Small violations of 3×3 unitarity, the phase in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing and visible $t \rightarrow c Z$ decays at the LHC

Miguel Nebot - INFN, Sezione di Roma Tre

Valencia, December $15^{\text {th }} 2008$
Discrete 08 Symposium

Work done in collaboration with:

> F.J. Botella (Univ. of Valencia \& IFIC) \& G.C. Branco (CFTP-IST, Lisbon)
> arXiv:0805. 3995 [hep-ph]

Outline of the talk

(1) Introduction
(2) Physical implications
(3) Examples
(4) Comments
(5) Conclusions

Motivations

The Standard Model shows an outstanding consistency for an impressive list of flavour-related observables. . . Nevertheless, recent times had brought

- Time-dependent, mixing induced, CP violation in $B_{s} \rightarrow J / \Psi \Phi$ measured at Tevatron,

CDF Collaboration, Phys. Rev. Lett. 100, 161802 (2008), arXiv:0712.2397
D \emptyset Collaboration, arXiv:0802.2255

- $D^{0}-\bar{D}^{0}$ mixing at B factories,

```
Babar Collaboration, Phys. Rev. Lett. 98, 211802 (2007), hep-ex/0703020
    Belle Collaboration, Phys. Rev. Lett. 98, 211803 (2007), hep-ex/0703036
    Belle Collaboration, Phys. Rev. Lett. 99, 131803 (2007), arXiv:0704.1000
```

- Hints from $b \rightarrow s$ penguin transitions.
M. Artuso et al., Eur. Phys. J. C 57, 309-492 (2008), arXiv:0801.1833

What is this about?

Our main ingredient to tackle those issues:

> One new $Q=2 / 3$ isosinglet quark T
> F. del Aguila, M. Bowick, Nucl. Phys. B224, $107(1983)$
> G.C. Branco, L. Lavoura, Nucl. Phys. B278, $738(1986)$

The CKM matrix is not 3×3 unitary anymore!

- New contributions to up-type quark loops,
- Tree level FCNC in the up sector.

Framework and notation

Charged Current Interactions:

$$
\mathscr{L}_{W}=-\frac{g}{\sqrt{2}} \overline{\mathbf{u}}_{L} \gamma^{\mu} V \mathbf{d}_{L} W_{\mu}^{\dagger}+\text { H.C. }
$$

Neutral Current Interactions:

$$
\mathscr{L}_{Z}=-\frac{g}{2 \cos \theta_{W}}\left[\overline{\mathbf{u}}_{L} \gamma^{\mu}\left(V V^{\dagger}\right) \mathbf{u}_{L}-\overline{\mathbf{d}}_{L} \gamma^{\mu} \mathbf{d}_{L}-2 \sin ^{2} \theta_{W} J_{e m}^{\mu}\right] Z_{\mu}
$$

Where

$$
\mathbf{u}=(u, c, t, T) \quad \mathbf{d}=(d, s, b) \quad V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b} \\
V_{T d} & V_{T s} & V_{T b}
\end{array}\right)
$$

Framework and notation

- Mixing matrix $V \hookrightarrow U$

$$
U=\left(\begin{array}{ccc|c}
V_{u d} & V_{u s} & V_{u b} & U_{14} \\
V_{c d} & V_{c s} & V_{c b} & U_{24} \\
V_{t d} & V_{t s} & V_{t b} & U_{34} \\
V_{T d} & V_{T s} & V_{T b} & U_{44}
\end{array}\right) \quad 4 \times 4 \text { unitary }
$$

- FCNC controlled by $V V^{\dagger}$:

$$
\left(V V^{\dagger}\right)_{i j}=\delta_{i j}-U_{i 4} U_{j 4}^{*}
$$

For example, $t c Z$ coupling:

$$
\mathscr{L}_{Z} \supset-\frac{g}{2 \cos \theta_{W}}\left[\bar{c}_{L} \gamma^{\mu}\left(-U_{24} U_{34}^{*}\right) t_{L}+\bar{t}_{L} \gamma^{\mu}\left(-U_{34} U_{24}^{*}\right) c_{L}\right] Z_{\mu}
$$

Framework and notation

With no loss of generality one can rephase

$$
\arg U=\left(\begin{array}{cccc}
0 & \chi^{\prime} & -\gamma & \cdots \\
\pi & 0 & 0 & \cdots \\
-\beta & \pi+\beta_{s} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where

$$
\begin{aligned}
\beta \equiv \arg \left(-V_{c d} V_{c b}^{*} V_{t d}^{*} V_{t b}\right) & \gamma \equiv \arg \left(-V_{u d} V_{u b}^{*} V_{c d}^{*} V_{c b}\right) \\
\beta_{s} \equiv \arg \left(-V_{t s} V_{t b}^{*} V_{c s}^{*} V_{c b}\right) & \chi^{\prime} \equiv \arg \left(-V_{c d} V_{c s}^{*} V_{u d}^{*} V_{u s}\right)
\end{aligned}
$$

Physical implications of (small) violations of 3×3 unitarity

- Potentially large β_{s}
- Rare top decays
- Contributions to $D^{0}-\bar{D}^{0}$ mixing
- Unitarity deviations in the first row of V and the size of χ^{\prime}

Obtaining a large β_{s}

- Orthogonality of the s and b columns of V gives:

$$
\begin{array}{r}
\sin \beta_{s}=\frac{\left|V_{u b}\right|\left|V_{u s}\right|}{\left|V_{c b}\right|\left|V_{c s}\right|} \sin \left(\gamma-\beta_{s}+\chi^{\prime}\right)+\frac{\left|V_{T b}\right|\left|V_{T s}\right|}{\left|V_{c b}\right|\left|V_{c s}\right|} \sin \left(\sigma-\beta_{s}\right) \\
\sigma \equiv \arg \left(V_{T s} V_{c b} V_{T b}^{*} V_{c s}^{*}\right)
\end{array}
$$

In the $\mathrm{SM} \sin \beta_{s}=\mathcal{O}\left(\lambda^{2}\right)$
If instead we want to obtain β_{s} of order λ, we must play with the couplings of T,

$$
\text { for example } V_{T b} \approx \mathcal{O}(\lambda), V_{T s} \approx \mathcal{O}\left(\lambda^{2}\right)
$$

Obtaining a large β_{s}

- Orthogonality of the c and t rows of U gives:

$$
\begin{aligned}
& \sin \beta_{s}=\frac{\left|V_{c d}\right|\left|V_{t d}\right|}{\left|V_{c s}\right|\left|V_{t s}\right|} \sin \beta+\frac{\left|U_{24}\right|\left|U_{34}\right|}{\left|V_{c s}\right|\left|V_{t s}\right|} \sin \omega \\
& \qquad \omega=\arg \left(V_{t b}^{*} U_{24}^{*} V_{c b} U_{34}\right)
\end{aligned}
$$

To have β_{s} of order λ, $\left|U_{24} U_{34}\right|$ of order λ^{3} is required, for example $\left|U_{24}\right| \approx \mathcal{O}\left(\lambda^{2}\right),\left|U_{34}\right| \approx \mathcal{O}(\lambda)$

Rare top decays

- We have just seen that $\beta_{s} \approx \mathcal{O}(\lambda)$ requires $\left|U_{24} U_{34}\right| \approx \mathcal{O}\left(\lambda^{3}\right)$
- ... but this is just what we have in the coupling

$$
\frac{g}{2 \cos \theta_{W}} U_{24} U_{34}^{*} \bar{c}_{L} \gamma^{\mu} t_{L} Z_{\mu}
$$

- ... which leads to rare top decays $t \rightarrow c Z$ (at rates observable at the LHC)

That is,
a large value of β_{s} implies rare top decays $t \rightarrow c Z$

$D^{0}-\bar{D}^{0}$ mixing

- We also have tree level $\bar{c}_{L} \gamma^{\mu} u_{L} Z_{\mu}$ couplings
- To account for the observed size of $D^{0}-\bar{D}^{0}$ without having to invoke long-distance contributions to the mixing,

$$
\left|U_{14} U_{24}\right| \text { has to be of order } \lambda^{5}
$$

E.Golowich, J.Hewett, S.Pakvasa, A.A.Petrov Phys. Rev. D76, 095099 (2007), arXiv:0705.3650

- With $U_{24} \approx \mathcal{O}\left(\lambda^{2}\right)$ for $\beta_{s} \approx \lambda, U_{14} \approx \mathcal{O}\left(\lambda^{3}\right)$
- However, $\left|U_{14}\right|$ has just an upper bound and, even for $\beta_{s} \approx \lambda$, this New Physics short-distance contribution to $D^{0}-\bar{D}^{0}$ mixing could be switched off (and thus long-distance contributions required)

Unitarity deviations in the first row of V and the size of χ^{\prime}

- Most precisely measured elements of V

$$
\left|V_{u d}\right|=0.97408 \pm 0.00026 \quad\left|V_{u s}\right|=0.2253 \pm 0.0009
$$

imply the bound

$$
1-\left(\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}\right)=\left|U_{14}\right|^{2} \lesssim(0.02)^{2}
$$

Less restrictive than not overproducing short-distance contributions to $D^{0}-\bar{D}^{0}$ mixing

Unitarity deviations in the first row of V and the size of χ^{\prime}

- Orthogonality of the u and c rows of U gives:

$$
\begin{aligned}
& \sin \chi^{\prime}= \frac{\left|V_{u b} V_{c b}\right|}{\left|V_{u s} V_{c s}\right|} \sin \gamma+\frac{\left|U_{14} U_{24}\right|}{\left|V_{u s} V_{c s}\right|} \sin \rho \\
& \quad \rho \equiv \arg \left(V_{c d} U_{14} V_{u d}^{*} U_{24}^{*}\right)
\end{aligned}
$$

and thus, due to $D^{0}-\bar{D}^{0}$ mixing, the second term could be, at most, of order λ^{4} :
as in the SM case, $\sin \chi^{\prime} \approx \lambda^{4}$
J.A.Aguilar-Saavedra, F.J.Botella, G.C. Branco, MN, Nucl. Phys. B706, 204 (2005)

Constraints

- Sizeable mixing induced, time dependent, CP-violating asymmetry in $B_{s}^{0} \rightarrow J / \Psi \Phi$ (for the CP-even part of the final state)

$$
A_{J / \Psi \Phi} \equiv \sin 2 \beta_{s}^{\mathrm{eff}}, \quad 2 \beta_{s}^{\mathrm{eff}}=-\arg M_{12}^{B_{s}}
$$

- The short-distance contribution to $x_{D} \equiv \Delta M_{D} / \Gamma_{D}$ in $D^{0}-\bar{D}^{0}$ from tree level FCNC mostly accounts for the observed value. As long-distance contributions might be important, examples with significantly smaller contributions to x_{D} are also considered.
- Agreement with purely tree level observables constraining V

$$
\left|V_{u d}\right|,\left|V_{u s}\right|,\left|V_{u b}\right|,\left|V_{c d}\right|,\left|V_{c s}\right|,\left|V_{c b}\right|, \gamma
$$

Constraints

Agreement with the following observables potentially sensitive to New Physics

- Mixing induced, time dependent, CP-violating asymmetry in $B_{d}^{0} \rightarrow J / \Psi K_{S}$
- Mass differences $\Delta M_{B_{d}}, \Delta M_{B_{s}}$, of the eigenstates of the effective Hamiltonians controlling $B_{d}^{0}-\bar{B}_{d}^{0}$ and $B_{s}^{0}-\bar{B}_{s}^{0}$ mixings
- Width differences $\Delta \Gamma_{d} / \Gamma_{d}, \Delta \Gamma_{s}, \Delta \Gamma_{s}^{C P}$ of the eigenstates of the mentioned effective Hamiltonians, related to $\operatorname{Re}\left(\Gamma_{12}^{q} / M_{12}^{q}\right)$, $q=d, s$
- Charge/semileptonic asymmetries $\mathcal{A}, A_{s l}^{d}$, controlled by $\operatorname{Im}\left(\Gamma_{12}^{q} / M_{12}^{q}\right), q=d, s$

Constraints

- Neutral kaon CP-violating parameters ϵ_{K} and $\epsilon^{\prime} / \epsilon_{K}$ E. Pallante, A. Pich, Phys. Rev. Lett. 84, 2568 (2000), hep-ph/9911233 Nucl. Phys. B617, 441 (2001), hep-ph/0105011 A. Buras, M. Jamin, JHEP 01, 048 (2004), hep-ph/0306217
- Branching ratios of representative rare K and B decays such as $K^{+} \rightarrow \pi^{+} \nu \bar{\nu},\left(K_{L} \rightarrow \mu \bar{\mu}\right)_{S D}$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$

FlaviaNet WG on Kaon Decays, arXiv:0801.1817
A. Buras, M. Gorbahn, U. Haisch, U. Nierste, Phys. Rev. Lett. 95, 261805 (2005),
F. Mescia, C. Smith, Phys. Rev. D76, 034017 (2007), arXiv:0705.2025

Constraints

- Electroweak oblique parameter T, which encodes violation of weak isospin; the S and U parameters play no relevant rôle here.
L. Lavoura, J.P. Silva, Phys. Rev. D47, 1117 (1993)
N.B. In the region we are interested in, other precision electroweak parameters like R_{b} give similar constraints to those obtained from T

J. Alwall et al., Eur. Phys. J. C C49, 791 (2007), hep-ph/0607115 I.Picek, B.Radovcic, Phys. Rev. D78, 015014 (2008), arXiv:0804.2216

Beside experimentally based constraints, agreement is also required for every parameter entering the calculation of the observables: QCD corrections, lattice-QCD bag factors, etc.

The experimental values

Observable	Exp. Value	Observable	Exp. Value	
$\left\|V_{u d}\right\|$	0.97408 ± 0.00026	$\left\|V_{u s}\right\|$	0.2253 ± 0.0009	
$\left\|V_{c d}\right\|$	0.230 ± 0.011	$\left\|V_{s}\right\|$	0.957 ± 0.095	
$\left\|V_{u b}\right\|$	0.00431 ± 0.00030	$\left\|V_{c b}\right\|$	0.0416 ± 0.0006	
γ	$(76 \pm 23)^{\circ}$			
$A_{J / \psi K_{S}}$	0.675 ± 0.026	$A_{J / \Psi \Phi}$	0.540 ± 0.225	
$\Delta M_{B_{d}}(\times \mathrm{ps})$	0.507 ± 0.005	$\Delta M_{B_{s}}(\times \mathrm{ps})$	17.77 ± 0.12	
x_{D}	0.0097 ± 0.0029	ΔT	0.13 ± 0.10	
$\epsilon_{K}\left(\times 10^{3}\right)$	2.232 ± 0.007	$\epsilon^{\prime} / \epsilon_{K}\left(\times 10^{3}\right)$	1.67 ± 0.16	
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	$\left(1.5_{-0.9}^{+1.3}\right) \times 10^{-10}$	$\operatorname{Br}\left(K_{L} \rightarrow \mu \bar{\mu}\right) S D$	$<2.5 \times 10^{-9}$	
$\operatorname{Br}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)$	$(1.60 \pm 0.51) \times 10^{-6}$			
$\operatorname{Br}(t \rightarrow c Z)$	$<4 \times 10^{-2}$	$\operatorname{Br}(t \rightarrow u Z)$	$<4 \times 10^{-2}$	
$\Delta \Gamma_{s}(\times \mathrm{ps})$	0.19 ± 0.07	$\Delta \Gamma_{s}^{C P}(\times \mathrm{ps})$	0.15 ± 0.11	
$\Delta \Gamma_{d} / \Gamma_{d}$	0.009 ± 0.037			
$A_{s l}^{d}$	-0.003 ± 0.0078			

The different examples

- Example 1: $m_{T}=300 \mathrm{GeV}$, large x_{D}
- Example 2: $m_{T}=300 \mathrm{GeV}, x_{D}$ not large
- Example 3: $m_{T}=450 \mathrm{GeV}$, large x_{D}
- Example 4: $m_{T}=450 \mathrm{GeV}, x_{D}$ not large

Example 1, $m_{T}=300 \mathrm{GeV}$ and large x_{D}

Moduli

$$
|U|=\left(\begin{array}{lll|l}
0.974186 & 0.225642 & 0.003984 & 0.005530 \\
0.225559 & 0.972463 & 0.041676 & 0.041252 \\
0.009002 & 0.047563 & 0.948582 & 0.312809 \\
0.001666 & 0.033749 & 0.313759 & 0.948904
\end{array}\right)
$$

Phases

$$
\arg U=\left(\begin{array}{ccc|c}
0 & 0.000530 & -1.055339 & 1.071901 \\
\pi & 0 & 0 & 0.947622 \\
-0.472544 & \pi-0.208060 & 0 & 0 \\
1.795665 & -1.266410 & 0 & \pi+0.004752
\end{array}\right)
$$

Example $1, m_{T}=300 \mathrm{GeV}$ and large x_{D}

Observable	Value	Observable	Value
γ	60.5°	β_{s}	-11.9°
$\Delta M_{B_{d}}$	$0.507 \mathrm{ps}^{-1}$	$\Delta M_{B_{s}}$	$17.77 \mathrm{ps}^{-1}$
$A_{J / \psi K_{S}}$	0.692	$A_{J / \Psi \Phi}$	0.288
ϵ_{K}	2.232×10^{-3}	$\epsilon^{\prime} / \epsilon_{K}$	1.63×10^{-3}
x_{D}	0.0085	ΔT	0.16
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	1.3×10^{-10}	$\operatorname{Br}\left(K_{L} \rightarrow \mu \bar{\mu}\right)_{s D}$	1.86×10^{-9}
$\operatorname{Br}(t \rightarrow c Z)$	1.4×10^{-4}	$\operatorname{Br}(t \rightarrow u Z)$	2.5×10^{-6}
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$	1.63×10^{-6}	$\operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$	1.58×10^{-6}
$\Delta \Gamma_{d} / \Gamma_{d}$	0.0042		
$\Delta \Gamma_{s}$	$0.098 \mathrm{ps}^{-1}$	$\Delta \Gamma_{s}^{C P}$	$0.094 \mathrm{ps}^{-1}$
$A_{s l}^{d}$	-0.0010	\mathcal{A}	-0.0006

Example 2, $m_{T}=300 \mathrm{GeV}$ and x_{D} not large

Moduli

$$
|U|=\left(\begin{array}{lll|l}
0.974195 & 0.225663 & 0.004137 & 0.002015 \\
0.225482 & 0.972938 & 0.041548 & 0.028688 \\
0.009721 & 0.042034 & 0.945531 & 0.322660 \\
0.002889 & 0.026471 & 0.322842 & 0.946078
\end{array}\right)
$$

Phases

$$
\arg U=\left(\begin{array}{ccc|c}
0 & 0.000569 & -1.204546 & 1.928448 \\
\pi & 0 & 0 & 1.267846 \\
-0.536152 & \pi-0.189787 & 0 & 0 \\
1.545539 & -1.774240 & 0 & \pi+0.003725
\end{array}\right)
$$

Example 2, $m_{T}=300 \mathrm{GeV}$ and x_{D} not large

Observable	Value	Observable	Value
γ	69.0°	β_{s}	-10.9°
$\Delta M_{B_{d}}$	$0.507 \mathrm{ps}^{-1}$	$\Delta M_{B_{s}}$	$17.77 \mathrm{ps}^{-1}$
$A_{J / \psi K_{S}}$	0.686	$A_{J / \Psi \Phi}$	0.250
ϵ_{K}	2.232×10^{-3}	$\epsilon^{\prime} / \epsilon_{K}$	1.66×10^{-3}
x_{D}	0.0005	ΔT	0.17
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	1.2×10^{-10}	$\operatorname{Br}\left(K_{L} \rightarrow \mu \bar{\mu}\right)_{s D}$	1.99×10^{-9}
$\operatorname{Br}(t \rightarrow c Z)$	0.72×10^{-4}	$\operatorname{Br}(t \rightarrow u Z)$	3.5×10^{-7}
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$	1.92×10^{-6}	$\operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$	1.86×10^{-6}
$\Delta \Gamma_{d} / \Gamma_{d}$	0.0042		
$\Delta \Gamma_{s}$	$0.088 \mathrm{ps}^{-1}$	$\Delta \Gamma_{s}^{C P}$	$0.085 \mathrm{ps}^{-1}$
$A_{s l}^{d}$	-0.0013	\mathcal{A}	-0.0006

Example 3, $m_{T}=450 \mathrm{GeV}$ and large x_{D}

Moduli

$$
|U|=\left(\begin{array}{lll|l}
0.974179 & 0.225657 & 0.004031 & 0.006073 \\
0.225619 & 0.972525 & 0.041766 & 0.039324 \\
0.008330 & 0.047219 & 0.966377 & 0.252620 \\
0.001136 & 0.032304 & 0.253683 & 0.966747
\end{array}\right)
$$

Phases

$$
\arg U=\left(\begin{array}{ccc|c}
0 & 0.000570 & -0.957178 & 0.868831 \\
\pi & 0 & 0 & 0.816488 \\
-0.447359 & \pi-0.140403 & 0 & 0 \\
1.908192 & -1.055192 & 0 & \pi+0.004977
\end{array}\right)
$$

Example 3, $m_{T}=450 \mathrm{GeV}$ and large x_{D}

Observable	Value	Observable	Value
γ	54.8°	β_{s}	-8.0°
$\Delta M_{B_{d}}$	$0.507 \mathrm{ps}^{-1}$	$\Delta M_{B_{s}}$	$17.77 \mathrm{ps}^{-1}$
$A_{J / \psi K_{S}}$	0.693	$A_{J / \Psi \Phi}$	0.317
ϵ_{K}	2.232×10^{-3}	$\epsilon^{\prime} / \epsilon_{K}$	1.63×10^{-3}
x_{D}	0.0092	ΔT	0.20
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	1.0×10^{-10}	$\operatorname{Br}\left(K_{L} \rightarrow \mu \bar{\mu}\right)_{s D}$	1.87×10^{-9}
$\operatorname{Br}(t \rightarrow c Z)$	0.80×10^{-4}	$\operatorname{Br}(t \rightarrow u Z)$	1.88×10^{-6}
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$	1.60×10^{-6}	$\operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$	1.55×10^{-6}
$\Delta \Gamma_{d} / \Gamma_{d}$	0.0041		
$\Delta \Gamma_{s}$	$0.110 \mathrm{ps}^{-1}$	$\Delta \Gamma_{s}^{C P}$	$0.104 \mathrm{ps}^{-1}$
$A_{s l}^{d}$	-0.0010	\mathcal{A}	-0.0007

Example 4, $m_{T}=450 \mathrm{GeV}$ and x_{D} not large

Moduli

$$
|U|=\left(\begin{array}{lll|l}
0.974192 & 0.225675 & 0.004015 & 0.002260 \\
0.225535 & 0.972984 & 0.041642 & 0.026487 \\
0.009033 & 0.044207 & 0.961556 & 0.270876 \\
0.001741 & 0.020444 & 0.271403 & 0.962247
\end{array}\right)
$$

Phases

$$
\arg U=\left(\begin{array}{ccc|c}
0 & 0.000622 & -1.092316 & 1.085654 \\
\pi & 0 & 0 & 0.885746 \\
-0.467721 & \pi-0.108029 & 0 & 0 \\
1.920727 & -1.329417 & 0 & \pi+0.003299
\end{array}\right)
$$

Example $4, m_{T}=450 \mathrm{GeV}$ and x_{D} not large

Observable	Value	Observable	Value
γ	62.6°	β_{s}	-6.2°
$\Delta M_{B_{d}}$	$0.507 \mathrm{ps}^{-1}$	$\Delta M_{B_{s}}$	$17.77 \mathrm{ps}^{-1}$
$A_{J / \psi K_{S}}$	0.688	$A_{J / \Psi \Phi}$	0.265
ϵ_{K}	2.232×10^{-3}	$\epsilon^{\prime} / \epsilon_{K}$	1.66×10^{-3}
x_{D}	0.0006	ΔT	0.23
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	1.0×10^{-10}	$\operatorname{Br}\left(K_{L} \rightarrow \mu \bar{\mu}\right)_{S D}$	2.10×10^{-9}
$\operatorname{Br}(t \rightarrow c Z)$	0.42×10^{-5}	$\operatorname{Br}(t \rightarrow u Z)$	3.0×10^{-7}
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$	1.75×10^{-6}	$\operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$	1.70×10^{-6}
$\Delta \Gamma_{d} / \Gamma_{d}$	0.0043		
$\Delta \Gamma_{s}$	$0.098 \mathrm{ps}^{-1}$	$\Delta \Gamma_{s}^{C P}$	$0.094 \mathrm{ps}^{-1}$
$A_{s l}^{d}$	-0.0012	\mathcal{A}	-0.0006

$B_{s}^{0}-\bar{B}_{s}^{0}$ mixing phase

- Remember $A_{J / \Psi \Phi}$ is not $\sin 2 \beta_{s}$ but $\sin 2 \beta_{s}^{\text {eff }}$
- The examples provide values of $A_{J / \Psi \Phi}$ in the range [0.25;0.32], significantly larger than the SM expectation 0.04
- However, the model does not allow for much larger values of $A_{J / \Psi \Phi}$, even if larger values of m_{T} are considered: difficulties with non-decoupling contributions to flavour changing rare decays arise

$D^{0}-\bar{D}^{0}$ mixing

- The examples could account for x_{D} just through the short-distance contributions available in this framework (tree level Z-mediated)
- ... or not, it is not compulsory
- The crucial test to disentangle the origin of $D^{0}-\bar{D}^{0}$ mixing, short or large distance, could come from CP violation; the present model produces new CP-violating phases

Observable $t \rightarrow c Z$ decays at the LHC and $\left|V_{t b}\right| \neq 1$

- The branching ratio of $t \rightarrow c Z$ decays has, in the examples, values $10^{-4}-10^{-5}$
- ...typically within reach of the LHC detectability expectations, this branching ratio can be explored down to 3.1×10^{-4} for an integrated luminosity $10 \mathrm{fb}^{-1}$, down to 6.1×10^{-5} for $100 \mathrm{fb}^{-1}$
J. Carvalho et al., Eur. Phys. J. C C52, 999 (2007), arXiv:0712.1127
T. Han, arXiv:0804.3178
- $t \rightarrow u Z$ decays are also of potential interest but the resulting branching ratio is much smaller, typically $\mathcal{O}\left(10^{-6}\right)$

Observable $t \rightarrow c Z$ decays at the LHC and $\left|V_{t b}\right| \neq 1$

- Once again, these branching ratios are not unavoidably obtained with such a size.
However, it is true that once we focus on the possibility of obtaining significant phases in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing, sizable values of $\operatorname{Br}(t \rightarrow Z c)$ follow
- By the same token, $\left|V_{t b}\right|$ is sizeably different from unity, and this affects observables at hadron machines like, for example, single top production

Conclusions

- Through a new isosinglet $Q=2 / 3$ quark and associated small violations of 3×3 unitarity, we can accommodate a large $(\mathcal{O}(\lambda))$ value of $\beta_{s}^{\text {eff }}$, partially accounting for the observed CP violation in $B_{s} \rightarrow J / \Psi \Phi$
- The mass of the T quark should not exceed $\sim 500 \mathrm{GeV}$
- One distinctive feature of this framework, with respect to supersymmetric extensions, Little Higgs models, four generations, etc, is the fact that a large β_{s} implies significant $t \rightarrow c Z$ branching ratios
- Potential explanation for the observed $D^{0}-\bar{D}^{0}$ mixing
- More detailed analysis in progress

$A_{J / \Psi \Phi}$ and the contribution of β_{s}

$$
\begin{aligned}
\frac{M_{12}^{s}}{\left|\left[M_{12}^{s}\right]_{S M}\right|} & =r_{s}^{2} e^{-i 2 \beta_{s}^{\text {eff }}} \\
& =e^{-i 2 \beta_{s}}\left\{1+2 \frac{S\left(x_{t}, x_{T}\right)}{S\left(x_{t}\right)} \frac{V_{T s}^{*} V_{T b}}{V_{t s}^{*} V_{t b}}+\frac{S\left(x_{T}\right)}{S\left(x_{t}\right)}\left(\frac{V_{T s}^{*} V_{T b}}{V_{t s}^{*} V_{t b}}\right)^{2}\right\} \\
& =e^{-i 2 \beta_{s}} r_{s}^{2} e^{-i 2 \varphi}
\end{aligned}
$$

- Screening

$$
\lim _{m_{T} \rightarrow m_{t}} \beta_{s}+\varphi=\arg \left(1+\frac{V_{u b}^{*} V_{u s}}{V_{c b}^{*} V_{c s}}\right) \leq \arcsin \left(\frac{\left|V_{u b}^{*} V_{u s}\right|}{\left|V_{c b}^{*} V_{c s}\right|}\right) \sim \mathcal{O}\left(\lambda^{2}\right)
$$

So in the limit $m_{T} \rightarrow m_{t}, \varphi$ is either order $-\beta_{s}\left(\right.$ for $\left.\beta_{s} \sim \lambda\right)$, or very small (for $\beta_{s} \sim \lambda^{2}$)

$A_{J / \Psi \Phi}$ and the contribution of β_{s}

- φ is dominated by the imaginary part of $-\frac{S\left(x_{t}, x_{T}\right)}{S\left(x_{t}\right)} \frac{V_{T s}^{*} V_{T b}}{V_{t s}^{*} V_{t b}}$. (The ratio of CKM matrix elements is at most of order λ)
- The x_{T} dependence of the Inami-Lim function $S\left(x_{t}, x_{T}\right)$ destroys the cancellation as soon as we move away from $m_{T}=m_{t}$. For example, $S\left(x_{t}, x_{T}\right) \simeq 1.5 S\left(x_{t}\right)$ for $m_{T}=300 \mathrm{GeV}$, and growing with m_{T}

To have $\beta_{s}^{\text {eff }}$ of order λ, we have to pick β_{s} of order λ and, as soon as the mass of the new quark T grows, we will get $\beta_{s}^{\text {eff }}$ of the same order and opposite size

