Extreme scenarios of new physics in the UHE astrophysical neutrino flavour ratios

M. Bustamante¹

in collaboration with C. Peña-Garay² and A. Gago¹

¹Pontificia Universidad Católica del Perú Lima, Perú

2 Instituto de Física Corpuscular Valencia, España

DISCRETE 08 December 15th, 2008, Valencia

Outline

[Looking for extreme effects in the flavour ratios](#page-19-0)

Outline

- **[Theoretical framework](#page-9-0)**
- [Looking for extreme effects in the flavour ratios](#page-19-0)
- **[Summary and conclusions](#page-24-0)**

Introduction and motivation

- Neutrinos can change flavour.
- Evidence from solar, reactor and atmospheric experiments.
- Confirmed mechanism in MeV $\leq E \leq$ TeV:
	- \triangleright neutrinos have different masses
	- ▶ flavour eigenstates \neq mass eigenstates
- SK data: oscillation argument $\sim E^n$, with $n = -0.9 \pm 0.4$ (90% C.L.), as expected from mass-driven oscillations.
- ∴ At these energies, other mechanisms are *subdominant*.
- **True at higher energies?**
- Focus on energy-independent contributions to the flavour oscillations.
- Corresponds to:
	- ► different coupling to non-zero torsion of gravitational field
	- \triangleright CPT violation
- This can be probed at higher energies \Rightarrow use the expected high-energy astrophysical neutrino flux.
- \bullet 3*v* oscillations in the vaccum.
- We have not used approximations (e.g. perturbation theory).
- We have assumed fluxes at the sources to be $\phi_{\mathsf{e}}^{0}:\phi_{\mu}^{0}:\phi_{\tau}^{0}=\mathsf{1}:2:0$ (also, 0 : 1 : 0 and 1 : 0 : 0).
- Any new scalar coupling to ν 's would result in contributions that go as $1/E$.
- Vector coupling introduces energy-independent contributions:

$$
\mathcal{L}=\overline{\nu}^{\alpha}b^{\alpha\beta}_{\mu}\gamma^{\mu}\nu^{\beta} .
$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j,$ with b_i eigenvalues of the b matrix.
- Vector coupling could be induced by:
	- ► Different flavours have different gravitational coupling:
		- \star Non-symmetric connection: $\Gamma^c_{ab}\neq\Gamma^c_{ba}$
		- ⋆ M. Gasperini, Phys. Rev. D **38**, 2635 (1988)
	- ▶ Violation of Lorentz invariance:
		- \star Standard Model Extension: C includes CPT-odd terms.
		- ⋆ D.Colladay, V.Kostelecky, Phys. Rev. D **58**, 116002 (1998) [hep-ph/9809521]
	- \triangleright Some other mechanism.
- Any new scalar coupling to ν 's would result in contributions that go as $1/E$.
- Vector coupling introduces energy-independent contributions:

$$
\mathcal{L}=\overline{\nu}^{\alpha}b^{\alpha\beta}_{\mu}\gamma^{\mu}\nu^{\beta} .
$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j,$ with b_i eigenvalues of the b matrix.
- Vector coupling could be induced by:
	- ► Different flavours have different gravitational coupling:
		- **★** Non-symmetric connection: $\Gamma^c_{ab} \neq \Gamma^c_{ba}$
		- ⋆ M. Gasperini, Phys. Rev. D **38**, 2635 (1988)
	- ► Violation of Lorentz invariance:
		- \star Standard Model Extension: C includes CPT-odd terms.
		- ⋆ D.Colladay, V.Kostelecky, Phys. Rev. D **58**, 116002 (1998) [hep-ph/9809521]
	- \triangleright Some other mechanism.
- \bullet Any new scalar coupling to ν 's would result in contributions that go as $1/E$.
- Vector coupling introduces energy-independent contributions:

$$
\mathcal{L}=\overline{\nu}^{\alpha}b^{\alpha\beta}_{\mu}\gamma^{\mu}\nu^{\beta} .
$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j,$ with b_i eigenvalues of the b matrix.
- Vector coupling could be induced by:
	- ► Different flavours have different gravitational coupling:
		- **★** Non-symmetric connection: $\Gamma^c_{ab} \neq \Gamma^c_{ba}$
		- ⋆ M. Gasperini, Phys. Rev. D **38**, 2635 (1988)
	- ► Violation of Lorentz invariance:
		- \star Standard Model Extension: $\mathcal L$ includes CPT-odd terms.
		- ⋆ D.Colladay, V.Kostelecky, Phys. Rev. D **58**, 116002 (1998) [hep-ph/9809521] V.Kostelecky, M.Mewes, Phys. Rev. D **70**, 031902 (2004) [hep-ph/0308300]
	- \triangleright Some other mechanism...
- \bullet Any new scalar coupling to ν 's would result in contributions that go as $1/E$.
- Vector coupling introduces energy-independent contributions:

$$
\mathcal{L}=\overline{\nu}^{\alpha}b^{\alpha\beta}_{\mu}\gamma^{\mu}\nu^{\beta} .
$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j,$ with b_i eigenvalues of the b matrix.
- Vector coupling could be induced by:
	- ► Different flavours have different gravitational coupling:
		- **★** Non-symmetric connection: $\Gamma^c_{ab} \neq \Gamma^c_{ba}$
		- ⋆ M. Gasperini, Phys. Rev. D **38**, 2635 (1988)
	- ► Violation of Lorentz invariance:
		- \star Standard Model Extension: $\mathcal L$ includes CPT-odd terms.
		- ⋆ D.Colladay, V.Kostelecky, Phys. Rev. D **58**, 116002 (1998) [hep-ph/9809521] V.Kostelecky, M.Mewes, Phys. Rev. D **70**, 031902 (2004) [hep-ph/0308300]
	- \triangleright Some other mechanism...

Outline

[Theoretical framework](#page-9-0)

- [Looking for extreme effects in the flavour ratios](#page-19-0)
- **[Summary and conclusions](#page-24-0)**

Standard mass-driven oscillations

$$
\bullet \ | \nu_{\alpha} \rangle = [U_m]_{\alpha i} | \nu_i^m \rangle \ (\alpha = e, \mu, \tau; i = 1, 2, 3)
$$

- Evolved flavour state: $\ket{\nu_\alpha}\longrightarrow \ket{\nu_\alpha(L)} = e^{-iH\!L}|\nu_\alpha\rangle$ \bullet
- Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha} (L) \rangle|^2$ \bullet
- \bullet Three-neutrino standard oscillation Hamiltonian:

$$
H_m = U_0 M^2 U_0^{\dagger} = U_0 \frac{\text{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right)}{2E} U_0^{\dagger} ,
$$

with $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$.

 \bullet U₀ is the PMNS matrix: $U_0 = U_{CKM}(\{\theta_{ii}\}, \delta_{CP})$

$$
U_{CKM}\left(\left\{\theta_{ij}\right\},\delta\right)=\left(\begin{array}{cc} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{array}\right)
$$

Standard mass-driven oscillations

$$
\bullet \ | \nu_{\alpha} \rangle = [U_m]_{\alpha i} | \nu_i^m \rangle \ (\alpha = e, \mu, \tau; i = 1, 2, 3)
$$

- Evolved flavour state: $\ket{\nu_\alpha}\longrightarrow \ket{\nu_\alpha(L)} = e^{-iH\!L}|\nu_\alpha\rangle$ \bullet
- Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha} (L) \rangle|^2$ \bullet
- \bullet Three-neutrino standard oscillation Hamiltonian:

$$
H_m = U_0 M^2 U_0^{\dagger} = U_0 \frac{\text{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right)}{2E} U_0^{\dagger} ,
$$

with $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$.

 \bullet U₀ is the PMNS matrix: $U_0 = U_{CKM}(\{\theta_{ii}\}, \delta_{CP})$

$$
U_{CKM}\left(\left\{\theta_{ij}\right\},\delta\right)=\left(\begin{array}{ccc}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta}&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta}&s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta}&-c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta}&c_{23}c_{13}\end{array}\right)
$$

Adding an energy-independent contribution

$$
H_b = U_b \text{ diag}(0, b_{21}, b_{31}) U_b^{\dagger}
$$

$$
U_b = \text{diag}(1, e^{i\phi_{b2}}, e^{i\phi_{b3}}) U_{CKM} (\{\theta_{bij}\}, \delta_b)
$$

- $|v_\alpha\rangle = [U_b]_{\alpha i} |v_i^b\rangle$
- \bullet H_b depends on eight parameters:
	- ► two eigenvalues: b_{21} , b_{31}
	- three mixing angles: θ_{b12} , θ_{b13} , θ_{b23}
	- three phases: δ_b , ϕ_{b2} , ϕ_{b3}

$$
b_{21} \leq 1.6 \times 10^{-21} \text{ GeV (solar, SK)}
$$

\n
$$
b_{32} \leq 5.0 \times 10^{-23} \text{ GeV (atm., K2K)}
$$

\n
$$
b_{31} = b_{32} + b_{21} \leq 1.65 \times 10^{-21} \text{ GeV}
$$

J.N. Bahcall, V. Barger, D. Marfatia, Phys. Lett. B **534**, 120 (2002) [hep-ph/0201211] M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rev. D **70**, 033010 (2004) [hep-ph/0404085] A. Dighe, S. Ray, Phys. Rev. D **78**, 0360002 (2008) [hep-ph/0802.0121]

$$
H_f = H_m + H_b
$$

- \bullet H_m \sim 1/E \Rightarrow H_b contributes progressively more as E rises.
- **Use expected high-energy (E** \geq **1 PeV) astrophysical** ν **flux.**
- \bullet Let U_f be the diagonalising matrix of H_f :

$$
U_f=U_f\left(\left\{\theta_{ij}\right\},\left\{\theta_{bij}\right\},\left\{\Delta m_{ij}^2\right\},\left\{b_{ij}\right\},\delta_{\text{CP}},\delta_{\text{b}},\phi_{\text{b2}},\phi_{\text{b3}}\right)=U_{\text{CKM}}\left(\left\{\Theta_{ij}\right\},\delta_{\text{f}}\right)
$$

- We can find Θ_{ii} in terms of the parameters of H_m and H_b . \bullet
- (i) Δ m_{21}^2 , Δ m_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$
b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}.
$$

$$
H_f = H_m + H_b
$$

- \bullet H_m \sim 1/E \Rightarrow H_b contributes progressively more as E rises.
- **Use expected high-energy (E** \geq **1 PeV) astrophysical** ν **flux.**
- \bullet Let U_f be the diagonalising matrix of H_f :

$$
\mathit{U}_{f}=\mathit{U}_{f}\left(\left\{\theta_{ij}\right\}, \left\{\theta_{bij}\right\}, \left\{\Delta m_{ij}^{2}\right\}, \left\{b_{ij}\right\}, \delta_{\textit{CP}}, \delta_{\textit{b}}, \phi_{\textit{b2}}, \phi_{\textit{b3}}\right)=\mathit{U}_{\textit{CKM}}\left(\left\{\Theta_{ij}\right\}, \delta_{\textit{f}}\right)
$$

We can find Θ_{ii} in terms of the parameters of H_m and H_b . \bullet

(i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.

- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$
b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}
$$

$$
H_f = H_m + H_b
$$

- \bullet H_m \sim 1/E \Rightarrow H_b contributes progressively more as E rises.
- **Use expected high-energy (E** \geq **1 PeV) astrophysical** ν **flux.**
- \bullet Let U_f be the diagonalising matrix of H_f :

$$
\mathit{U}_{f}=\mathit{U}_{f}\left(\left\{\theta_{ij}\right\}, \left\{\theta_{bij}\right\}, \left\{\Delta m_{ij}^{2}\right\}, \left\{b_{ij}\right\}, \delta_{\textit{CP}}, \delta_{\textit{b}}, \phi_{\textit{b2}}, \phi_{\textit{b3}}\right)=\mathit{U}_{\textit{CKM}}\left(\left\{\Theta_{ij}\right\}, \delta_{\textit{f}}\right)
$$

- We can find Θ_{ii} in terms of the parameters of H_m and H_b . \bullet
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.

(iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$
b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}.
$$

$$
H_f = H_m + H_b
$$

- \bullet H_m \sim 1/E \Rightarrow H_b contributes progressively more as E rises.
- **Use expected high-energy (E** \geq **1 PeV) astrophysical** ν **flux.**
- \bullet Let U_f be the diagonalising matrix of H_f :

$$
\mathit{U}_{f}=\mathit{U}_{f}\left(\left\{\theta_{ij}\right\}, \left\{\theta_{bij}\right\}, \left\{\Delta m_{ij}^{2}\right\}, \left\{b_{ij}\right\}, \delta_{\textit{CP}}, \delta_{\textit{b}}, \phi_{\textit{b2}}, \phi_{\textit{b3}}\right)=\mathit{U}_{\textit{CKM}}\left(\left\{\Theta_{ij}\right\}, \delta_{\textit{f}}\right)
$$

- We can find Θ_{ii} in terms of the parameters of H_m and H_b . \bullet
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$
b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}.
$$

$$
H_f = H_m + H_b
$$

- \bullet H_m \sim 1/E \Rightarrow H_b contributes progressively more as E rises.
- **Use expected high-energy (E** \geq **1 PeV) astrophysical** ν **flux.**
- \bullet Let U_f be the diagonalising matrix of H_f :

$$
\mathit{U}_{f}=\mathit{U}_{f}\left(\left\{\theta_{ij}\right\}, \left\{\theta_{bij}\right\}, \left\{\Delta m_{ij}^{2}\right\}, \left\{b_{ij}\right\}, \delta_{\textit{CP}}, \delta_{\textit{b}}, \phi_{\textit{b2}}, \phi_{\textit{b3}}\right)=\mathit{U}_{\textit{CKM}}\left(\left\{\Theta_{ij}\right\}, \delta_{\textit{f}}\right)
$$

- We can find Θ_{ii} in terms of the parameters of H_m and H_b . \bullet
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$
b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}
$$

.

Flavour ratios

- Astrophysical ν 's travel tens of Mpc or more: $L \gg 1$.
- Average flavour-transition probability:

$$
\langle P_{\alpha\beta}\rangle=\sum_i |[U_f]_{\alpha i}|^2 |[U_f]_{\beta i}|^2.
$$

Fluxes at production: $\phi_{\mathbf{e}}^{0}$: ϕ_{μ}^{0} : ϕ_{τ}^{0} . At detection (Earth):

$$
\phi_{\alpha} = \sum_{\beta = \mathbf{e}, \mu, \tau} \langle P_{\beta \alpha} \rangle \phi_{\beta}^0.
$$

O Define the ratios:

$$
R \equiv \frac{\phi_{\mu}}{\phi_{\mathbf{e}}}, \quad S \equiv \frac{\phi_{\tau}}{\phi_{\mu}}.
$$

• We look for scenarios where $R, S(\lambda; \Theta_{ii}) \neq R, S(\theta_{ii})$ noticeably.

Outline

- **[Theoretical framework](#page-9-0)**
- 3 [Looking for extreme effects in the flavour ratios](#page-19-0)
- **[Summary and conclusions](#page-24-0)**

Production by pion decay: $\phi_{\mathbf{e}}^{0}$: ϕ_{μ}^{0} : ϕ_{τ}^{0} = 1 : 2 : 0

• Neutrino decay:

 $\nu_2, \nu_3 \rightarrow \nu_1$ (normal hierarchy), $\nu_1, \nu_2 \rightarrow \nu_3$ (inverted hierarchy)

 \bullet Assumption: decay completed when the neutrinos reach Earth.

Other production mechanisms:

- Muon cooling: $\phi^0_{\bm{e}}: \phi^0_{\mu}:\phi^0_{\tau}=$ 0 $:$ 1 $:$ 0
- β decay of neutrons: $\phi^0_{\bm{e}}: \phi^0_{\mu}:\phi^0_{\tau}=1:0:0$ \bullet

The parameter space is reduced if we set $\lambda=$ 1 (i.e. $b_{ij}=\Delta m^2_{ij}/2E^\star$, $E^\star=$ 1 PeV.)

Outline

- **[Theoretical framework](#page-9-0)**
- [Looking for extreme effects in the flavour ratios](#page-19-0)

Summary

- The neutrino mixing angles might be strongly modified by an energy-indepedent contribution to the oscillation Hamiltonian.
- \bullet Large effects on the flavour ratios would be visible at higher energy \Rightarrow use astrophysical ν 's.
- Because $L \gg 1$, neutrino decays might show up as well. \bullet
- Assuming production by pion decay, the region of values of $R \equiv \phi_{\mu}/\phi_{\rm e}$ and $S \equiv \phi_{\tau}/\phi_{\mu}$ accessible when H_b dominates ...
	- \triangleright is much larger than the region accessible by neutrino decay; and
	- \triangleright can be distinguished from it.
- \bullet In general, knowledge of both R and S is necessary to disentangle the production mechanism and any potential new physics involved (decays or H_b).
- \bullet Assuming a 15% error on R and 30% error on S, IceCube might be able to do so after \sim 5 years (F. Halzen's talk tomorrow).

Backup slides

- \bullet $R, S ∈$ light blue $\Rightarrow \exists H_b$ dominant, but production mechanism unknown
- \bullet $R, S ∈$ light purple $\Rightarrow \exists H_b$ dominant, production ratios 0 : 1 : 0
- \bullet $S \geq 1.35 \Rightarrow \exists H_b$ dominant, production ratios 1 : 0 : 0
- \bullet $S > 1$ or $R < 1$ or $R > 4 \Rightarrow$ production ratios not 1 : 2 : 0
- \bullet Both decays and $0:1:0,1:0:0$ allow $S > 1$; R is needed to distinguish
- \bullet Decay to ν_3 and 0 : 1 : 0, $\lambda = 100$ yield high R; S is needed to distinguish
- \bullet Decay to ν_1 indistinguishable from 1 : 0 : 0 with $\lambda =$ 100

Neutrino mixing angles - current status

From a global analysis including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS) data, the current values of the standard mixing angles are (1σ) :

T.Schwetz, M.Tortola, J.Valle, New J. Phys. **10**, 113011 (2008) [hep-ph/0808.2016]

IceCube

- Under-ice Čerenkov detector optimised for TeV-PeV energies.
- Successor to AMANDA (Antarctic Muon And Neutrino Detector Array).
- \bullet Built close to the geographic South Pole.
- \bullet PMTs at depths between 1 450 and 2 450 m.
- Deployment of strings containing PMTs is half complete.
- Expected finished by 2011. \bullet

Flavour identification

- **I** IceCube does **not** measure the flavour fluxes ϕ_{α} directly.
- Rather, it measures different types of events which can be used to reconstruct the ϕ_{α} .
- Neutral-current interactions produce hadronic showers (all flavours).
- Charged-current interactions:
	- $\triangleright \nu_{\mu}$: muon tracks (emerging from hadronic shower)
	- \triangleright ν_e : electromagnetic showers
	- $\triangleright \nu_{\tau}$: hadronic shower (below a few PeV) or tau tracks that create second shower
- Possible to distinguish EM and hadronic showers, but very difficult.

J.Beacom et al. Phys. Rev. D **68**, 093005 (2003), Erratum-ibid. D **72**, 019901 (2005) [hep-ph/0307025]

Muon tracks

 \bullet Muons undergo energy loss as they propagate in the ice:

$$
\frac{dE}{dX} = -\alpha - \beta E \ , \quad \left\{ \begin{array}{l} \alpha = 2.0 \text{MeV cm}^2/\text{g (loss by ionisation)} \\ \beta = 4.2 \times 10^{-6} \text{ cm}^2/\text{g (loss through bremsstrahlung)} \end{array} \right.
$$

 \bullet Muon range:

$$
R_{\mu} = \frac{1}{\beta} \ln \left(\frac{\alpha + \beta E_{\mu}}{\alpha + \beta E_{\mu}^{\text{thr}}} \right)
$$

 $E^{\rm thr}_{\mu}\sim$ 50 $-$ 100 GeV is the threshold energy that triggers the detectors.

Probability of detecting a ν_{μ} **traveling through the detector:**

$$
P_{\nu_\mu \to \mu} \simeq \rho N_A \sigma R_\mu
$$

 ρ : ice nucleon density NA: Avogadro's number σ: CC ν-nucleon cross section

Showers

- \bullet The detector sees a 1 TeV shower as photoelectrons distributed over a \sim 100 m radius sphere (\sim 300 m for PeV).
- \bullet Shower sizes are smaller than muon ranges \Rightarrow smaller effective volume.
- $\mathsf{E}^\mathsf{thr}_\mathsf{sh} > \mathsf{E}^\mathsf{thr}_\mu$
- **P** Probability of detecting a neutrino by a neutral-current shower:

$$
P_{\nu \rightarrow NC \text{ shower}} \simeq \rho N_A L \int_{E_{\rm sh}^{\rm thr}/E_{\nu}}^1 \frac{d\sigma}{dy} \ dy
$$

- σ : NC *ν*-nucleon cross section
- y: energy fraction transferred from the ν to the shower
- L: detector length
- \bullet For ν_e , the total energy goes into the CC and NC showers, so

 $P_{\nu \rightarrow \text{shower}} \simeq \rho N_A \sigma L$

- \bullet IceCube's energy resolution: \sim ±0.1 on log₁₀ scale.
- Can reconstruct direction to \sim 25 $^{\circ}$. \bullet

Double-bangs and lollipops

 \bullet Double bang:

 \bullet

Image source: IceCube Preliminary Design Document

o Tau range:

$$
R_{\tau}\left(E_{\nu_{\tau}},y\right)=\frac{\left(1-y\right)E_{\nu_{\tau}}}{m_{\tau}}c_{\tau_{\tau}}
$$

 τ_{τ} : rest-frame lifetime

 \bullet Probability of a double bang:

$$
P_{\text{db}}\left(E_{\nu_{\tau}}\right)\simeq\rho N_{A}\sigma\left[\left(L-X_{\text{min}}-R_{\tau}\right)e^{-X_{\text{min}}/R_{\tau}}+R_{\tau}e^{-L/R_{\tau}}\right]_{y=\langle y\rangle}
$$

 x_{min} : minimum τ range that can be resolved

• Probability of a lollipop:

$$
P_{\text{lollipop}} \simeq \rho N_{\mathcal{A}} \sigma \left(L - x_{\text{min}} \right) \left[\mathrm{e}^{-x_{\text{min}} / R_{\tau}} \right]_{y = \langle y \rangle}
$$

• We have assumed that $d\sigma/dy \simeq \sigma\delta(y - \langle y \rangle)$, with $\langle y \rangle \simeq 0.25$ at PeV scale.

Backup slides

FIG. 5. Probabilities of detecting different flavors of neutrinos in IceCube versus neutrino energy, described in detail in the text. The upper solid line is the probability of a horizontal ν_{μ} creating a detectable muon track, and the dashed line is for downgoing v_u . The dotted line is the probability for ν_e to create a detectable shower (above 1 TeV), considering both charged-current and neutral-current interactions; the kink occurs when the neutralcurrent showers come above threshold. The dot-dashed lines are the probabilities for ν_{τ} to make lollipop events (upper) and doublebang events (lower).