K and B Mixing in Warped Extra Dimensions with Custodial Symmetry

Björn Duling

Physik-Department der Technischen Universität München and

Graduiertenkolleg
"Particle Physics at the Energy Frontier of New Phenomena"

Discrete'08 Valencia, December 15th 2008

Outline

Based on:

M. Albrecht, M. Blanke, A.J. Buras, BD, K. Gemmler, [in preparation]
M. Blanke, A.J. Buras, BD, S. Gori, A. Weiler, [arXiv:0809.1073]
M. Blanke, A.J. Buras, BD, K. Gemmler, S. Gori, [in preparation]

- The Model (very brief!)
- Neutral Meson Mixing
- Numerical Results
- Conclusions

See also:

S. Casagrande, F. Goertz, U. Haisch, M. Neubert, T. Pfoh M. Bauer, S. Casagrande, L. Gruender, U. Haisch, M. Neubert

Complementarity of Flavor and Collider Physics

A Very Brief Model Overview

 Slice of AdS₅ bounded by UV and IR brane Randall, Sundrum

 all fields (except for the Higgs) can propagate into the bulk

Chang et al.; Gherghetta, Pomarol; Grossman, Neubert; Arkani-Hamed, Grossman, Schmaltz

 \Longrightarrow Tower of KK modes for gauge bosons and fermions

⇒ Non-universal gauge couplings, FCNCs

 Additional parameters in the flavor sector beyond CKM

Agashe, Perez, Soni

→ Model is beyond MFV

⇒ Expect significant effects

RS-GIM mechanism

Impact on K and B Meson Mixing

$$\Delta M_{\mathcal{K}},\, \epsilon_{\mathcal{K}},\, \Delta M_{\mathcal{B}_{d,s}},\, \mathcal{S}_{\psi\phi},\, \mathcal{S}_{\psi\mathcal{K}_{\mathcal{S}}},\, \mathcal{A}_{\mathcal{S}L}^{s},\, \mathcal{A}_{\mathcal{S}L}^{d}$$

SM: $\Delta F = 2$ processes proceed through boxes

WED: $\Delta F = 2$ processes already at tree level

Particles exchanged at tree level:

- KK gluons
- KK photons
- Z, Z_H, Z[′]

Operators:

$$\mathbf{Q}_{1}^{\mathit{VLL}} = (\mathbf{\bar{s}} \gamma_{\mu} P_{L} \mathbf{d}) (\mathbf{\bar{s}} \gamma^{\mu} P_{L} \mathbf{d})$$

$$Q_1^{VRR} = (\bar{s}\gamma_\mu P_R d)(\bar{s}\gamma^\mu P_R d)$$

$$Q_1^{LR} = (\bar{s}\gamma_\mu P_L d)(\bar{s}\gamma^\mu P_R d)$$

$$Q_2^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

First Results ...and a Possible Tension

Rough analysis:

Csaki, Falkowski, Weiler, 0804.1954

6 / 13

Tension between anarchic Yukawas, ϵ_K , and a low KK-scale

A serious problem one should further investigate!

Issues

- Consider full operator basis and NLO RG running
- Take into account EW contributions
- CFW's results indicate a tension between scales
 - ⇒ Partially give up complete anarchy of Yukawas
 - ⇒ Identify areas in parameter space with only moderate fine tuning
- Make predictions for other $\Delta F = 2$ observables

Operator Structure in Meson Mixing

In the K system:

- Chiral enhancement $\propto \left(\frac{m_K}{m_s+m_d}\right)^2$ of Q_2^{LR}
- Strong RG running of Q^{LR}₂

 \implies Q^{LR}₂ dominates

In the B system:

- ullet Chiral enhancement $\propto \left(rac{m_B}{m_b + m_{d,s}}
 ight)^2$ less pronounced
- RG running less strong since $m_B \gg m_K$

 \implies all operators important

Electroweak Contributions Do Matter

- At $\mu \simeq$ 3TeV, $\alpha_{\rm S}(\mu) \approx \frac{1}{4\pi}$ \Rightarrow EW contributions can (in principle) compete with the KK-gluon contribution
- In the K system:
 Dominant operator Q₂^{LR} receives no EW contributions

⇒ EW contributions subdominant

• In the B system:

Here all operators are relevant $Q_1^{VLL},\,Q_1^{VRR}$ and Q_1^{LR} receive significant EW contributions

⇒ EW contributions become important!

Fine Tuning in ϵ_K

$$\left(\frac{1}{t}\right)_{BG} = \max_{i} \frac{d \ln(Obs.)}{d \ln(x_i)} = \max_{i} \frac{x_i}{Obs.} \frac{dObs.}{dx_i}$$

Barbieri, Giudice

9 / 13

M. Blanke, A. Buras, BD, S. Gori, A. Weiler, [arXiv:0809.1073]

$M_{KK} \simeq 2.45 \text{TeV}$

- Generically, $\epsilon_{\it K} \simeq 10^2 \epsilon_{\it K}^{\it exp}$
- $(1/t)_{BG}$ decreases with increasing ϵ_K
- Parameter sets with moderate $(1/t)_{BG}$ and $\epsilon_K \approx \epsilon_K^{exp}$ exist

A Generic Bound on the KK Scale

Depending on the tolerance for fine tuning, one obtains a bound

$$M_{KK} \geqslant (15-25)\text{TeV}$$

- However, a theory consistent with experimental data and moderate fine tuning is possible for M_{KK} in the reach of LHC!
- Brane kinetic terms will have an impact on the generic bound

Fine Tuning in Other Observables, e.g. $\triangle M_K$

- ullet Generically, $\Delta M_{\mathcal{K}} \sim \Delta M_{\mathcal{K}}^{exp}$
- (1/t)_{BG} small for all possible values of ΔM_K
- Similar picture for all other $\Delta F = 2$ observables (except for ϵ_K)

RS-GIM very effective!

Predictions for Observables not yet Measured

- Constrain parameter space by experimental $\Delta F = 2$ data and small finetuning
- $S_{\psi\phi}$ can be enhanced well beyond the SM prediction $\simeq 0.04$
- Strong correlations between observables exist CDF, D0 hint at $S_{\psi\phi} \simeq 0.4 \implies \text{significant effects in } A_{SI}^s$, $\Delta \Gamma_s/\Gamma_s$

Conclusions

- Model addresses the gauge hierarchy problem as well as the flavor problem
- \bullet ϵ_K is hard to control due to chiral enhancement and RG effects
- But: It is possible! Areas in parameter space with moderate fine tuning exist for M_{KK} in the reach of LHC
- EW gauge bosons contribute significantly to $\Delta B = 2$ processes
- Large effects in the B system are possible
- WED models are phenomenologically extremely rich stay tuned!