

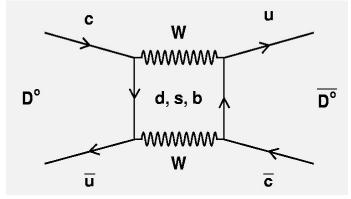
Results on D mixing and CP violation at B factories

Milind V. Purohit University of South Carolina *for* The BaBar collaboration Monday, December 15, 2008

Outline

- $D^0 \overline{D}^0$ mixing
- CP violation in charm decays
- Experimental results using various final states:

	BaBar	Belle	CLEO	E791	Focus	CDF
$K^+\pi^-$	Х	Х	Х	Х	Х	Х
ΚΚ, ππ	Х	ХХ	Х	Х	Х	
$K\pi\pi^0$	Х	Х				
K ⁰ _S ππ, K ⁰ _S KK		XX	Х			
Semi- leptonic	Х	Х	Х	Х		



<u>Physics of $D^0\overline{D}^0$ – mixing</u>

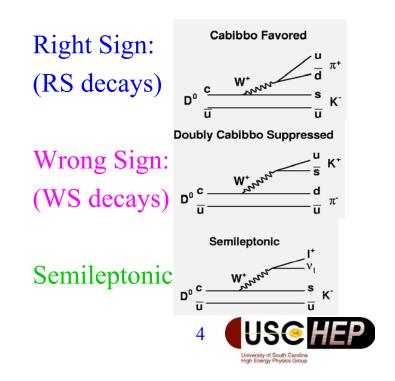
 Common final states lead to mixing: Long Distance Effects

• Naively estimate of the mixing rate: BF ~ few x 10⁻³, thus rate $r_{mix} \sim 10^{-5}$. • Mixing at the quark level:

• Predicted rate for mixing: $r_{mix} \sim 10^{-7}$.

 $r_{mix} \equiv \Gamma(D^0 \to \overline{D}{}^0 \to l^- \nu X) \ / \ \Gamma(D^0 \to l^+ \nu X)$

- If the Standard Model mixing rate were small we would have a large window for discovery of new physics.
- However, it appears that long distance contributions are large and the mixing rate $\sim 10^{-4}$.
- Possibility of CP violation first noted by Pais and Treiman, who also established parameters for mixing (x, y, r). [Phys. Rev. D12, 2744 (1975)].
- It is possible that $\Gamma(D^0 \to \overline{D}^0) \neq \Gamma(\overline{D}^0 \to D^0)$


Experimental Technique

Flavor at Production:

- Charm flavor at production can be tagged by either
 - the slow pion in D*+ decays or
 - by double tagging

Flavor at Decay:

- Most decays of the D⁰ are "Cabibbofavored", e.g., $D^0 \rightarrow K^-\pi^+$.
- Hadronic "wrong-sign" decays (D⁰ → K⁺π⁻ in this case) can occur either via double Cabibbo-suppression (DCS) or due to mixing.
- Semileptonic "wrong-sign" decays only occur due to mixing.

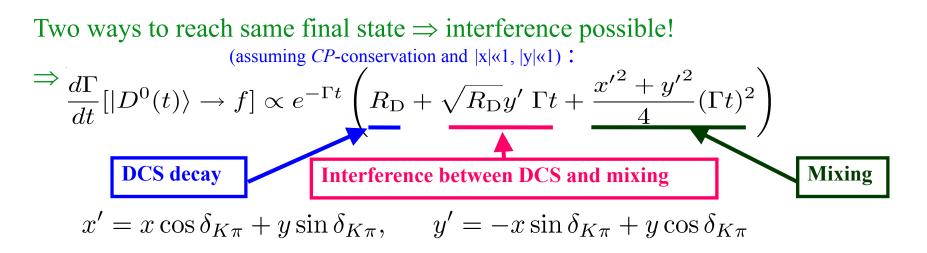
Mixing Parameters

• Mixing in the neutral D system arises from the existence of two mass eigenstates D_1 and D_2 that are not flavor eigenstates

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \end{pmatrix} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$$
$$|D_{1}\rangle = p|D^{0}\rangle + q|\overline{D}^{0}\rangle \qquad |D_{1}(t)\rangle = |D_{1}\rangle e^{-i(\Gamma_{1}/2 - im_{1})t}$$
$$|D_{2}\rangle = p|D^{0}\rangle - q|\overline{D}^{0}\rangle \qquad |D_{2}(t)\rangle = |D_{2}\rangle e^{-i(\Gamma_{2}/2 - im_{2})t}$$

Eigenvalues are $m_{1,2}+i\Gamma_{1,2}/2$ with means: $M=(m_1+m_2)/2$ $\Gamma=(\Gamma_1+\Gamma_2)/2$

• It is usual to define mixing parameters as follows:

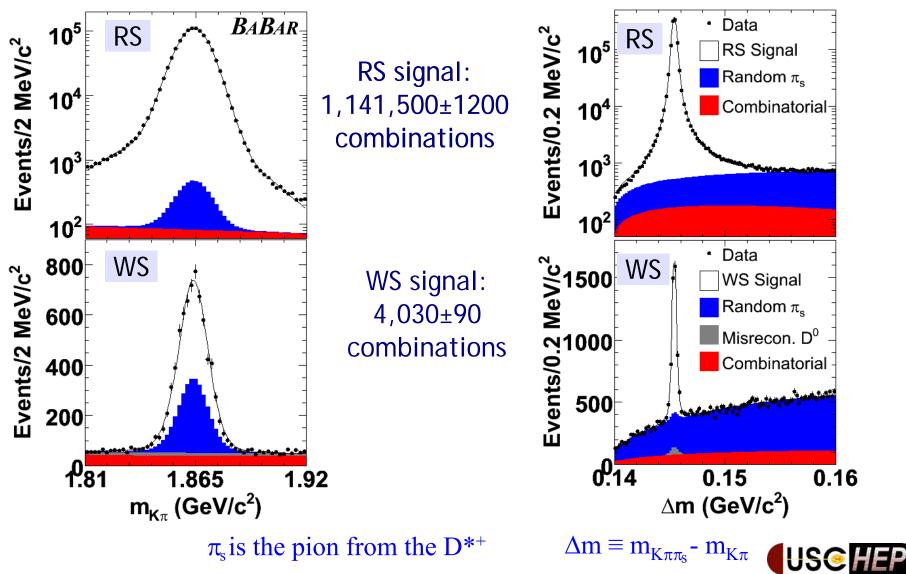

$$x = \frac{M_1 - M_2}{\Gamma} \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \quad \lambda_f \equiv (q/p) [\overline{\mathcal{A}}_f / \mathcal{A}_f] \qquad \begin{array}{c} CP \text{ violation when} \\ |\overline{\mathcal{A}}_f| \neq |\mathcal{A}_f| \text{: Decays} \\ |p| \neq |q| \text{: Mixing} \\ Im(\lambda_f) \neq 0 \text{: Interference} \end{array}$$

Time-dependent WS decay rate

Two types of WS Decays:

- Doubly Cabibbo-suppressed (DCS)
- Mixing followed by Cabibbo-Favored (CF) decay $D^0 \xrightarrow{}_{\text{mix}} \overline{D}^0 \to K^+ \pi^-$

 $\delta_{K\pi}$: strong phase difference between CF and DCS decay amplitudes $\sqrt{R_D}$: magnitude of $\lambda^{-1}(K^+\pi^-)$



 $D^0 \to K^+ \pi^-$

$m_{K\pi} \& \Delta m$ Fit Results

PRL 98, 211802 (2007)

RS Proper Time Fit

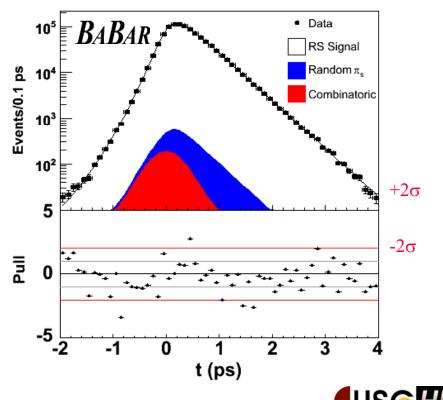
plot selection: 1.843 < m < 1.883 GeV/c² 0.1445 < Δm < 0.1465 GeV/c²

> *D*⁰ lifetime and resolution function fitted in RS sample

₹0.15

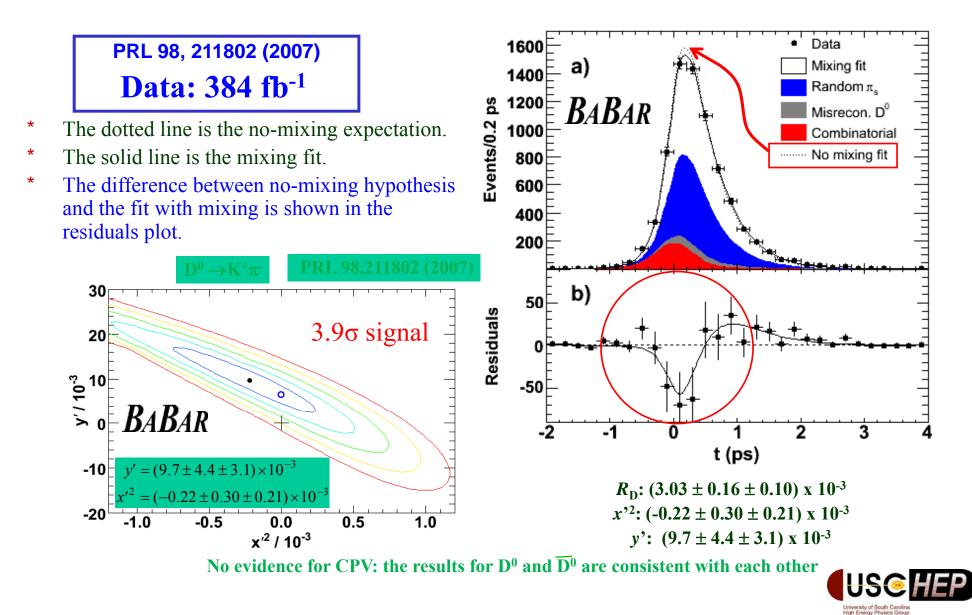
1.86 M. (GeV/c²)

τ=410.3±0.6 (*stat*) fs

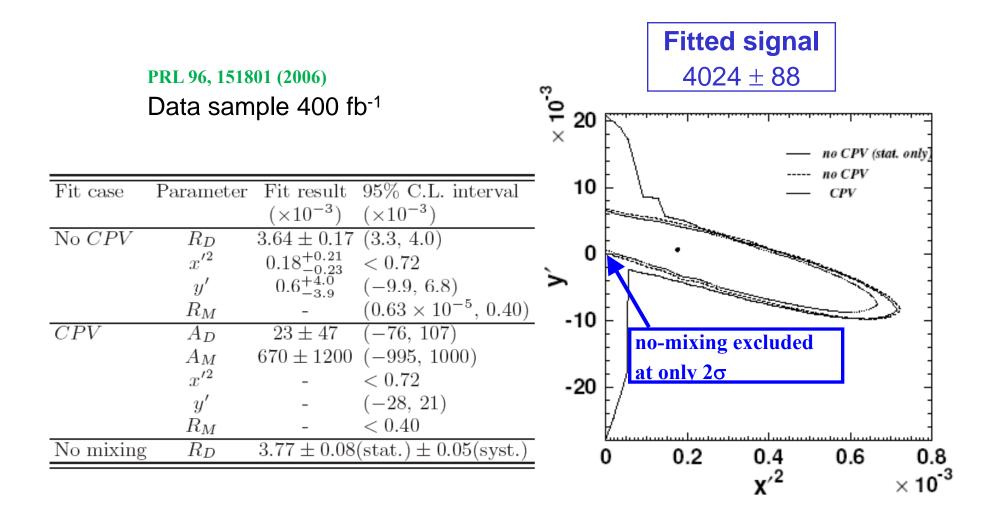

Consistent with PDG

 τ_{PDG} =410.1±1.5 fs

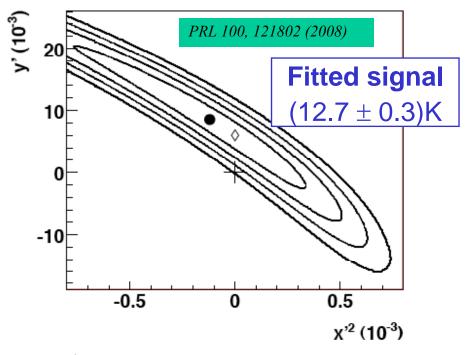
Systematics dominated by signal resolution function


PRL 98, 211802 (2007)

RS decay time, signal region



WS Decay Time Fit: Mixing Allowed



$D^0 \rightarrow K\pi CDF$ Measurement

Evidence for mixing at 3.8σ

- * Different Analysis
- * Different Production Environment
- * Confirmation of *BaBar* mixing result

Nearly identical results!

Experiment	$R_D(10^{-3})$	$y'(10^{-3})$	$x^{\prime 2}(10^{-3})$	Mixing Signif.
CDF	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	3.8
BABAR	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37	3.9
Belle	3.64 ± 0.17	0.6 + 4.0 - 3.9	0.18 + 0.21 - 0.23	2.0

Motivation

PRD 78, 012001 (2008) PRL 100, 221801 (2008)

- \clubsuit Need $\delta_{K\pi}$ to compare the measurements of y and y'
- * $\delta = -\delta_{K\pi}$ is defined as the phase of the K π DCS to CF amplitude

ratio $\frac{\langle K^+\pi^-|D^0\rangle}{\langle K^+\pi^-|\bar{D}^0\rangle} = re^{-i\delta} \quad \text{with} \quad r \approx 0.06$

- ► Determination of the strong phase in quantum correlated $D^0 \overline{D}^0$ pairs $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0 \Rightarrow C = -1$
 - Measure time integrated yields of correlated and uncorrelated D⁰ decays
 - * The ratio of correlated and uncorrelated D⁰ decay rates depends on the mixing parameters and $\delta_{K\!\pi}$

 \rightarrow Extract x²,y, r² and cos($\delta_{K\pi}$) from time integrated yields

* External branching fraction are used and including external mixing parameter measurements improves the $\delta_{K\pi}$ extraction

PRD 78, 012001 (2008)

 \succ Extract the strong phase $\delta_{K\pi}$ in a fit to 281pb⁻¹ of CLEO-c data^{PRL 100, 221801 (2008)} (external branching fraction measurements are used)

 $x \sin(\delta_{K\pi})$ can not be determined in this fit, therefore set $x \sin(\delta_{K\pi}) = 0$

 $cos(\delta_{K\pi}): 1.03^{+0.31}_{-0.17} \pm 0.06$

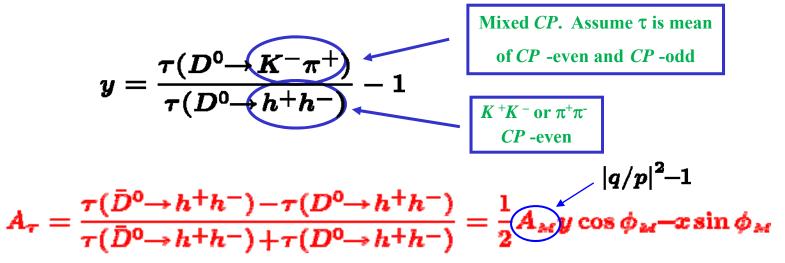
Including in addition external measurements of mixing parameters improves the fit.

 $x \sin(\delta_{K\pi})$ can now be determined

$$cos(\delta_{K\pi}): 1.10 \pm 0.35 \pm 0.07$$

x sin($\delta_{K\pi}$): $(4.4^{+2.7}_{-1.8} \pm 0.29) \cdot 10^{-3}$
 $\delta_{K\pi}: (22^{+11+9}_{-12-11})^{\circ}$

external	input	parameters
----------	-------	------------

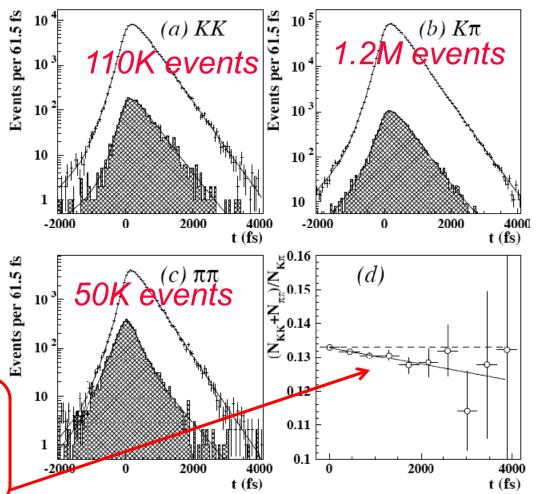

Parameter	Average
y	0.00662 ± 0.00211
x	0.00811 ± 0.00334
r^2	0.00339 ± 0.00012
y'	0.0034 ± 0.0030
x'^{2}	0.00006 ± 0.00018

Established a new technique using time independent measurements of mixing parameters and the strong phase.

<u>Lifetime-Difference Measurements</u>

- In the absence of *CPV*, *D*₁ is *CP*-even and *D*₂ is *CP*-odd
 - Measurement of lifetimes τ for D^0 decays to *CP*-even and *CP*-odd final states lead to a measurement for *y*.

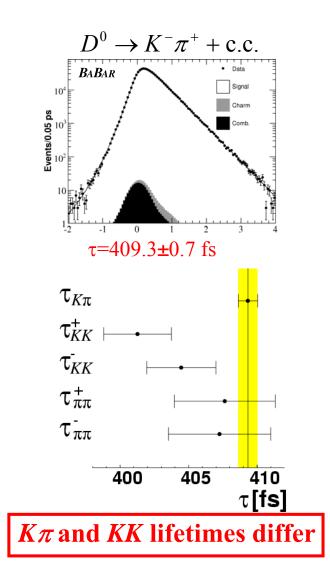
• Allowing for *CPV*, measure the D^0 and \overline{D}^0 PRD 69,114021 (Falk, Grossman, Ligeti, Nir & Petrov) asymmetry

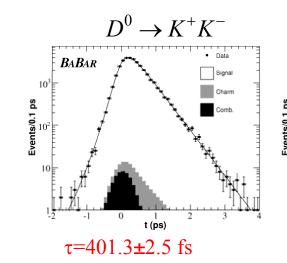


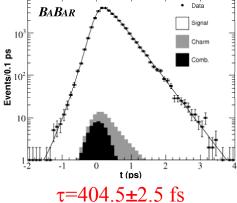
Lifetime Ratio (y, A_{Γ}): Evidence Of Mixing At 3.2 σ

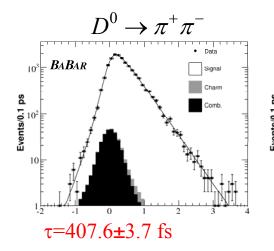
PRL 98, 211803 (2007) Data: 540 fb⁻¹

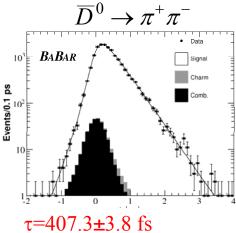
- Most of the systematic error cancels in the lifetime ratio.
- Bkgd related systematics do not.
- Require: $p^* > 2.5 \text{ GeV/c}$, $\sigma_t < 0.37 \text{ ps}$
- Purity of selection 98%, 98%,
 92% for KK, Kπ, ππ, respectively


Ratio of D^{0}_{CP}/D^{0} events varies as a function of time due to lifetime difference (y \neq 0)

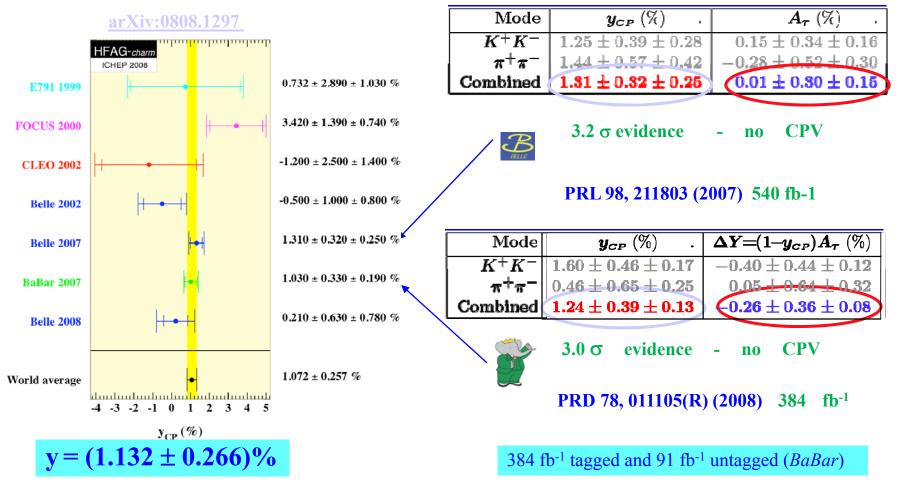





PRD 78, 011105(R) (2008) [384 fb⁻¹]



 $\overline{D}^0 \to K^+ K^-$



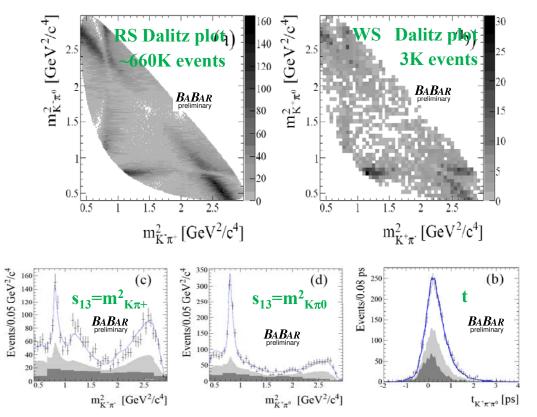
Lifetime-Difference Results

y_{CP} world average from HFAG

Time-Dependent Amplitude Analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$

- Similar to $D^0 \rightarrow K^+\pi^-$ but now \overline{f} is an amplitude at a point in the Dalitz plot *(DP)* for the $K^+\pi^-\pi^0$ final state
- $CF(\bar{A}_{\bar{f}})$ and $DCS(\bar{A}_{\bar{f}})$ amplitudes contribute to decay and describe density of points in the DP at time t: $|A_{\bar{f}}|^2 + |A_{\bar{f}}||\bar{A}_{\bar{f}}||y'' \cos(\delta_{\bar{f}} - x'' \sin(\delta_{\bar{f}})(\Gamma t) + \frac{x^2 + y^2}{4} |\bar{A}_{\bar{f}}|^2(\Gamma t)^2 \qquad (|x|, |y| \ll 1)$ CSD DCS-Mixing interference = Arg $\{\bar{A}_{\bar{f}}/\bar{A}_{\bar{f}}\}$ Depends on DP position
- The interference term permits measurement of

$$x'' = x \cos \delta_{\kappa_{\pi\pi}} + y \sin \delta_{\kappa_{\pi\pi}}$$
 and
 $y'' = y \cos \delta_{\kappa_{\pi\pi}} - x \sin \delta_{\kappa_{\pi\pi}}$ NOTE: $\delta_{\kappa_{\pi\pi}} \neq \delta$
is also unknown



Evidence for Mixing in (WS) $D^0 \rightarrow K^+ \pi^- \pi^0$ 38

384 fb⁻¹

arXiv:0807.4544 [hep-ex] Submitted to PRL

- * Use **D*** tagged sample
- Find CF amplitude A_f from time-integrated fit to RS Dalitz plot
- Use isobar model description in time-dependent fit to WS plot to determine A_f and mixing parameters.

Probability for no mixing = 0.1% (3.2 σ)

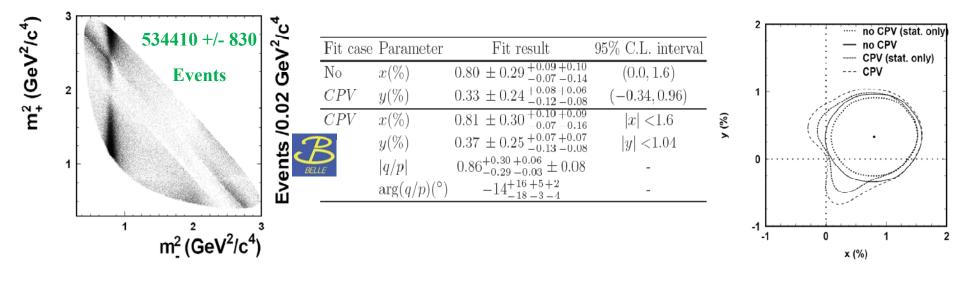
No evidence for CPV

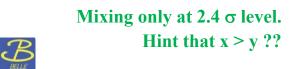
 $x'' = [2.61^{+0.57}_{-0.68}(\text{stat.}) \pm 0.39(\text{syst.})]\%$ $y'' = [-0.06^{+0.55}_{-0.64}(\text{stat.}) \pm 0.34(\text{syst.})]\%$

Time-Dependent Amplitude Analysis

PRL 98, 211803 (2007) 540 fb⁻¹

of $D^0 \rightarrow K_{\rm s} \pi^+ \pi^-$

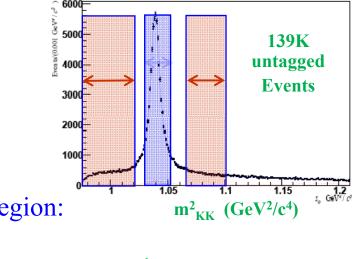

PRD 72, 012001 (2005) 9 fb⁻¹


Previous result from CLEO (9 fb-1)

(-6.1 < y < 3.5)% at 95% CL.

(-4.7 < x < 8.6)%

- Here, it is possible to measure *x*, *y*, |p/q| and $arg \{\lambda_{Ks\pi+\pi-}\}$; the $\overline{D}0$ -D0 strong phase δ is fixed by presence of *CP* eigenstates in *f*
 - Strong phases of all points relative to *CP* eigenstates measured by time-dependent amplitude analysis of the *DP*.



$Measurement of y_{CP} in D^0 \rightarrow K_S K^+ K^- decays$

Arxiv:0807.0148v1 (2008) 673 fb⁻¹

- In effect, this is a measurement of lifetime τ in CP = +1 and CP = -1parts of the $K_s K^+ K^-$ Dalitz plot.
- Choose ϕK_S region and its sidebands

$$\frac{\tau-\tau}{\tau+\tau} = y_{CP} \frac{f-f}{1+y_{CP}(1-f-f)}$$

• Fractions f of CP-even final state in each region:

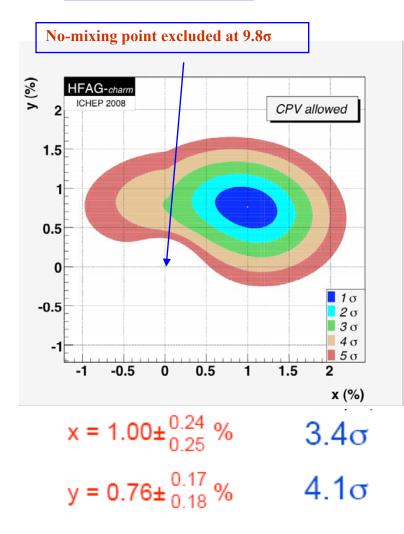
$$f = rac{\int |A_+|^2 dm^2_{\kappa^+\!\kappa^-} dm^2_{\kappa^+\!\kappa^0_s}}{\int \left[|A_+|^2 + |A_-|^2
ight] dm^2_{\kappa^+\!\kappa^-} dm^2_{\kappa^+\!\kappa^0_s}}$$
 .

over appropriate m(K⁺K⁻) range

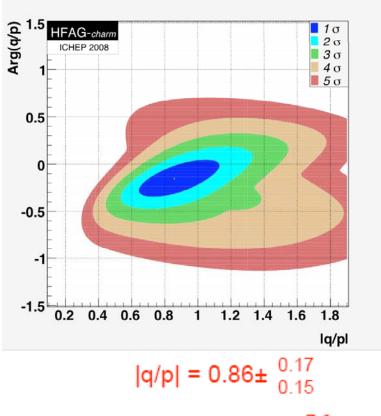
 A_+ and A_- are *CP*-even and odd amplitudes describing Dalitz plot population.

$$y_{CP} = (0.21 \pm 0.63 (\text{stat.}) \pm 0.78 (\text{syst.}) \pm 0.01 (\text{model}))\%$$
Belle
preliminary!
preliminary!
USC FEP

Results from semileptonic modes


	BaBar	Belle	CLEO	E791
r _M	< 0.12 % (90% CL) [2007]	< 0.06 % (90% CL) [2008]	< 0.78 % (90% CL) [2005]	< 0.50 % (90% CL) [1996]
Data set	344 fb ⁻¹	492 fb ⁻¹	9 fb ⁻¹	$2 \ge 10^{10}$ hadronic π^- interactions
Mode	e only	e+μ	e only	e+μ

Final Step: Combine various mixing results


(HFAG)

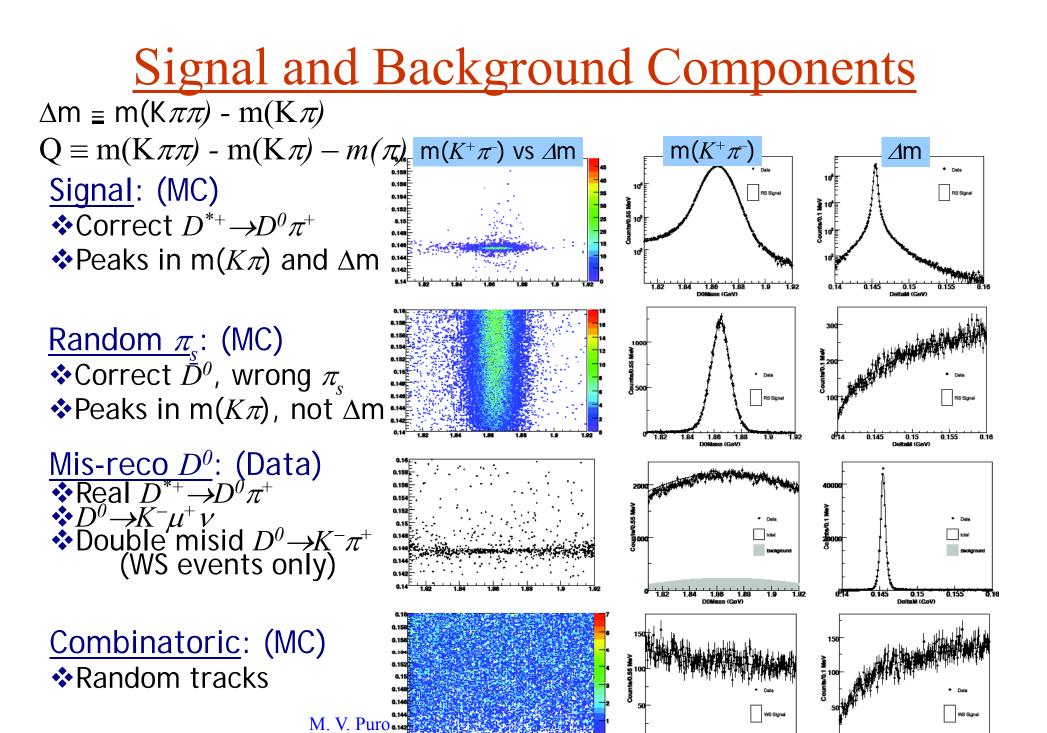
arXiv:0808.1297

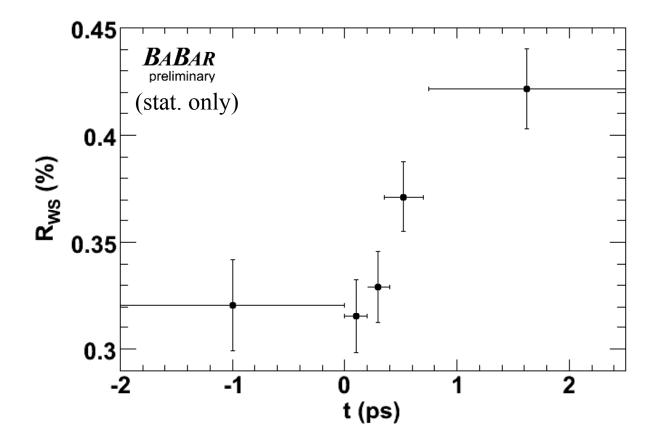
http://www.slac.stanford.edu/xorg/hfag/charm/index.html

New HFAG Average for ICHEP08

 $Arg(\lambda_{Ks\pi+\pi-}(8.8\pm^{7.6}_{7.2}))^{\circ}$

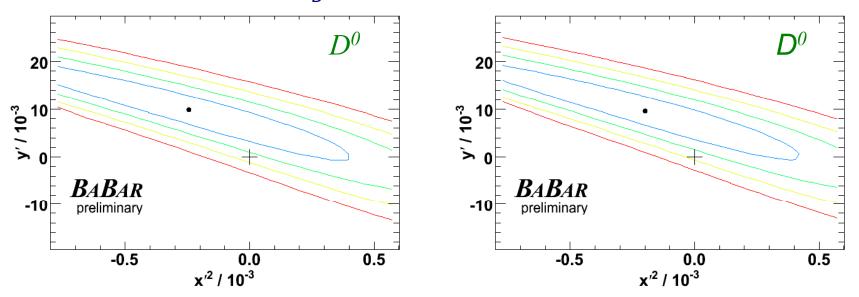
Summary


- After 30 years, evidence for D⁰ mixing is now compelling.
 - World averages of the mixing parameters exclude "No D^0 mixing" at ~10 σ .
 - However, currently no single measurement exceeds $5\sigma!$
- Evidence of D⁰ mixing from several independent experiments.
- Measured values of the mixing parameters $x \approx y \approx 1\%$ are compatible with Standard Model expectations.
- No evidence for CP Violation in D⁰ mixing.


Backup Slides

Validation: Alternative Fit Strategy

Rate of WS events clearly increases with time:


CPV Allowed Contours

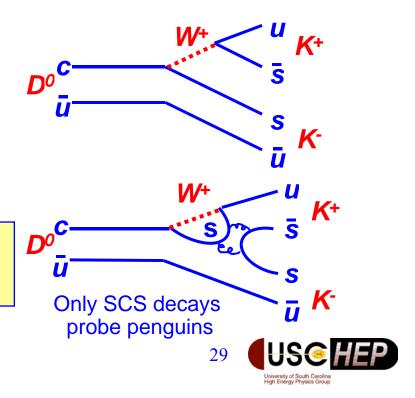
<u>Results of fitting D^0 and \overline{D}^0 separately:</u>

 y'^+ : (9.8±6.4±4.5)x10⁻³

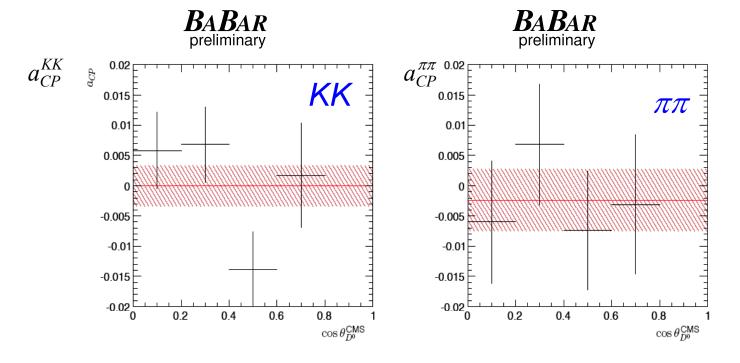
 x'^{+2} : (-0.24±0.43±0.30)x10⁻³ x'^{-2} : (-0.20±0.41±0.29)x10⁻³ y'-: (9.6±6.1±4.3)x10⁻³

 $A_{D} = (-2.1 \pm 5.2 \pm 1.5)\%$

No evidence for CP violation found


Search for direct CPV in
time-integrated
$$D^0 \rightarrow K^+ K^-$$
, $\pi^+ \pi^-$ rates
 $A_{CP} = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})} = \frac{2 \operatorname{Im} A_1 A_2^* \sin(\delta_1 - \delta_2)}{|A_1|^2 + |A_2|^2 + 2 \operatorname{Re} A_1 A_2^* \cos(\delta_1 - \delta_2)}$
2 weak amplitudes
with phase difference
strong phase difference

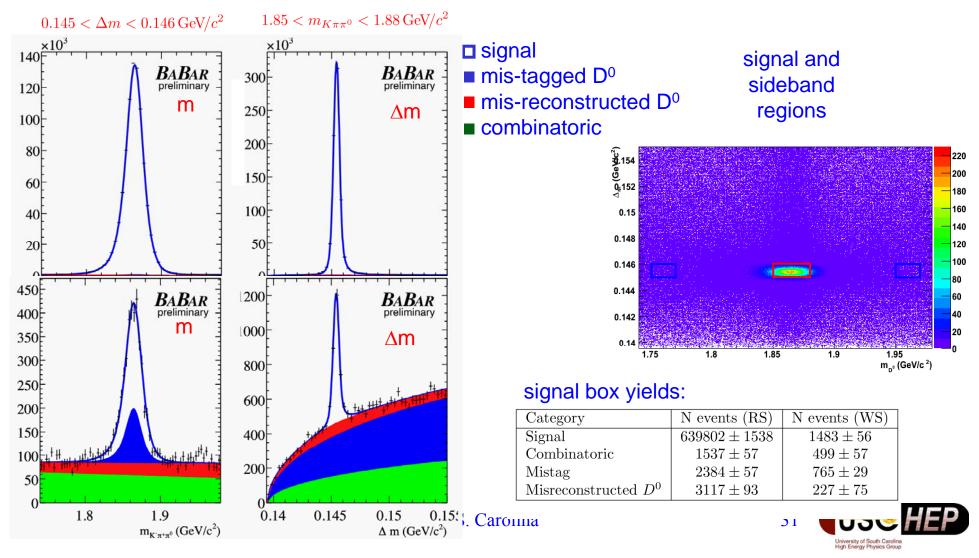
Two amplitudes with different strong & weak phases needed to observe CPV (in SM from tree and penguins)


Standard model predictions for direct CPV asymmetries in these modes: O(0.001% - 0.01%)

F. Bucella et al., Phys. Rev. **D51**, 3478 (1995).S. Bianco et al., Riv. Nuovo Cim. 26N7, 1(2003).

e.g., $D^0 \rightarrow K^+K^-$:

Search for CPV in $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$



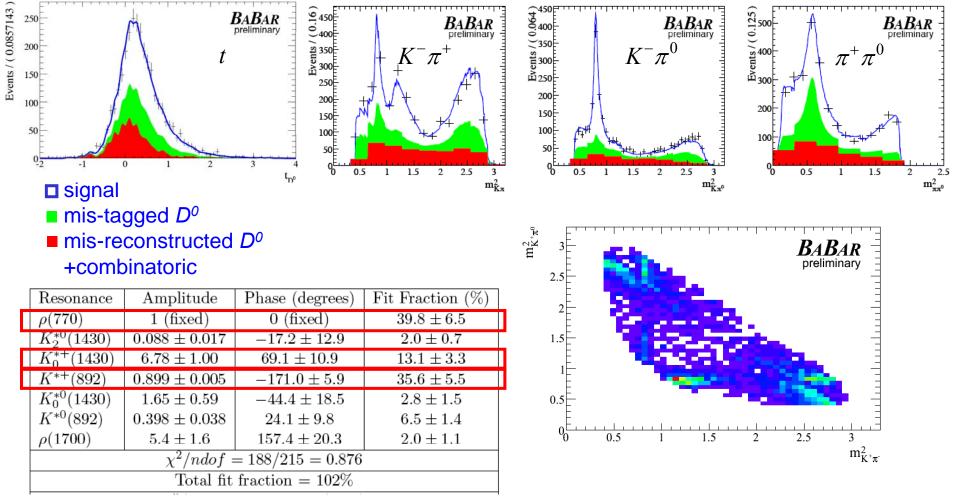
$$a_{CP}^{KK} = (0.00 \pm 0.34 \text{ (stat.)} \pm 0.13 \text{ (syst.)})\%$$

 $a_{CP}^{\pi\pi} = (-0.24 \pm 0.52 \text{ (stat.)} \pm 0.22 \text{ (syst.)})\%$

No evidence for CPV in either mode



RS and WS $(m_{K\pi\pi} \Delta m)$ fits Determine signal and background yields in subsequent Dalitz analyses.


$D^0 \rightarrow K^- \pi^+ \pi^0 \text{RS}$ Dalitz fit

Time-integrated analysis to determine CF amplitudes, $\bar{A}_{\bar{f}}$

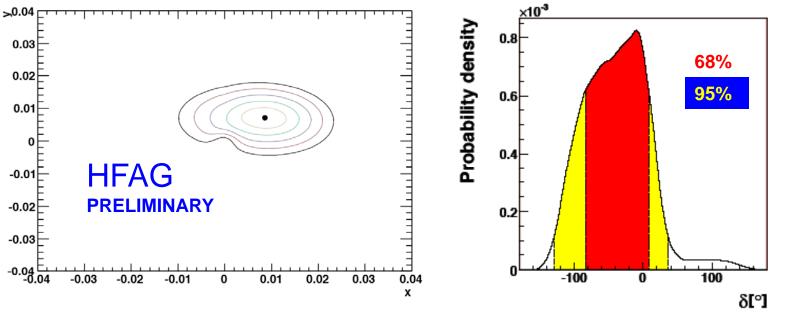
$D^{0}(t) \rightarrow K^{+} \pi^{-} \pi^{0}$ WS Dalitz fit results

Through t-dependence, distinguish DCS amplitudes from the CF amplitudes arising from mixing.

Implications of Charm Mixing

BaBar and Belle mixing results first presented at Moriond electroweak conference on March 17

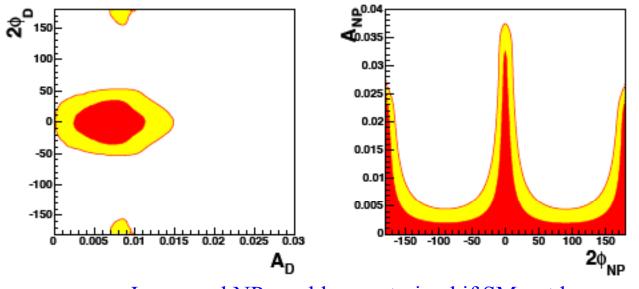
Several new hep-ph preprints on charm mixing since then, e.g.,


Five use D⁰ mixing results to evaluate limits on:
◆Certain SUSY models (flavor suppresion by "alignment") hep-ph/0703204 hep-ph/0703235
◆Several little Higgs models
◆Non-universal Z' model
hep-ph/0703270

"Models are further constrained, but constraints are limited by lack of precise SM value" Light non-degenerate squarks unlikely to be observed at LHC"

Currently, only an observation of CP violation in mixing would be a clear sign of New Physics

Interpreting the results



M. V. Purohit, Univ. of S. Carolina

And CP violation?

In the standard model, $\phi \sim 2 A^2 \lambda^4 \eta \lesssim 10^{-3}$

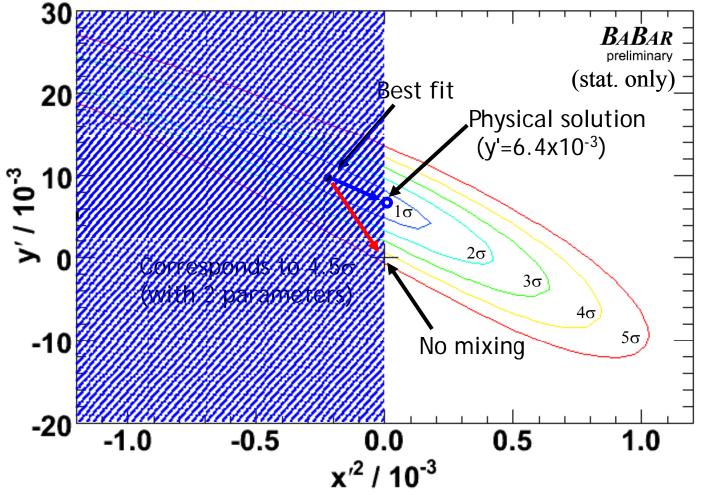
Ciuchini et al. hep-ph/0703294

In general NP weakly constrained if SM not known Nevertheless SUSY coupling can be constrained hints on squark and gluino masses!

Neutral meson mixing always a window into unknown (virtual) states!

Model	Approximate Constraint		
Fourth Generation (Fig. 2)	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \text{ (GeV)}$		
Q = -1/3 Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27 \text{ (GeV)}$		
Q = +2/3 Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$		
Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark		
	Box: Region of parameter space can reach observed $x_{\rm D}$		
Generic Z' (Fig. 7)	$M_{Z'}/C>2.2\cdot 10^3~{\rm TeV}$		
Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3 \text{ TeV}$		
	(with $m_1/m_2 = 0.5$)		
Left-Right Symmetric (Fig. 9)	No constraint		
Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 \text{ TeV} (m_{D_1} = 0.5 \text{ TeV})$		
	$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$		
Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55(\lambda_{PP}/0.1)$ TeV		
Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint		
Flavor Changing Neutral Higgs (Fig. 15)	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$		
FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$		
Scalar Leptoquark Bosons	See entry for RPV SUSY		
Higgsless (Fig. 17)	$M > 100 { m ~TeV}$		
Universal Extra Dimensions	No constraint		
Split Fermion (Fig. 19)	$M/ \Delta y > (6 \cdot 10^2 \text{ GeV})$		
Warped Geometries (Fig. 21)	$M_1 > 3.5 { m ~TeV}$		
Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^u_{12})_{\rm LR,RL} < 3.5 \cdot 10^{-2} \mbox{ for } \tilde{m} \sim 1 \mbox{ TeV}$		
	$ (\delta^u_{12})_{\rm LL,RR} < .25$ for $\tilde{m} \sim 1$ TeV		
Supersymmetric Alignment	$\tilde{m} > 2$ TeV		
Supersymmetry with RPV (Fig. 27)	$\lambda_{12k}'\lambda_{11k}'/m_{\tilde{d}_{R,k}} < 1.8\cdot 10^{-3}/100~{\rm GeV}$		
Split Supersymmetry 75	No constraint		

Table from Golowich, Hewett, Pakvasa and Petrov: **arXiv:0705.3650** [hep-ph]


"... for some models (Split Fermions, Flavor Changing Neutral Higgs) the constraints can be strong."

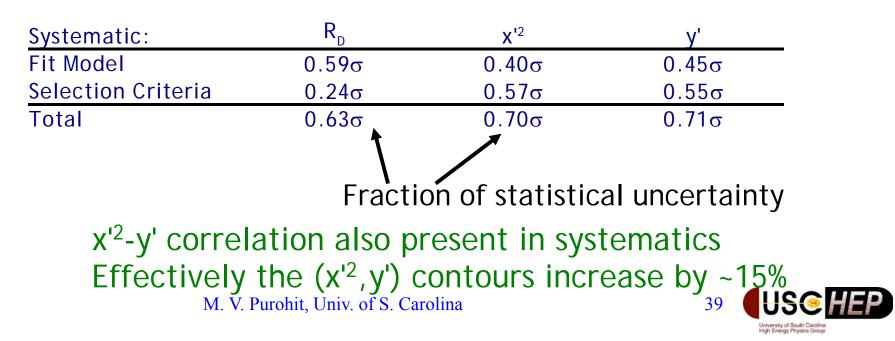
"Such a list is by nature approximate, and we refer the reader to the body of the paper for a more precise presentation of our results."

Signal Significance

Best fit is in unphysical region (x²<0)

M. V. Purohit, Univ. of S. Carolina

Systematic Uncertainties


Two types of systematic uncertainties considered:

Fit model variations:

Change signal and background models used in fit, to test assumptions made

Selection criteria:

✤Mainly decay time (error) ranges used in fit

Double tag at v(3770) [CLEO-c]

- Reconstruct Double Tags: CP vs Kπ
- Asymmetry in CP+ vs CP- related to cosδ

D_{CP±} neutral D CP eigenstate

$$A = \frac{B(D_{CP+} \rightarrow K^{-}\pi^{+}) - B(D_{CP-} \rightarrow K^{-}\pi^{+})}{B(D_{CP+} \rightarrow K^{-}\pi^{+}) + B(D_{CP-} \rightarrow K^{-}\pi^{+})}$$

R_D is ratio of DCS to Cabibbo favored rates

$$\cos \delta = \frac{A}{2\sqrt{R_D}}$$

• Input $R_D = (3.60 \pm 0.08)\%$ from PDG2006+CDF ~±2%,

 $\psi(3770)$ decay conserves CP

Need to run On threshold

- Updated results with 281 pb⁻¹ at Winter Conferences
 - Expect $\sigma(y)$ ~ ±1.5% and $\sigma(\cos \delta_{K\pi})$ ~ ±0.3
 - Including systematic uncertainties
- Full CLEO-c dataset ~750 pb⁻¹
 - Expect $\sigma(y)$ ~ ±1.0% and $\sigma(\cos \delta_{K\pi})$ ~ ±0.1-0.2

