV				
10 0 m h	Separation between each lepton pair $\Delta R(\ell) > 0.2$				
σ_{zz} = 18.8 pb	All the lepton come from the same vertex, no hadron jets				
$ZZ \rightarrow \ell^+ \ell \nu \nu$	2 lepton with $P_T > 20$ GeV, and $ M_Z - M_{ } < 10$ GeV, $P_T(\ell) > 100$ GeV				
10 0 mb	veto the 3^{rd} lepton, MET > 50 GeV, N_{jet} (E_T >30 GeV) =0,				
σ_{zz} = 18.8 pb	$\Delta \phi(Z, MET) > 35 \text{ deg, } MET-PT(Z) /PT(Z) < 0.35$				
$W \gamma \rightarrow \ell \nu \gamma$	1 isolated lepton with PT > 20 GeV				
· ·	1 isolated photon with ET > 20 GeV				
σ _{μνγ} =(51.8+38.8)*1.4pb	MET > 30 GeV, 40 GeV < M_T < 120 GeV Jet veto, $\Delta R(\ell \gamma) > 0.7$				
$Z \gamma \rightarrow \ell^+ \ell^- \gamma$	2 isolated leptons with $P_T > 20$ GeV, opposite charges, $\Delta R(\ell) > 0.2$,				
· ·	$ M_z$ -Mee/ $\mu\mu$ < 10 GeV, one photon with PT>20GeV, Jet veto				
$\sigma_{\mu\mu\gamma}$ = 20.2*1.4pb	$\Delta R(\alpha)>0.7$, $ M_z-Mee\gamma/\mu\mu\gamma >30$ GeV				



Example: W[±]Z

- 3 isolated high p_T charged leptons
- Large missing E_T > 25 GeV
- Small hadronic jet activity:
 1 Jet with E_T>30 GeV hadronic ΣE_T < 200 GeV
- Z-mass window
- Major backgrounds
 - pp → tt (17.4% of background)
 - Pair of leptons fall in Z mass window
 - Jet produces lepton signal
 - pp \rightarrow Z+jets (15.5%)
 - Fake missing E_T
 - Jet produces third lepton signal
 - pp \rightarrow Z/ γ \rightarrow ee, $\mu\mu$ (12.5%)
 - Fake missing E_T and third lepton
 - pp \rightarrow ZZ \rightarrow 4 leptons (47.8%)
 - Loose one lepton

Example: W[±]Z

- Trigger efficiency: (98.9 ± 0.1)% combination of single lepton and dilepton triggers
- Signal efficiency: 8.7 % W⁻Z / 7.1 % for W⁺Z

					,
ut-	na	20	$\boldsymbol{\Delta}$	\sim	
uι-	\mathcal{O}^{C}		し	u	×

1 fb⁻¹

	WZ	ZZ	$t\bar{t}$	Z + jet	$Z + \gamma$	DY	Total bkg	N_{WZ}/N_B
N events	53.43	2.68	0.023	1.89	0.18	2.52	7.30	7.32
% of background	-	36.71	0.32	25.92	2.47	34.58	-	-

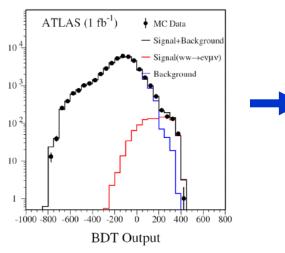
• 0.1 fb⁻¹: 5 signal events & 1 background event \rightarrow 4 σ detection significance

BDT:

1000 trees with 20 tree-split nodes

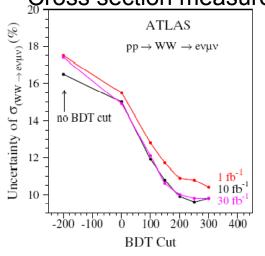
	WZ	ZZ	tt	Z + jet	$Z + \gamma$	Other	Total bkg	N_{WZ}/N_B
N events	152.6 (65%)	7.7	2.8	2.5	2.0	1.1	16.1	9.5
% of background		47.8	17.4	15.5	12.5	7.0	-	-

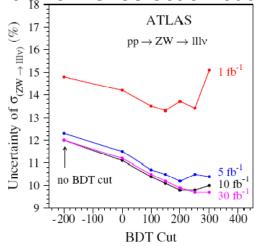
• 0.1 fb⁻¹: 15 signal events & 2 background event \rightarrow 7 σ detection significance


ATLAS diboson sensitivity with 1fb⁻¹

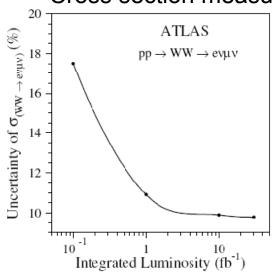
Diboson mode	Signal #evt.	Background #evt.	S/√B	Analysis
$W^+W^- \rightarrow e^+ V e^- V$	78.0±1.6	35.4±3.6	13	BDT (ε=5.7%)
$W^+W^- \rightarrow \mu^+ \nu \mu^- \nu$	90.3±1.6	20.2±2.8	20	BDT (ε=6.6%)
$W^+W^- \rightarrow e^+ \nu \mu^- \nu$	419.9±3.5	80.8±6.0	47	BDT (ε =15.2%)
$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	103.1±2.6	16.6±2.0	25	Cut based (ϵ =2.0%)
$WZ \rightarrow \ell \nu \ell^+ \ell^-$	152.6±1.7	16.1±2.5	38	BDT (ε=17.9%)
	53.4±1.6	7.3±1.1	19	Cut based (ε ~8%)
$ZZ \rightarrow 4\ell$	16.5±0.1	1.90±0.2	7.2	Cut based (ϵ =7.7%)
$ZZ \rightarrow \ell^+\ell^-\nu\nu$	10.2±0.2	5.2±2.0	3.7	Cut based (ϵ =2.6%)
$W \gamma \rightarrow e v \gamma$	1901±77	1474±147	50	BDT (ε=6.7%)
$W \gamma \rightarrow \mu \nu \gamma$	2976±121	2318±232	62	BDT (ε=10.5%)
$Z \gamma \rightarrow e^+e^- \gamma$	337.4±12	187.2±19	25	BDT (ε=5.5%)
$Z \gamma \rightarrow \mu^+\mu^- \gamma$	774.8±25	466.7±47	36	BDT (ε=12%)

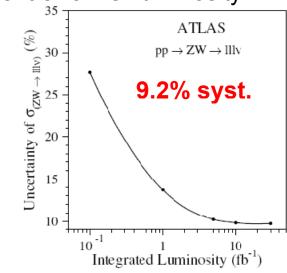
Measurement errors

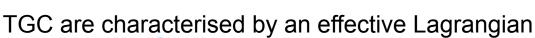

Log-Likelihood build with BDT output

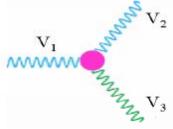


MC data:


simulated events with appropriate statistics according to the luminosity + SM


Cross section measurement error vs. selection cut


Cross section measurement error vs. luminosity



Triple Gauge Boson Coupling

$$L/g_{WWV} = \underbrace{ig_1^V} W_{\mu\nu}^* W^\mu V^\nu - W_{\mu\nu} W^{*\mu} V^\nu) + \underbrace{i\kappa^V} W_\mu^* W_\nu V^{\mu\nu} + \underbrace{\frac{\lambda^V}{M_W^2}} W_{\rho\mu}^* W_\nu^\mu V^{\nu\rho}$$

14

SM:
$$g_1^V = \kappa^V = 1$$
 and $\lambda^V = 0$

Experiment: Search for deviations from the SM

→ Anomalous coupling parameters for charged TGC (neutral TGC have 4 different parameters) are:

$$\Delta g_1^Z \equiv g_1^Z - 1$$
, $\Delta \kappa_\gamma \equiv \kappa_\gamma - 1$, $\Delta \kappa_Z \equiv \kappa_Z - 1$, λ_γ , and λ_Z

terms have normally an \$ dependence which means the higher center-of-mass energies at the LHC greatly enhance our sensitivity to anomalous couplings

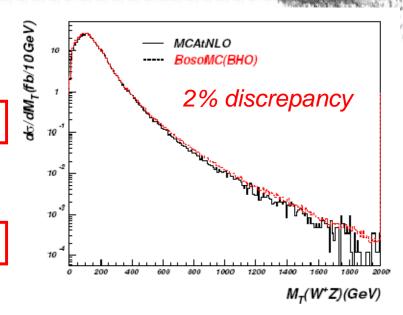
 \rightarrow Amplitude for gauge boson pair production grows with energy (cutoff Λ needed)

$$\Delta \kappa(\hat{s}) = \frac{\Delta \kappa}{(1+\hat{s}/\Lambda^2)^2}$$
 $\sqrt{\hat{s}}$ Invariant mass of boson pair $\Delta \kappa$ Coupling at the low energy limit

Event Generators

Signal

NLO MC Generators:


MC@NLO with Jimmy/HERWIG: W+W-, W±Z, ZZ

Pythia: W[±]γ, ZZ, Zγ no anomalous coupling

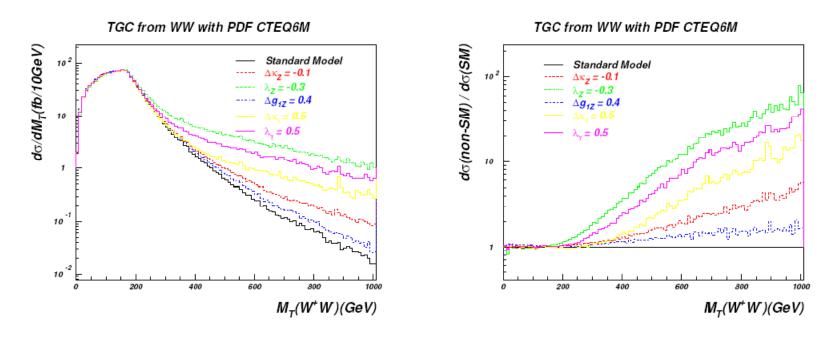
BHO: W⁺W^{-,} ZZ, Zγ BosoMC: W±Z, W±γ

with anomalous coupling

Background Background: top pairs and QCD jets with W and Z bosons **MC@NLO** $t\bar{t} \rightarrow \ell + X$ 700k events **PYTHIA/ALPGEN** incl. W+X and Z+X (X=jets, γ) 30M events

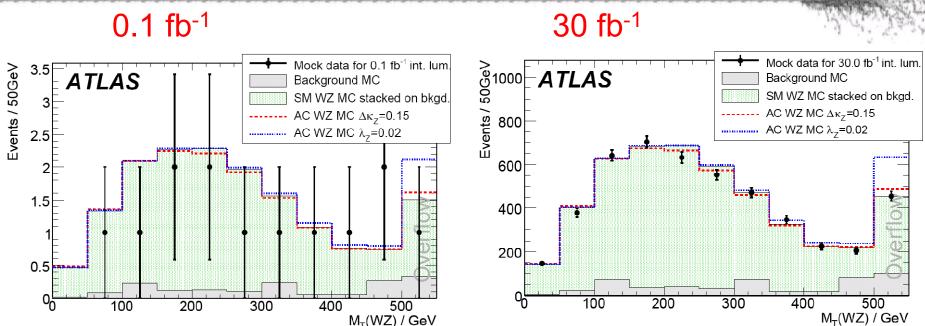
Reweighting

Using kinematic distributions from BHO the fully simulated MC@NLO events are reweighted to produce expected distributions for a range of anomalous couplings


Fully simulated:

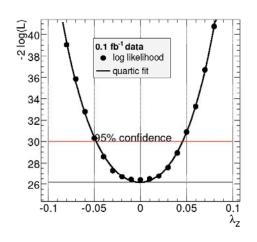
detector response, electronic digitisation, final event reconstruction

Anomalous spectra and reweighting ratio


The $M_T(WW)$ spectrum for W+W- events with anomalous coupling parameters using the BHO Monte Carlo

the 'weights = $d\sigma(\text{non-SM})/d\sigma(\text{SM})$ ' are used to reweight fully simulated events

M_T(WZ) spectrum sensitive to WWZ couplings



- Binned likelihood comparing mock SM observations to a SM profile and two reweighted anomalous profiles
- $M_T(WZ)$ was found to be the most sensitive kinematics quantity ($P_T(Z)$, M(II), and others are also useful, but not as sensitive)
- Using 10 bins from 0-500GeV and one overflow bin

TGC sensitivity using $M_T(WZ)$

0.1 fb⁻¹

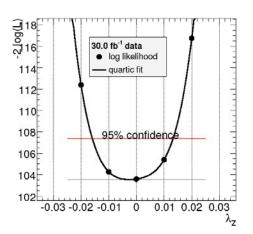
One parameter limits (assuming other couplings are SM)

$$-0.4 < \Delta \kappa_Z < 0.6$$

$$-0.06 < \Delta g_1^z < 0.1$$

$$-0.06 < \lambda_z < 0.05$$

Tevatron results


$$-0.12 < \Delta \kappa_z < 0.29$$
 2 TeV D0 with 1.0 fb^{-1}

$$-0.17 < \lambda_z < 0.21$$

-0.82
$$< \Delta \kappa_z < 1.27$$
 2 TeV CDF with 1.9 fb^{-1}

 $-0.13 < \lambda_z < 0.14$

30 fb⁻¹

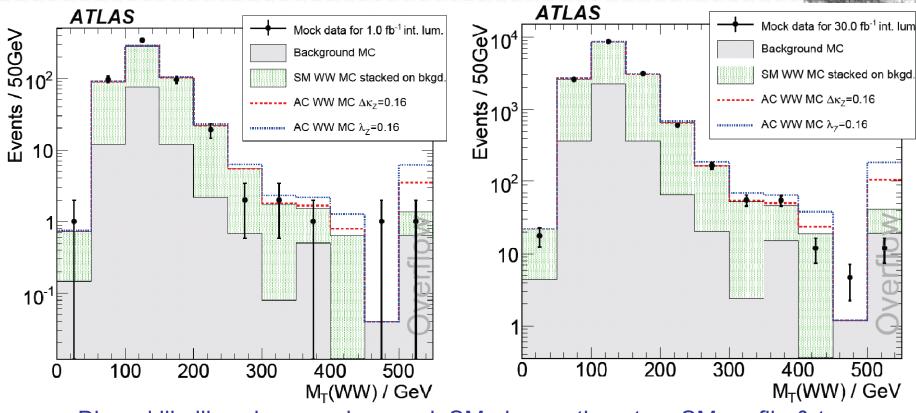
One parameter limits

$$-0.08 < \Delta \kappa_7 < 0.17$$

$$-0.01 < \Delta g_1^Z < 0.008$$

$$-0.005 < \lambda_z < 0.023$$

$$\Lambda$$
=3 TeV

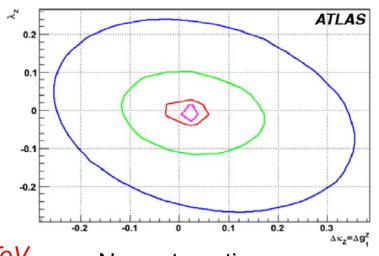

$$-0.07 < \Delta \kappa_7 < 0.13$$

$$-0.003 < \Delta g_1^z < 0.018$$

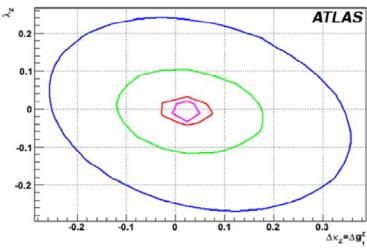
$$-0.008 < \lambda_7 < 0.005$$

M_T(WW) sensitive to WWZ & WWγ couplings

- Binned likelihood comparing mock SM observations to a SM profile & two reweighted anomalous profiles
- Using 10 bins from 0-500GeV and one overflow bin
- In addition, the three decay channels, ee, eμ, and μμ, are binned separately for a total of 33 bins



ATLAS TGC sensitivity


One-dimensional anomalous coupling parameter 95% CL sensitivities using the M_T ($W^{\pm}Z$)

Int. Lumi (fb ⁻¹)	Cutoff Λ (TeV)	$\Delta \kappa_Z$	λ_Z	Δg_1^Z
0.1	2.0	[-0.440, 0.609]	-	[-0.063, 0.119]
1.0	2.0	[-0.203, 0.339]		[-0.021, 0.054]
10.0	2.0	[-0.095, 0.222]		[-0.011, 0.034]
30.0	2.0	[-0.080, 0.169]		[-0.005, 0.023]
0.1	3.0	[-0.399, 0.547]	[-0.050, 0.046]	[-0.054, 0.094]
1.0	3.0	[-0.178, 0.281]	[-0.020, 0.018]	[-0.017, 0.038]
10.0	3.0	[-0.135, 0.201]	[-0.015, 0.013]	[-0.013, 0.018]
30.0	3.0	[-0.069, 0.131]	[-0.008, 0.005]	[-0.003, 0.016]

Systematic Error Effect on TGCs 2D Limits

No systematic errors

9.2% signal, 18.3% background

LEP Limit

[-0.30, 0.30]

ATLAS TGC sensitivity

95% C.L. interval of the anomalous coupling sensitivities with 10.0 fb⁻¹ and cutoff Λ = 2 TeV.

Diboson, (fit spectra)	λ_Z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta \kappa_{\gamma}$	λ_{γ}
$WZ, (M_T)$	[-0.015, 0.013]	[-0.095, 0.222]	[-0.011, 0.035]		_
$W\gamma, (p_T^{\gamma})$				[-0.26, 0.07]	[-0.05, 0.02]
WW, (M_T)	[-0.040, 0.038]	[-0.035, 0.073]	[-0.149, 0.309]	[-0.088, 0.089]	[-0.074, 0.165]
WZ, (D0)					
$(1.0 \mathrm{fb^{-1}})$	[-0.17, 0.21]	[-0.12, 0.29]	$(\Delta g_1^Z = \Delta \kappa_Z)$		
$W^{\pm}\gamma$ (D0),					
(0.16fb^{-1})				[-0.88,0.96]	[-0.2,0.2]
WW, (LEP)			[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]
$(\lambda_{\gamma} = \lambda_{Z}, \Delta \kappa_{Z})$	$= \Delta g_1^Z - \Delta \kappa_\gamma \tan^2$	$\theta_W)$			
	f_4^Z	f_5^2	Z	f_4^{γ}	f_5^γ
$ZZ \rightarrow \ell\ell\ell\ell$	[-0.010, 0.0	010] [-0.010,	0.010] [-0.0	12, 0.012] [-	-0.013, 0.012]
$ZZ ightarrow \ell \ell u u$	v [-0.012, 0.0	012] [-0.012,	0.012] [-0.0	14, 0.014]	-0.015, 0.014]
Combined	[-0.009, 0.0	009] [-0.009,	0.009] [-0.0	10, 0.010] [-	-0.011, 0.010]

[-0.34, 0.38]

[-0.17, 0.19]

[-0.32, 0.36]



Summary

- The Diboson studies use ~30 M ATLAS fully simulated datasets
- WW, WZ, W γ and Z γ signal can be established with statistical sensitivity better than 5σ for the first 0.1 fb⁻¹ integrated luminosity, and ZZ signal can be established with 1.0 fb⁻¹ data
- The anomalous triple gauge boson coupling sensitivities from LHC/ATLAS can be significant improved over the results from Tevatron and LEP using the first 1.0 fb⁻¹ data
- SM Diboson productions are important control samples for Higgs, SUSY, Technicolor, new particle searches with diboson final states
- LHC: hopefully soon collision data available
- **Details:** ATLAS Collaboration, Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, 22 CERN-OPEN-2008-020, Geneva, 2008, to appear

BACKUP

TGC limits from LEP

Charged TGC limits from WW

$$-0.051 < \Delta g_1^2 < +0.034$$

$$-0.105 < \Delta \kappa_{\gamma} < +0.069$$

$$-0.059 < \lambda_{\gamma} < +0.026$$
.

The TGC parameters are related by $\lambda_{\gamma} = \lambda_{Z}$ and $\Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma} \tan^{2} \theta_{W}$.

Neutral TGC limits from ZZ

$$-0.30 < f_4^Z < 0.30$$

$$-0.30 < f_4^Z < 0.30$$
 $-0.34 < f_5^Z < 0.38$

$$-0.17 < f_4^{\gamma} < 0.19$$
 $-0.32 < f_5^{\gamma} < 0.36$

$$-0.32 < f_5^{\gamma} < 0.36$$

Tevatron Results

- CDF and D0: 2 fb^{-1 of} integrated luminosity
- Cross section measurements consitent with SM predictions

Coupling	Source	$L(fb^{-1})$	λ_Z	$\Delta \kappa_Z$	$\Delta \kappa_{\gamma}$	λγ
$WW\gamma$ from $W^{\pm}\gamma$	D0 [18]	0.16			[-0.88, 0.96]	[-0.2, 0.2]
WWZ from $W^{\pm}Z$ WWZ from $W^{\pm}Z$	D0 [15] CDF	1.0 1.9	[-0.17, 0.21] [-0.13, 0.14]			
$WWZ = WW\gamma$ from W^+W^-	D0 [47]	0.25	[-0.31, 0.33]	[-0.36, 0.33]		
from W^+W^- , $W^\pm Z$	CDF [48]	0.35	[-0.18, 0.17]	[-0.46, 0.39]		

Anomalous gauge coupling limits (95% C.L.) for WWγ and WWZ from the

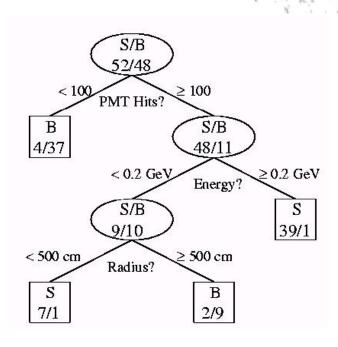
Tevatron experiments

Predictions for TGC for L=30 fb-1 (incl. syst.)

$$-0.0035 < \lambda_{\gamma} < +0.0035$$

$$-0.0073 < \lambda_{Z} < +0.0073$$

$$-0.075 < \Delta \kappa_{\gamma} < +0.076$$

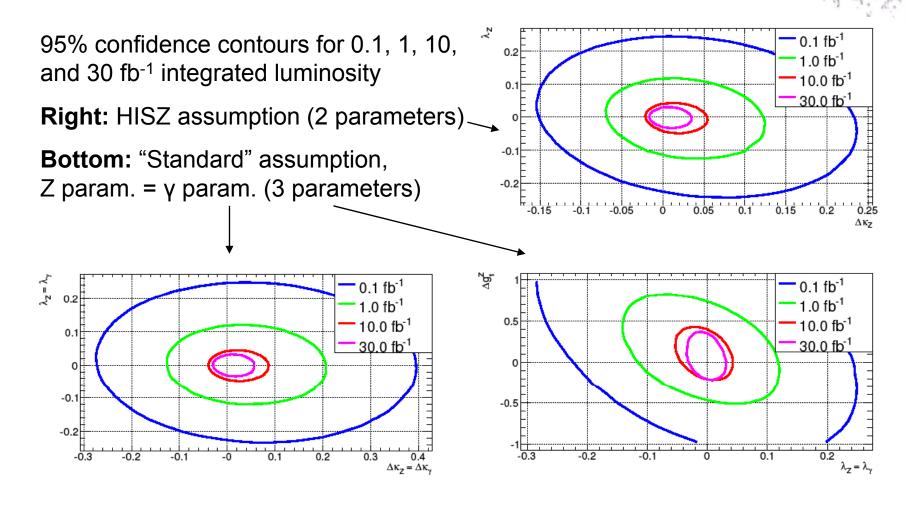

$$-0.11 < \Delta \kappa_{Z} < +0.12$$

$$-0..86 < \Delta g^{1}_{Z} < +0.011$$

Boosted Decision Tree

- Split sample in half, one for training, one for test.
- Select a set of variables (p_T, isolation, inv. mass, ...) to cut on.
- Build a decision tree by choosing the best variable to cut on, put events in signal and background leaves, and continue splitting each leaf until all leaves have too few events or are pure signal/background.
- Boosting: give misclassified events higher weight and produce a new tree.
- Total 200 or more trees. Each tree classifies events as signal (+1) or background (-1). The result is a score for each event which is the sum of the ±1 from all the trees.

One decision tree


Systematic Uncertainties

- Signal systematics ~9%
 - Luminosity measurement 6.5%
 - PDF assumption 3%
 - NLO scaling 5%
 - Particle ID 3%
- Background systematics ~18%
- (in addition to the above)
 - MC sample statistics 15% (may drop to 10%)
 - Calibration on lepton, jet energy 5%
- The systematic errors start to dominate the cross-section measurement uncertainties after 5-10 fb-1.

2D anomalous TGC sensitivity using M_T(WW)

