Extreme scenarios of new physics in the UHE astrophysical neutrino flavour ratios

M. Bustamante¹

in collaboration with C. Peña-Garay² and A. Gago¹

¹Pontificia Universidad Católica del Perú Lima, Perú

²Instituto de Física Corpuscular Valencia, España

DISCRETE 08 December 15th, 2008, Valencia

Outline

- 3 Looking for extreme effects in the flavour ratios
- Summary and conclusions

Outline

- 2 Theoretical framework
- 3 Looking for extreme effects in the flavour ratios
- 4 Summary and conclusions

Introduction and motivation

- Neutrinos can change flavour.
- Evidence from solar, reactor and atmospheric experiments.
- Confirmed mechanism in MeV $\lesssim E \lesssim$ TeV:
 - neutrinos have different masses
 - ▶ flavour eigenstates ≠ mass eigenstates
- SK data: oscillation argument $\sim E^n$, with $n = -0.9 \pm 0.4$ (90% C.L.), as expected from mass-driven oscillations.
- ... At these energies, other mechanisms are *subdominant*.
- True at higher energies?

- Focus on energy-independent contributions to the flavour oscillations.
- Corresponds to:
 - different coupling to non-zero torsion of gravitational field
 - CPT violation
- This can be probed at higher energies ⇒ use the expected high-energy astrophysical neutrino flux.
- 3ν oscillations in the vaccum.
- We have not used approximations (e.g. perturbation theory).
- We have assumed fluxes at the sources to be $\phi_e^0: \phi_\mu^0: \phi_\tau^0 = 1:2:0$ (also, 0:1:0 and 1:0:0).

- Any new scalar coupling to ν 's would result in contributions that go as 1/E.
- Vector coupling introduces energy-independent contributions:

$$\mathcal{L} = \overline{
u}^{lpha} b^{lphaeta}_{\mu} \gamma^{\mu}
u^{eta} \; .$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j$, with b_i eigenvalues of the *b* matrix.
- Vector coupling could be induced by:
 - Different flavours have different gravitational coupling:
 - * Non-symmetric connection: $\Gamma_{ab}^{c} \neq \Gamma_{ba}^{c}$
 - * M. Gasperini, Phys. Rev. D 38, 2635 (1988)
 - Violation of Lorentz invariance:
 - ★ Standard Model Extension: *L* includes CPT-odd terms.
 - D.Colladay, V.Kostelecky, Phys. Rev. D 58, 116002 (1998) [hep-ph/9809521]
 V.Kostelecky, M.Mewes, Phys. Rev. D 70, 031902 (2004) [hep-ph/0308300]
 - Some other mechanism...

- Any new scalar coupling to ν 's would result in contributions that go as 1/E.
- Vector coupling introduces energy-independent contributions:

$$\mathcal{L} = \overline{
u}^{lpha} b^{lphaeta}_{\mu} \gamma^{\mu}
u^{eta} \; .$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j$, with b_i eigenvalues of the *b* matrix.
- Vector coupling could be induced by:
 - Different flavours have different gravitational coupling:
 - * Non-symmetric connection: $\Gamma_{ab}^c \neq \Gamma_{ba}^c$
 - M. Gasperini, Phys. Rev. D 38, 2635 (1988)
 - Violation of Lorentz invariance:
 - ***** Standard Model Extension: \mathcal{L} includes CPT-odd terms.
 - D.Colladay, V.Kostelecky, Phys. Rev. D 58, 116002 (1998) [hep-ph/9809521]
 V.Kostelecky, M.Mewes, Phys. Rev. D 70, 031902 (2004) [hep-ph/0308300]
 - Some other mechanism...

- Any new scalar coupling to ν 's would result in contributions that go as 1/E.
- Vector coupling introduces energy-independent contributions:

$$\mathcal{L} = \overline{
u}^{lpha} b^{lphaeta}_{\mu} \gamma^{\mu}
u^{eta} \; .$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j$, with b_i eigenvalues of the *b* matrix.
- Vector coupling could be induced by:
 - Different flavours have different gravitational coupling:
 - * Non-symmetric connection: $\Gamma_{ab}^c \neq \Gamma_{ba}^c$
 - ★ M. Gasperini, Phys. Rev. D 38, 2635 (1988)
 - Violation of Lorentz invariance:
 - ***** Standard Model Extension: \mathcal{L} includes CPT-odd terms.
 - D.Colladay, V.Kostelecky, Phys. Rev. D 58, 116002 (1998) [hep-ph/9809521]
 V.Kostelecky, M.Mewes, Phys. Rev. D 70, 031902 (2004) [hep-ph/0308300]
 - Some other mechanism...

- Any new scalar coupling to ν 's would result in contributions that go as 1/E.
- Vector coupling introduces energy-independent contributions:

$$\mathcal{L} = \overline{
u}^{lpha} b^{lphaeta}_{\mu} \gamma^{\mu}
u^{eta} \; .$$

- Results in an energy-independent phase $\Delta b_{ij} \equiv b_i b_j$, with b_i eigenvalues of the *b* matrix.
- Vector coupling could be induced by:
 - Different flavours have different gravitational coupling:
 - * Non-symmetric connection: $\Gamma_{ab}^c \neq \Gamma_{ba}^c$
 - ★ M. Gasperini, Phys. Rev. D 38, 2635 (1988)
 - Violation of Lorentz invariance:
 - ***** Standard Model Extension: \mathcal{L} includes CPT-odd terms.
 - D.Colladay, V.Kostelecky, Phys. Rev. D 58, 116002 (1998) [hep-ph/9809521]
 V.Kostelecky, M.Mewes, Phys. Rev. D 70, 031902 (2004) [hep-ph/0308300]
 - Some other mechanism...

Outline

2 Theoretical framework

- 3 Looking for extreme effects in the flavour ratios
- 4 Summary and conclusions

Standard mass-driven oscillations

•
$$|\nu_{\alpha}\rangle = [U_m]_{\alpha i} |\nu_i^m\rangle \ (\alpha = \mathbf{e}, \mu, \tau; i = 1, 2, 3)$$

- Evolved flavour state: $|\nu_{\alpha}\rangle \longrightarrow |\nu_{\alpha}(L)\rangle = e^{-iHL}|\nu_{\alpha}\rangle$
- Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha} (L) \rangle|^2$
- Three-neutrino standard oscillation Hamiltonian:

$$H_m = U_0 M^2 U_0^{\dagger} = U_0 \frac{\text{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right)}{2E} U_0^{\dagger} ,$$

with $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$.

• U_0 is the PMNS matrix: $U_0 = U_{CKM}(\{\theta_{ij}\}, \delta_{CP})$

$$U_{CKM}\left(\left\{\theta_{ij}\right\},\delta\right) = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Standard mass-driven oscillations

•
$$|\nu_{\alpha}\rangle = [U_m]_{\alpha i} |\nu_i^m\rangle \ (\alpha = \mathbf{e}, \mu, \tau; i = 1, 2, 3)$$

- Evolved flavour state: $|\nu_{\alpha}\rangle \longrightarrow |\nu_{\alpha}(L)\rangle = e^{-iHL}|\nu_{\alpha}\rangle$
- Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha} (L) \rangle|^2$
- Three-neutrino standard oscillation Hamiltonian:

$$H_m = U_0 M^2 U_0^{\dagger} = U_0 \frac{\text{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right)}{2E} U_0^{\dagger} ,$$

with $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$.

• U_0 is the PMNS matrix: $U_0 = U_{CKM}(\{\theta_{ij}\}, \delta_{CP})$

$$U_{CKM}(\{\theta_{ij}\},\delta) = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Adding an energy-independent contribution

$$\begin{array}{lll} H_b &=& U_b \ \text{diag} \left(0, b_{21}, b_{31}\right) U_b^{\dagger} \\ U_b &=& \text{diag} \left(1, e^{i\phi_{b2}}, e^{i\phi_{b3}}\right) U_{CKM} \left(\left\{\theta_{bij}\right\}, \delta_b\right) \end{array}$$

- $|\nu_{\alpha}\rangle = [U_b]_{\alpha i} |\nu_i^b\rangle$
- H_b depends on eight parameters:
 - two eigenvalues: b₂₁, b₃₁
 - three mixing angles: θ_{b12} , θ_{b13} , θ_{b23}
 - three phases: δ_b , ϕ_{b2} , ϕ_{b3}

$$\begin{array}{rcl} b_{21} & \leq & 1.6 \times 10^{-21} \ {\rm GeV} \ ({\rm solar}, \ {\rm SK}) \\ b_{32} & \leq & 5.0 \times 10^{-23} \ {\rm GeV} \ ({\rm atm., \ K2K}) \\ b_{31} & = & b_{32} + b_{21} \leq 1.65 \times 10^{-21} \ {\rm GeV} \end{array}$$

J.N. Bahcall, V. Barger, D. Marfatia, Phys. Lett. B **534**, 120 (2002) [hep-ph/0201211] M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rev. D **70**, 033010 (2004) [hep-ph/0404085] A. Dighe, S. Ray, Phys. Rev. D **78**, 0360002 (2008) [hep-ph/0802.0121]

$$H_f = H_m + H_b$$

- $H_m \sim 1/E \Rightarrow H_b$ contributes progressively more as *E* rises.
- Use expected high-energy ($E \gtrsim$ 1 PeV) astrophysical ν flux.
- Let U_f be the diagonalising matrix of H_f :

$$U_{f} = U_{f} \left(\left\{ \theta_{ij} \right\}, \left\{ \theta_{bij} \right\}, \left\{ \Delta m_{ij}^{2} \right\}, \left\{ b_{ij} \right\}, \delta_{CP}, \delta_{b}, \phi_{b2}, \phi_{b3} \right) = U_{CKM} \left(\left\{ \Theta_{ij} \right\}, \delta_{f} \right)$$

- We can find Θ_{ij} in terms of the parameters of H_m and H_b .
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts. (ii) We have set $\delta_{CR} = \delta_{b} = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$b_{ij} = \lambda rac{\Delta m_{ij}^2}{2E^{\star}} \; .$$

$$H_f = H_m + H_b$$

- $H_m \sim 1/E \Rightarrow H_b$ contributes progressively more as *E* rises.
- Use expected high-energy ($E \gtrsim$ 1 PeV) astrophysical ν flux.
- Let U_f be the diagonalising matrix of H_f:

$$U_{f} = U_{f}\left(\left\{\theta_{ij}\right\}, \left\{\theta_{bij}\right\}, \left\{\Delta m_{ij}^{2}\right\}, \left\{b_{ij}\right\}, \delta_{CP}, \delta_{b}, \phi_{b2}, \phi_{b3}\right) = U_{CKM}\left(\left\{\Theta_{ij}\right\}, \delta_{f}\right)$$

• We can find Θ_{ij} in terms of the parameters of H_m and H_b .

(i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts. (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.

(iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* =$ 1 PeV, i.e.

$$b_{ij} = \lambda rac{\Delta m_{ij}^2}{2E^{\star}}$$

$$H_f = H_m + H_b$$

- $H_m \sim 1/E \Rightarrow H_b$ contributes progressively more as *E* rises.
- Use expected high-energy ($E \gtrsim$ 1 PeV) astrophysical ν flux.
- Let U_f be the diagonalising matrix of H_f :

$$\boldsymbol{U}_{f} = \boldsymbol{U}_{f} \left(\left\{ \theta_{ij} \right\}, \left\{ \theta_{bij} \right\}, \left\{ \Delta m_{ij}^{2} \right\}, \left\{ \boldsymbol{b}_{ij} \right\}, \delta_{CP}, \delta_{b}, \phi_{b2}, \phi_{b3} \right) = \boldsymbol{U}_{CKM} \left(\left\{ \Theta_{ij} \right\}, \delta_{f} \right)$$

- We can find Θ_{ij} in terms of the parameters of H_m and H_b .
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.

(iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$b_{ij} = \lambda rac{\Delta m_{ij}^2}{2E^{\star}}$$

$$H_f = H_m + H_b$$

- $H_m \sim 1/E \Rightarrow H_b$ contributes progressively more as *E* rises.
- Use expected high-energy ($E \gtrsim$ 1 PeV) astrophysical ν flux.
- Let U_f be the diagonalising matrix of H_f :

$$\boldsymbol{U}_{f} = \boldsymbol{U}_{f} \left(\left\{ \theta_{ij} \right\}, \left\{ \theta_{bij} \right\}, \left\{ \Delta m_{ij}^{2} \right\}, \left\{ \boldsymbol{b}_{ij} \right\}, \delta_{CP}, \delta_{b}, \phi_{b2}, \phi_{b3} \right) = \boldsymbol{U}_{CKM} \left(\left\{ \Theta_{ij} \right\}, \delta_{f} \right)$$

- We can find Θ_{ij} in terms of the parameters of H_m and H_b .
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$b_{ij} = \lambda rac{\Delta m_{ij}^2}{2E^\star} \; .$$

l

$$H_f = H_m + H_b$$

- $H_m \sim 1/E \Rightarrow H_b$ contributes progressively more as *E* rises.
- Use expected high-energy ($E \gtrsim$ 1 PeV) astrophysical ν flux.
- Let U_f be the diagonalising matrix of H_f :

$$U_{f} = U_{f}\left(\left\{ heta_{ij}
ight\}, \left\{ heta_{bij}
ight\}, \left\{\Delta m_{ij}^{2}
ight\}, \left\{b_{ij}
ight\}, \delta_{CP}, \delta_{b}, \phi_{b2}, \phi_{b3}
ight) = U_{CKM}\left(\left\{\Theta_{ij}
ight\}, \delta_{f}
ight)$$

- We can find Θ_{ij} in terms of the parameters of H_m and H_b .
- (i) Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{13} , θ_{23} fixed by solar, reactor, accel. and atm. exp'ts.
- (ii) We have set $\delta_{CP} = \delta_b = \phi_{b2} = \phi_{b3} = 0$.
- (iii) Finally, set $b_{ij} \propto \Delta m_{ij}^2/2E$ at a fixed $E^* = 1$ PeV, i.e.

$$b_{ij} = \lambda \frac{\Delta m_{ij}^2}{2E^*}$$

Flavour ratios

- Astrophysical ν 's travel tens of Mpc or more: $L \gg 1$.
- Average flavour-transition probability:

$$\langle \mathcal{P}_{\alpha\beta}
angle = \sum_{i} |[\mathcal{U}_{f}]_{\alpha i}|^{2} |[\mathcal{U}_{f}]_{\beta i}|^{2} .$$

Fluxes at production: φ⁰_e : φ⁰_μ : φ⁰_τ.
 At detection (Earth):

$$\phi_lpha = \sum_{eta = \mathbf{e}, \mu, au} \langle \mathcal{P}_{eta lpha}
angle \phi^{\mathbf{0}}_eta \; .$$

Define the ratios:

$$\mathsf{R}\equiv rac{\phi_{\mu}}{\phi_{\mathsf{e}}}~,~~\mathsf{S}\equiv rac{\phi_{ au}}{\phi_{\mu}}~,$$

• We look for scenarios where R, $S(\lambda; \Theta_{ij}) \neq R$, $S(\theta_{ij})$ noticeably.

Outline

- 2 Theoretical framework
- Looking for extreme effects in the flavour ratios
- 4 Summary and conclusions

Production by pion decay: $\phi^0_{ extbf{e}}: \phi^0_{\mu}: \phi^0_{\tau}=1:2:0$

M. Bustamante (PUCP)

Neutrino decay:

 $u_2, \nu_3 \rightarrow \nu_1 \text{ (normal hierarchy)}, \quad \nu_1, \nu_2 \rightarrow \nu_3 \text{ (inverted hierarchy)}$

• Assumption: decay completed when the neutrinos reach Earth.

Other production mechanisms:

- Muon cooling: $\phi_e^0 : \phi_\mu^0 : \phi_\tau^0 = 0 : 1 : 0$
- β decay of neutrons: $\phi_e^0 : \phi_\mu^0 : \phi_\tau^0 = 1 : 0 : 0$

The parameter space is reduced if we set $\lambda = 1$ (i.e. $b_{ij} = \Delta m_{ij}^2/2E^*$, $E^* = 1$ PeV.)

Outline

- 2 Theoretical framework
- 3 Looking for extreme effects in the flavour ratios
- 4 Summary and conclusions

Summary

- The neutrino mixing angles might be strongly modified by an energy-indepedent contribution to the oscillation Hamiltonian.
- Large effects on the flavour ratios would be visible at higher energy ⇒ use astrophysical ν's.
- Because $L \gg 1$, neutrino decays might show up as well.

- Assuming production by pion decay, the region of values of $R \equiv \phi_{\mu}/\phi_{e}$ and $S \equiv \phi_{\tau}/\phi_{\mu}$ accessible when H_{b} dominates ...
 - is much larger than the region accessible by neutrino decay; and
 - can be distinguished from it.
- In general, knowledge of both R and S is necessary to disentangle the production mechanism and any potential new physics involved (decays or H_b).
- Assuming a 15% error on R and 30% error on S, IceCube might be able to do so after ~ 5 years (F. Halzen's talk tomorrow).

Backup slides

- $R, S \in \text{light blue} \Rightarrow \exists H_b \text{ dominant, but production mechanism unknown}$
- R, S \in light purple $\Rightarrow \exists H_b$ dominant, production ratios 0 : 1 : 0
- $S \gtrsim 1.35 \Rightarrow \exists H_b$ dominant, production ratios 1 : 0 : 0
- S > 1 or R < 1 or $R > 4 \Rightarrow$ production ratios not 1:2:0
- Both decays and 0 : 1 : 0, 1 : 0 : 0 allow S > 1; R is needed to distinguish
- Decay to ν_3 and $0: 1: 0, \lambda = 100$ yield high *R*; S is needed to distinguish
- Decay to ν_1 indistinguishable from 1 : 0 : 0 with $\lambda = 100$

Neutrino mixing angles - current status

From a global analysis including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS) data, the current values of the standard mixing angles are (1σ) :

$\sin^2(\theta_{12})$	=	$0.304\substack{+0.022\\-0.016}$
$\sin^2(\theta_{23})$	=	$0.5\substack{+0.07 \\ -0.06}$
$\sin^2(\theta_{13})$	\leq	0.035

T.Schwetz, M.Tortola, J.Valle, New J. Phys. 10, 113011 (2008) [hep-ph/0808.2016]

IceCube

- Under-ice Čerenkov detector optimised for TeV-PeV energies.
- Successor to AMANDA (Antarctic Muon And Neutrino Detector Array).
- Built close to the geographic South Pole.
- PMTs at depths between 1 450 and 2 450 m.
- Deployment of strings containing PMTs is half complete.
- Expected finished by 2011.

Flavour identification

- IceCube does **not** measure the flavour fluxes ϕ_{α} directly.
- Rather, it measures different types of events which can be used to reconstruct the φ_α.
- Neutral-current interactions produce hadronic showers (all flavours).
- Charged-current interactions:
 - ν_{μ} : muon tracks (emerging from hadronic shower)
 - ν_e : electromagnetic showers
 - ν_τ: hadronic shower (below a few PeV) or tau tracks that create second shower
- Possible to distinguish EM and hadronic showers, but very difficult.

J.Beacom et al. Phys. Rev. D 68, 093005 (2003), Erratum-ibid. D 72, 019901 (2005) [hep-ph/0307025]

Muon tracks

Muons undergo energy loss as they propagate in the ice:

$$\frac{dE}{dX} = -\alpha - \beta E \quad , \quad \left\{ \begin{array}{l} \alpha = 2.0 \text{MeV cm}^2/\text{g (loss by ionisation)} \\ \beta = 4.2 \times 10^{-6} \text{ cm}^2/\text{g (loss through bremsstrahlung)} \end{array} \right.$$

Muon range:

$${\mathcal{R}}_{\mu} = rac{1}{eta} \ln \left(rac{lpha + eta {\mathcal{E}}_{\mu}}{lpha + eta {\mathcal{E}}_{\mu}^{\mathsf{thr}}}
ight)$$

 $\textit{E}^{thr}_{\mu}\sim$ 50 - 100 GeV is the threshold energy that triggers the detectors.

• Probability of detecting a ν_{μ} traveling through the detector:

$$P_{\nu_{\mu} \to \mu} \simeq \rho N_{A} \sigma R_{\mu}$$

ho: ice nucleon density N_A : Avogadro's number σ : CC ν -nucleon cross section

Showers

- The detector sees a 1 TeV shower as photoelectrons distributed over a \sim 100 m radius sphere (\sim 300 m for PeV).
- Shower sizes are smaller than muon ranges \Rightarrow smaller effective volume.
- $E_{\rm sh}^{\rm thr} > E_{\mu}^{\rm thr}$
- Probability of detecting a neutrino by a neutral-current shower:

$$P_{\nu
ightarrow
m NC \ shower} \simeq
ho N_A L \int_{E_{
m sh}^{
m thr}/E_{\nu}}^1 rac{d\sigma}{dy} \ dy$$

- $\sigma:$ NC $\nu\text{-nucleon cross section}$
- y: energy fraction transferred from the ν to the shower
- L: detector length
- For v_e, the total energy goes into the CC and NC showers, so

 $P_{\nu \rightarrow \text{shower}} \simeq \rho N_A \sigma L$

- IceCube's energy resolution: $\sim \pm 0.1$ on log₁₀ scale.
- Can reconstruct direction to \sim 25°.

Double-bangs and lollipops

Double bang:

Image source: IceCube Preliminary Design Document

Tau range:

$$egin{aligned} \mathcal{R}_{ au}\left(\mathcal{E}_{
u_{ au}}, \mathbf{y}
ight) &= rac{\left(1-\mathbf{y}
ight)\mathcal{E}_{
u_{ au}}}{m_{ au}}oldsymbol{c} au_{ au} \end{aligned}$$

 τ_{τ} : rest-frame lifetime

Probability of a double bang:

$$P_{\rm db}\left(E_{\nu_{\tau}}\right) \simeq \rho N_{\rm A} \sigma \left[\left(L - x_{\rm min} - R_{\tau}\right) e^{-x_{\rm min}/R_{\tau}} + R_{\tau} e^{-L/R_{\tau}}\right]_{y = \langle y \rangle}$$

 x_{\min} : minimum τ range that can be resolved

• Probability of a lollipop:

$$P_{\text{lollipop}} \simeq
ho N_A \sigma \left(L - x_{\min}
ight) \left[e^{-x_{\min}/R_{ au}}
ight]_{y = \langle y
angle}$$

We have assumed that dσ/dy ≃ σδ (y − ⟨y⟩), with ⟨y⟩ ≃ 0.25 at PeV scale.

Backup slides

FIG. 5. Probabilities of detecting different flavors of neutrinos in IceCube versus neutrino energy, described in detail in the text. The upper solid line is the probability of a horizontal ν_{μ} creating a detectable muon track, and the dashed line is for downgoing ν_{μ} . The dotted line is the probability for ν_{e} to create a detectable shower (above 1 TeV), considering both charged-current and neutral-current interactions; the kink occurs when the neutral-current showers come above threshold. The dot-dashed lines are the probabilities for ν_{τ} to make lollipop events (upper) and double-bang events (lower).