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Motivation and problem

Introduction and motivation

Neutrinos can change flavour.

Evidence from solar, reactor and atmospheric experiments.

Confirmed mechanism in MeV . E . TeV:
◮ neutrinos have different masses
◮ flavour eigenstates 6= mass eigenstates

SK data: oscillation argument ∼ En, with n = −0.9 ± 0.4 (90%
C.L.), as expected from mass-driven oscillations.

∴ At these energies, other mechanisms are subdominant .

True at higher energies?
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Motivation and problem

Focus on energy-independent contributions to the flavour
oscillations.

Corresponds to:
◮ different coupling to non-zero torsion of gravitational field
◮ CPT violation

This can be probed at higher energies ⇒ use the expected
high-energy astrophysical neutrino flux.

3ν oscillations in the vaccum.

We have not used approximations (e.g. perturbation theory).

We have assumed fluxes at the sources to be
φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (also, 0 : 1 : 0 and 1 : 0 : 0).
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Motivation and problem

Any new scalar coupling to ν’s would result in contributions that go as
1/E .

Vector coupling introduces energy-independent contributions:

L = ναbαβ
µ γµνβ .

Results in an energy-independent phase ∆bij ≡ bi − bj , with bi

eigenvalues of the b matrix.

Vector coupling could be induced by:

◮ Different flavours have different gravitational coupling:
⋆ Non-symmetric connection: Γc

ab 6= Γc
ba

⋆ M. Gasperini, Phys. Rev. D 38, 2635 (1988)

◮ Violation of Lorentz invariance:
⋆ Standard Model Extension: L includes CPT-odd terms.
⋆ D.Colladay, V.Kostelecky, Phys. Rev. D 58, 116002 (1998) [hep-ph/9809521]

V.Kostelecky, M.Mewes, Phys. Rev. D 70, 031902 (2004) [hep-ph/0308300]

◮ Some other mechanism...
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Theoretical framework

Standard mass-driven oscillations

|να〉 = [Um]αi |ν
m
i 〉 (α = e, µ, τ ; i = 1, 2, 3)

Evolved flavour state: |να〉 −→ |να (L)〉 = e−iHL|να〉

Probability of να → νβ : Pαβ = |〈νβ |να (L)〉|2

Three-neutrino standard oscillation Hamiltonian:

Hm = U0M2U†
0 = U0

diag
(

0, ∆m2
21, ∆m2

31

)

2E
U†

0 ,

with ∆m2
ij ≡ m2

i − m2
j .

U0 is the PMNS matrix: U0 = UCKM ({θij} , δCP)

UCKM ({θij} , δ) =

0

@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1

A
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Theoretical framework

Adding an energy-independent contribution

Hb = Ub diag (0, b21, b31) U†
b

Ub = diag
(

1, eiφb2 , eiφb3
)

UCKM ({θbij} , δb)

|να〉 = [Ub]αi |ν
b
i 〉

Hb depends on eight parameters:
◮ two eigenvalues: b21, b31
◮ three mixing angles: θb12, θb13, θb23
◮ three phases: δb, φb2, φb3

b21 ≤ 1.6 × 10−21 GeV (solar, SK)

b32 ≤ 5.0 × 10−23 GeV (atm., K2K)

b31 = b32 + b21 ≤ 1.65 × 10−21 GeV

J.N. Bahcall, V. Barger, D. Marfatia, Phys. Lett. B 534, 120 (2002) [hep-ph/0201211]
M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rev. D 70, 033010 (2004) [hep-ph/0404085]

A. Dighe, S. Ray, Phys. Rev. D 78, 0360002 (2008) [hep-ph/0802.0121]
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Theoretical framework

Total Hamiltonian

Hf = Hm + Hb

Hm ∼ 1/E ⇒ Hb contributes progressively more as E rises.

Use expected high-energy (E & 1 PeV) astrophysical ν flux.

Let Uf be the diagonalising matrix of Hf :

Uf = Uf

“

{θij} , {θbij} ,
n

∆m2
ij

o

, {bij} , δCP , δb, φb2, φb3

”

= UCKM ({Θij} , δf )

We can find Θij in terms of the parameters of Hm and Hb.

(i) ∆m2
21, ∆m2

32, θ12, θ13, θ23 fixed by solar, reactor, accel. and atm. exp’ts.

(ii) We have set δCP = δb = φb2 = φb3 = 0.

(iii) Finally, set bij ∝ ∆m2
ij /2E at a fixed E⋆ = 1 PeV, i.e.

bij = λ
∆m2

ij

2E⋆
.

⇒ Θij , δf depend only on 4 parameters: λ, θb12, θb13 and θb23.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 10 / 29



Theoretical framework

Total Hamiltonian

Hf = Hm + Hb

Hm ∼ 1/E ⇒ Hb contributes progressively more as E rises.

Use expected high-energy (E & 1 PeV) astrophysical ν flux.

Let Uf be the diagonalising matrix of Hf :

Uf = Uf

“

{θij} , {θbij} ,
n

∆m2
ij

o

, {bij} , δCP , δb, φb2, φb3

”

= UCKM ({Θij} , δf )

We can find Θij in terms of the parameters of Hm and Hb.

(i) ∆m2
21, ∆m2

32, θ12, θ13, θ23 fixed by solar, reactor, accel. and atm. exp’ts.

(ii) We have set δCP = δb = φb2 = φb3 = 0.

(iii) Finally, set bij ∝ ∆m2
ij /2E at a fixed E⋆ = 1 PeV, i.e.

bij = λ
∆m2

ij

2E⋆
.

⇒ Θij , δf depend only on 4 parameters: λ, θb12, θb13 and θb23.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 10 / 29



Theoretical framework

Total Hamiltonian

Hf = Hm + Hb

Hm ∼ 1/E ⇒ Hb contributes progressively more as E rises.

Use expected high-energy (E & 1 PeV) astrophysical ν flux.

Let Uf be the diagonalising matrix of Hf :

Uf = Uf

“

{θij} , {θbij} ,
n

∆m2
ij

o

, {bij} , δCP , δb, φb2, φb3

”

= UCKM ({Θij} , δf )

We can find Θij in terms of the parameters of Hm and Hb.

(i) ∆m2
21, ∆m2

32, θ12, θ13, θ23 fixed by solar, reactor, accel. and atm. exp’ts.

(ii) We have set δCP = δb = φb2 = φb3 = 0.

(iii) Finally, set bij ∝ ∆m2
ij /2E at a fixed E⋆ = 1 PeV, i.e.

bij = λ
∆m2

ij

2E⋆
.

⇒ Θij , δf depend only on 4 parameters: λ, θb12, θb13 and θb23.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 10 / 29



Theoretical framework

Total Hamiltonian

Hf = Hm + Hb

Hm ∼ 1/E ⇒ Hb contributes progressively more as E rises.

Use expected high-energy (E & 1 PeV) astrophysical ν flux.

Let Uf be the diagonalising matrix of Hf :

Uf = Uf

“

{θij} , {θbij} ,
n

∆m2
ij

o

, {bij} , δCP , δb, φb2, φb3

”

= UCKM ({Θij} , δf )

We can find Θij in terms of the parameters of Hm and Hb.

(i) ∆m2
21, ∆m2

32, θ12, θ13, θ23 fixed by solar, reactor, accel. and atm. exp’ts.

(ii) We have set δCP = δb = φb2 = φb3 = 0.

(iii) Finally, set bij ∝ ∆m2
ij /2E at a fixed E⋆ = 1 PeV, i.e.

bij = λ
∆m2

ij

2E⋆
.

⇒ Θij , δf depend only on 4 parameters: λ, θb12, θb13 and θb23.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 10 / 29



Theoretical framework

Total Hamiltonian

Hf = Hm + Hb

Hm ∼ 1/E ⇒ Hb contributes progressively more as E rises.

Use expected high-energy (E & 1 PeV) astrophysical ν flux.

Let Uf be the diagonalising matrix of Hf :

Uf = Uf

“

{θij} , {θbij} ,
n

∆m2
ij

o

, {bij} , δCP , δb, φb2, φb3

”

= UCKM ({Θij} , δf )

We can find Θij in terms of the parameters of Hm and Hb.

(i) ∆m2
21, ∆m2

32, θ12, θ13, θ23 fixed by solar, reactor, accel. and atm. exp’ts.

(ii) We have set δCP = δb = φb2 = φb3 = 0.

(iii) Finally, set bij ∝ ∆m2
ij /2E at a fixed E⋆ = 1 PeV, i.e.

bij = λ
∆m2

ij

2E⋆
.

⇒ Θij , δf depend only on 4 parameters: λ, θb12, θb13 and θb23.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 10 / 29



Theoretical framework

Flavour ratios

Astrophysical ν’s travel tens of Mpc or more: L ≫ 1.

Average flavour-transition probability:

〈Pαβ〉 =
∑

i

|[Uf ]αi |
2|[Uf ]βi |

2 .

Fluxes at production: φ0
e : φ0

µ : φ0
τ .

At detection (Earth):
φα =

∑

β=e,µ,τ

〈Pβα〉φ
0
β .

Define the ratios:

R ≡
φµ

φe
, S ≡

φτ

φµ
.

We look for scenarios where R, S (λ; Θij) 6= R, S (θij) noticeably.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 11 / 29



Looking for extreme effects in the flavour ratios

Outline

1 Motivation and problem

2 Theoretical framework

3 Looking for extreme effects in the flavour ratios

4 Summary and conclusions

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 12 / 29



Looking for extreme effects in the flavour ratios

Production by pion decay: φ0
e : φ0

µ
: φ0

τ
= 1 : 2 : 0

æ

æ æ

æ

std. oscillations

R = ΦΜ �Φe S = ΦΤ �ΦΜ

D

CB

A

Hb with Λ = 100

A : R = 1, S = 1
B : R = 1, S = 0
C : R = 2, S = 0

D : R = 4, S = 1 �4

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

R

S

Case {Θ12,Θ13, Θ23} φe : φµ : φτ

A {θ12, θ13, θ23} 1 : 1 : 1 Standard mixing
B {π/4, 0, 0} 1 : 1 : 0 Maximal mixing νeνµ; ντ ’s don’t mix
C {0, 0, 0} 1 : 2 : 0 No effective mixing
D {π/2, π/4, 0} 1 : 4 : 1 Only νeντ mix; 〈Peτ 〉 = 〈Pτe〉 = 1/2
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Looking for extreme effects in the flavour ratios

Neutrino decay:

ν2, ν3 → ν1 (normal hierarchy) , ν1, ν2 → ν3 (inverted hierarchy)

Assumption: decay completed when the neutrinos reach Earth.

std. oscillations

no decay, Λ = 100

decay to Ν3

decay to Ν1 R = ΦΜ �Φe S = ΦΤ �ΦΜ

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

S
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Looking for extreme effects in the flavour ratios

Other production mechanisms:

Muon cooling: φ0
e : φ0

µ : φ0
τ = 0 : 1 : 0

β decay of neutrons: φ0
e : φ0

µ : φ0
τ = 1 : 0 : 0

decay to Ν3std. oscillations, 1 : 0 : 0

std. oscillations, 0 : 1 : 0

std. osc., 1 : 2 : 0 0 : 1 : 0, Λ = 100

decay to Ν1
1 : 2 : 0
Λ = 100

1 : 0 : 0
Λ = 100

R = ΦΜ �Φe S = ΦΤ �ΦΜ

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

S
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Looking for extreme effects in the flavour ratios

The parameter space is reduced if we set λ = 1 (i.e. bij = ∆m2
ij /2E⋆, E⋆ = 1 PeV.)

decay to Ν3std. oscillations, 1 : 0 : 0

std. oscillations, 0 : 1 : 0

0 : 1 : 0, Λ = 1std. osc., 1 : 2 : 0

decay to Ν1
1 : 2 : 0
Λ = 1

1 : 0 : 0
Λ = 1

R = ΦΜ �Φe S = ΦΤ �ΦΜ

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

S
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Summary and conclusions

Summary

The neutrino mixing angles might be strongly modified by an
energy-indepedent contribution to the oscillation Hamiltonian.

Large effects on the flavour ratios would be visible at higher energy ⇒
use astrophysical ν’s.

Because L ≫ 1, neutrino decays might show up as well.
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Summary and conclusions

Assuming production by pion decay, the region of values of R ≡ φµ/φe

and S ≡ φτ/φµ accessible when Hb dominates ...

◮ is much larger than the region accessible by neutrino decay; and
◮ can be distinguished from it.

In general, knowledge of both R and S is necessary to disentangle the
production mechanism and any potential new physics involved (decays
or Hb).

Assuming a 15% error on R and 30% error on S, IceCube might be able
to do so after ∼ 5 years (F. Halzen’s talk tomorrow).
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Backup slides

decay to Ν3std. oscillations, 1 : 0 : 0

std. oscillations, 0 : 1 : 0

std. osc., 1 : 2 : 0 0 : 1 : 0, Λ = 100

decay to Ν1
1 : 2 : 0
Λ = 100

1 : 0 : 0
Λ = 100

R = ΦΜ �Φe S = ΦΤ �ΦΜ

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R

S

R, S ∈ light blue ⇒ ∃Hb dominant, but production mechanism unknown

R, S ∈ light purple ⇒ ∃Hb dominant, production ratios 0 : 1 : 0

S & 1.35 ⇒ ∃Hb dominant, production ratios 1 : 0 : 0

S > 1 or R < 1 or R > 4 ⇒ production ratios not 1 : 2 : 0

Both decays and 0 : 1 : 0, 1 : 0 : 0 allow S > 1; R is needed to distinguish

Decay to ν3 and 0 : 1 : 0, λ = 100 yield high R; S is needed to distinguish

Decay to ν1 indistinguishable from 1 : 0 : 0 with λ = 100
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Backup slides

Neutrino mixing angles - current status

From a global analysis including solar, atmospheric, reactor
(KamLAND and CHOOZ) and accelerator (K2K and MINOS) data, the
current values of the standard mixing angles are (1σ):

sin2 (θ12) = 0.304+0.022
−0.016

sin2 (θ23) = 0.5+0.07
−0.06

sin2 (θ13) ≤ 0.035

T.Schwetz, M.Tortola, J.Valle, New J. Phys. 10, 113011 (2008) [hep-ph/0808.2016]
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Backup slides

IceCube

Under-ice C̆erenkov detector
optimised for TeV-PeV energies.

Successor to AMANDA (Antarctic
Muon And Neutrino Detector Array).

Built close to the geographic South
Pole.

PMTs at depths between 1 450 and 2
450 m.

Deployment of strings containing
PMTs is half complete.

Expected finished by 2011.
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Backup slides

Flavour identification

IceCube does not measure the flavour fluxes φα directly.

Rather, it measures different types of events which can be used to
reconstruct the φα.

Neutral-current interactions produce hadronic showers (all flavours).

Charged-current interactions:

◮ νµ: muon tracks (emerging from hadronic shower)
◮ νe: electromagnetic showers
◮ ντ : hadronic shower (below a few PeV) or tau tracks that create

second shower

Possible to distinguish EM and hadronic showers, but very difficult.

J.Beacom et al. Phys. Rev. D 68, 093005 (2003), Erratum-ibid. D 72, 019901 (2005) [hep-ph/0307025]
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Backup slides

Muon tracks

Muons undergo energy loss as they propagate in the ice:

dE
dX

= −α − βE ,



α = 2.0MeV cm2/g (loss by ionisation)
β = 4.2 × 10−6 cm2/g (loss through bremsstrahlung)

Muon range:

Rµ =
1
β

ln
„

α + βEµ

α + βE thr
µ

«

E thr
µ ∼ 50 − 100 GeV is the threshold energy that triggers the detectors.

Probability of detecting a νµ traveling through the detector:

Pνµ→µ ≃ ρNAσRµ

ρ: ice nucleon density
NA: Avogadro’s number
σ: CC ν-nucleon cross section
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Backup slides

Showers
The detector sees a 1 TeV shower as photoelectrons distributed over a ∼ 100 m
radius sphere (∼ 300 m for PeV).

Shower sizes are smaller than muon ranges ⇒ smaller effective volume.

E thr
sh > E thr

µ

Probability of detecting a neutrino by a neutral-current shower:

Pν→NC shower ≃ ρNAL
Z 1

E thr
sh /Eν

dσ

dy
dy

σ: NC ν-nucleon cross section
y : energy fraction transferred from the ν to the shower
L: detector length

For νe, the total energy goes into the CC and NC showers, so

Pν→shower ≃ ρNAσL

IceCube’s energy resolution: ∼ ±0.1 on log10 scale.

Can reconstruct direction to ∼ 25◦.

M. Bustamante (PUCP) Extreme scenarios of new physics ... DISCRETE 08 26 / 29



Backup slides

Double-bangs and lollipops

Double bang:

ντ
CC interaction
−−−−−−−→ hadronic shower τ track

−−−−→ hadronic shower

Lollipop:

τ track CC interaction
−−−−−−−→ hadronic shower

Image source: IceCube Preliminary Design Document
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Backup slides

Tau range:

Rτ (Eντ
, y) =

(1 − y) Eντ

mτ
cττ

ττ : rest-frame lifetime

Probability of a double bang:

Pdb (Eντ
) ≃ ρNAσ

[

(L − xmin − Rτ ) e−xmin/Rτ + Rτe−L/Rτ

]

y=〈y〉

xmin: minimum τ range that can be resolved

Probability of a lollipop:

Plollipop ≃ ρNAσ (L − xmin)
[

e−xmin/Rτ

]

y=〈y〉

We have assumed that dσ/dy ≃ σδ (y − 〈y〉), with 〈y〉 ≃ 0.25 at PeV
scale.
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