Lepton flavour violating processes in an S_{3}-invariant extension of the standard model

A. Mondragón, M. Mondragón, E. Peinado
Prog. of Theoretical Physics 109, 795 (2003)
Rev. Mex. Fis, S52, N4, 67-73 (2006)
Phys. Rev. D, 76, 076003, (2007)
J. Phys. A: Mathematical and Theoretical 41 (2008) 304035
arXiv: 0712.1799 v 1 [hep-ph] 11 Dec 2007
Nearly tri-bimaximal mixing in the S_{3} flavour symmetry, AIP Conf.Proc. 1026:164-169,2008. arXiv: 0712.2488 v1 [hep-ph]
Lepton flavour violating processes in an $\mathrm{S}(3)$-symmetric model., arXiv: 0805.3507 [hep-ph]
DISCRETE '08

11-16 December 2008, IFIC, Valencia, Spain

Contents

- Flavour permutational symmetry
- A minimal S_{3}-invariant extension of the Standard Model
- Masses and mixings in the leptonic sector
- The neutrino mass spectrum
- The neutrino tri-bimaximal mixing
- FCNCs
- The anomaly of the muon's magnetic moment
- Summary and conclusions

Irreducible representations of S_{3}

The group of permutations of three objects S_{3} has two one-dimensional irreps (singlets) and one two-dimensional irrep (doublet)

- one dimensional: $\mathbf{1}_{A}$ antisymmetric singlet, $\mathbf{1}_{s}$ symmetric singlet
- Two - dimensional: 2 doublet

Direct product of irreps of S_{3}
$\mathbf{1}_{s} \otimes \mathbf{1}_{s}=\mathbf{1}_{s}, \quad \mathbf{1}_{s} \otimes \mathbf{1}_{A}=\mathbf{1}_{A}, \quad \mathbf{1}_{A} \otimes \mathbf{1}_{A}=\mathbf{1}_{s}, \quad \mathbf{1}_{s} \otimes 2=2, \quad \mathbf{1}_{A} \otimes 2=2$

$$
2 \otimes 2=\mathbf{1}_{s} \oplus \mathbf{1}_{A} \oplus 2
$$

the direct (tensor) product of two doublets

$$
\mathbf{p}_{\mathbf{D}}=\binom{p_{D 1}}{p_{D 2}} \quad \text { and } \quad \mathbf{q}_{D}=\binom{q_{D 1}}{q_{D 2}}
$$

has two singlets, r_{s} and r_{A}, and one doublet r_{D}^{T}

$$
\begin{gathered}
r_{s}=p_{D 1} q_{D 1}+p_{D 2} q_{D 2} \quad \text { is invariant, } \quad r_{A}=p_{D 1} q_{D 2}-p_{D 2} q_{D 1} \quad \text { is not invariant } \\
r_{D}^{T}=\binom{p_{D 1} q_{D 2}+p_{D 2} q_{D 1}}{p_{D 1} q_{D 1}-p_{D 2} q_{D 2}}
\end{gathered}
$$

A Minimal S_{3} invariant extension of the SM

The Higgs sector is extended,

$$
\Phi \rightarrow H=\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)^{T}
$$

H is a reducible $\mathbf{1}_{\mathbf{s}} \oplus 2$ rep. of S_{3}

$$
\begin{aligned}
H_{s} & =\frac{1}{\sqrt{3}}\left(\Phi_{1}+\Phi_{2}+\Phi_{3}\right) \\
H_{D} & =\binom{\frac{1}{\sqrt{2}}\left(\Phi_{1}-\Phi_{2}\right)}{\frac{1}{\sqrt{6}}\left(\Phi_{1}+\Phi_{2}-2 \Phi_{3}\right)}
\end{aligned}
$$

Quark, lepton and Higgs fields are

$$
Q^{T}=\left(u_{L}, d_{L}\right), u_{R}, d_{R}, \quad L^{\dagger}=\left(\nu_{L}, e_{L}\right), e_{R}, \nu_{R}, \quad H
$$

All these fields have three species (flavours) and belong to a reducible $\mathbf{1} \oplus 2$ rep. of S_{3}

Leptons' Yukawa interactions

Leptons

$$
\begin{aligned}
& \mathcal{L}_{Y_{E}}= \\
&-Y_{1}^{e} \bar{L}_{I} H_{S} e_{I R}-Y_{3}^{e} \bar{L}_{3} H_{S} e_{3 R}-Y_{2}^{e}\left[\bar{L}_{I} \kappa_{I J} H_{1} e_{J R}+\bar{L}_{I} \eta_{I J} H_{2} e_{J R}\right] \\
&-Y_{4}^{e} \bar{L}_{3} H_{I} e_{I R}-Y_{5}^{e} \bar{L}_{I} H_{I} e_{3 R}+h . c .,
\end{aligned} \quad \begin{array}{r}
\mathcal{L}_{Y_{\nu}}=\quad-Y_{1}^{\nu} \bar{L}_{I}\left(i \sigma_{2}\right) H_{S}^{*} \nu_{I R}-Y_{3}^{\nu} \bar{L}_{3}\left(i \sigma_{2}\right) H_{S}^{*} \nu_{3 R} \\
\quad-\quad Y_{2}^{\nu}\left[\bar{L}_{I} \kappa_{I J}\left(i \sigma_{2}\right) H_{1}^{*} \nu_{J R}+\bar{L}_{I} \eta_{I J}\left(i \sigma_{2}\right) H_{2}^{*} \nu_{J R}\right] \\
\quad-\quad Y_{4}^{\nu} \bar{L}_{3}\left(i \sigma_{2}\right) H_{I}^{*} \nu_{I R}-Y_{5}^{\nu} \bar{L}_{I}\left(i \sigma_{2}\right) H_{I}^{*} \nu_{3 R}+h . c .
\end{array}
$$

Furthermore, the Majorana mass terms for the right handed neutrinos are

$$
\mathcal{L}_{M}=-M_{1} \nu_{I R}^{T} C \nu_{I R}-M_{3} \nu_{3 R}^{T} C \nu_{3 R},
$$

C is the charge conjugation matrix.

Masses in the leptonic sector

To achieve a further reduction of the number of parameters an additional discrete Z_{2} symmetry is introduced in the leptonic sector

-	+
$H_{I}, \nu_{3 R}$	$H_{S}, L_{3}, L_{I}, e_{3 R}, e_{I R}, \nu_{I R}$

then,

$$
Y_{1}^{e}=Y_{3}^{e}=Y_{1}^{\nu}=Y_{5}^{\nu}=0
$$

Then, the Yukawa interactions yield leptonic mass matrices of the form

$$
M_{e}=\left(\begin{array}{ccc}
\mu_{2}^{e} & \mu_{2}^{e} & \mu_{5}^{e} \\
\mu_{2}^{e} & -\mu_{2}^{e} & \mu_{5}^{e} \\
\mu_{4}^{e} & \mu_{4}^{e} & 0
\end{array}\right) \quad \text { and } \quad M_{\nu D}=\left(\begin{array}{ccc}
\mu_{2}^{\nu} & \mu_{2}^{\nu} & 0 \\
\mu_{2}^{\nu} & -\mu_{2}^{\nu} & 0 \\
\mu_{4}^{\nu} & \mu_{4}^{\nu} & \mu_{3}^{\nu}
\end{array}\right)
$$

The Majorana masses for ν_{L} are obtained from the see-saw mechanism

$$
M_{\nu}=M_{\nu D} \tilde{\mathrm{M}}^{-1}\left(M_{\nu D}\right)^{T} \quad \text { with } \quad \tilde{\mathrm{M}}=\operatorname{diag}\left(M_{1}, M_{1}, M_{3}\right)
$$

The Mass Matrix of the charged leptons as function of its eigenvalues

The mass matrix of the charged leptons is

$$
\left.\begin{array}{l}
M_{e} \approx m_{\tau}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \sqrt{\frac{1+x^{2}-\tilde{m}_{\mu}^{2}}{1+x^{2}}} \\
\frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & -\frac{1}{\sqrt{2}} \frac{\tilde{m}_{\mu}}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{2}} \sqrt{\frac{1+x^{2}-\tilde{m}_{\mu}^{2}}{1+x^{2}}} \\
\frac{\tilde{m}_{e}\left(1+x^{2}\right)}{\sqrt{1+x^{2}-\tilde{m}_{\mu}^{2}}} e^{i \delta_{e}} & \frac{\tilde{m}_{e}\left(1+x^{2}\right)}{\sqrt{1+x^{2}-\tilde{m}_{\mu}^{2}}} e^{i \delta_{e}} & 0
\end{array}\right) . \\
x=m_{e} / m_{\mu}, \tilde{m}_{\mu}=m_{\mu} / m_{\tau} \text { and } \tilde{m}_{e}=m_{e} / m_{\tau}
\end{array}\right)
$$

This expression is accurate to order 10^{-9} in units of the τ mass

There are no free parameters in \mathbf{M}_{e} other than the Dirac Phase $\delta!!$

The Unitary Matrix $U_{e L}$

The unitary matrix $U_{e L}$ is calculated from

$$
U_{e L}^{\dagger} M_{e} M_{e L}^{\dagger} U_{e L}=\operatorname{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right)
$$

We find

$$
U_{e L}=\Phi_{e L} O_{e L}, \quad \Phi_{e L}=\operatorname{diag}\left[1,1, e^{i \delta_{D}}\right]
$$

and

$$
\begin{aligned}
& \mathbf{O}_{e L} \approx\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} x \frac{\left(1+2 \tilde{m}_{\mu}^{2}+4 x^{2}+\tilde{m}_{\mu}^{4}+2 \tilde{m}_{e}^{2}\right)}{\sqrt{1+\tilde{m}_{\mu}^{2}+5 x^{2}-\tilde{m}_{\mu}^{4}-\tilde{m}_{\mu}^{6}+\tilde{m}_{e}^{2}+12 x^{4}}} & -\frac{1}{\sqrt{2}} \frac{\left(1-2 \tilde{m}_{\mu}^{2}+\tilde{m}_{\mu}^{4}-2 \tilde{m}_{e}^{2}\right)}{\sqrt{1-4 \tilde{m}_{\mu}^{2}+x^{2}+6 \tilde{m}_{\mu}^{4}-4 \tilde{m}_{\mu}^{6}-5 \tilde{m}_{e}^{2}}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} x \frac{\left(1+4 x^{2}-\tilde{m}_{\mu}^{4}-2 \tilde{m}_{e}^{2}\right)}{\sqrt{1+\tilde{m}_{\mu}^{2}+5 x^{2}-\tilde{m}_{\mu}^{4}-\tilde{m}_{\mu}^{6}+\tilde{m}_{e}^{2}+12 x^{4}}} & \frac{1}{\sqrt{2} \frac{\left(1-2 \tilde{m}_{\mu}^{2}+\tilde{m}_{\mu}^{4}\right)}{\sqrt{1-4 \tilde{m}_{\mu}^{2}+x^{2}+6 \tilde{m}_{\mu}^{4}-4 \tilde{m}_{\mu}^{6}-5 \tilde{m}_{e}^{2}}}} & \frac{1}{\sqrt{2}} \\
-\frac{\sqrt{1+2 x^{2}-\tilde{m}_{\mu}^{2}-\tilde{m}_{e}^{2}}\left(1+\tilde{m}_{\mu}^{2}+x^{2}-2 \tilde{m}_{e}^{2}\right)}{\sqrt{1+\tilde{m}_{\mu}^{2}+5 x^{2}-\tilde{m}_{\mu}^{4}-\tilde{m}_{\mu}^{6}+\tilde{m}_{e}^{2}+12 x^{4}}} & -x \frac{\left(1+x^{2}-\tilde{m}_{\mu}^{2}-2 \tilde{m}_{e}^{2}\right) \sqrt{1+2 x^{2}-\tilde{m}_{\mu}^{2}-\tilde{m}_{e}^{2}}}{\sqrt{1-4 \tilde{m}_{\mu}^{2}+x^{2}+6 \tilde{m}_{\mu}^{4}-4 \tilde{m}_{\mu}^{6}-5 \tilde{m}_{e}^{2}}} & \frac{\sqrt{1+x^{2}} \tilde{m}_{e} \tilde{m}_{\mu}}{\sqrt{1+x^{2}-\tilde{m}_{\mu}^{2}}}
\end{array}\right) \\
& x=m_{e} / m_{\mu}, \tilde{m}_{\mu}=m_{\mu} / m_{\tau} \text { and } \tilde{m}_{e}=m_{e} / m_{\tau}
\end{aligned}
$$

The neutrino mass matrix

The neutrino mass matrix is obtained from the see-saw mechanism

$$
\mathbf{M}_{\nu}=\mathbf{M}_{\nu_{\mathbf{D}}} \tilde{\mathbf{M}}^{-1}\left(\mathbf{M}_{\nu_{\mathbf{D}}}\right)^{T}=\left(\begin{array}{ccc}
2\left(\rho_{2}^{\nu}\right)^{2} & 0 & 2 \rho_{2}^{\nu} \rho_{4}^{\nu} \\
0 & 2\left(\rho_{2}^{\nu}\right)^{2} & 0 \\
2 \rho_{2}^{\nu} \rho_{4}^{\nu} & 0 & 2\left(\rho_{4}^{\nu}\right)^{2}+\left(\rho_{3}^{\nu}\right)^{2}
\end{array}\right)
$$

M_{ν} is reparametrized in terms of its eigenvalues

$$
\begin{gathered}
M_{\nu}=\left(\begin{array}{ccc}
m_{\nu_{3}} & 0 & \sqrt{\left(m_{\nu_{3}}-m_{\nu_{1}}\right)\left(m_{\nu_{2}}-m_{\nu_{3}}\right)} e^{-i \delta_{\nu}} \\
0 & m_{\nu_{3}} & 0 \\
\sqrt{\left(m_{\nu_{3}}-m_{\nu_{1}}\right)\left(m_{\nu_{2}}-m_{\nu_{3}}\right)} e^{-i \delta_{\nu}} 0^{0} & \left(m_{\nu_{1}}+m_{\nu_{2}}-m_{\nu_{3}}\right) e^{-2 i \delta_{\nu}}
\end{array}\right) \\
\mathbf{U}_{\nu}^{T} \mathbf{M}_{\nu} \mathbf{U}_{\nu}=\operatorname{diag}\left(\left|m_{\nu_{1}}\right| e^{i \phi_{1}-i \phi_{\nu}},\left|m_{\nu_{2}}\right| e^{i \phi_{2}-i \phi_{\nu}},\left|m_{\nu_{3}}\right|\right) \\
U_{\nu}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i \delta_{\nu}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\frac{m_{\nu_{2}}-m_{\nu_{3}}}{m_{\nu_{2}}-m_{\nu_{1}}}} & \sqrt{\frac{m_{\nu_{3}}-m_{\nu_{1}}}{m_{\nu_{2}}-m_{\nu_{1}}}} & 0 \\
-\sqrt{\frac{m_{\nu_{3}}-m_{\nu_{1}}}{m_{\nu_{2}}-m_{\nu_{1}}}} & \sqrt{\frac{m_{\nu_{2}}-m_{\nu_{3}}}{m_{\nu_{2}}-m_{\nu_{1}}}} & 0
\end{array}\right)
\end{gathered}
$$

The neutrino mixing matrix I

$$
V_{P M N S}^{t h}=U_{e L}^{\dagger} U_{\nu}
$$

The theoretical mixing matrix $V_{P M N S}^{t h}$ is

$$
\begin{aligned}
V_{P M N S}^{t h} & =\left(\begin{array}{ccc}
O_{11} \cos \eta+O_{31} \sin \eta e^{i \delta} & O_{11} \sin \eta-O_{31} \cos \eta e^{i \delta} & -O_{21} \\
-O_{12} \cos \eta+O_{32} \sin \eta e^{i \delta} & -O_{12} \sin \eta-O_{32} \cos \eta e^{i \delta} & O_{22} \\
O_{13} \cos \eta-O_{33} \sin \eta e^{i \delta} & O_{13} \sin \eta+O_{33} \cos \eta e^{i \delta} & O_{23}
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{\alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right)
\end{aligned}
$$

where $O_{i j}$ are the absolute values of the elements of \mathbf{O}_{e}
$\mathbf{V}_{P M N S}^{P D G}=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\ s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \alpha} \\ 0 & 0 \\ 0\end{array}\right)$

Neutrino Mixing Angles

From a comparison of $\mathbf{V}_{P M N S}^{t h}$ with $\mathbf{V}_{P M N S}^{P D G}$, we obtain the neutrino mixing angles as functions of the lepton masses

The mixing angles θ_{13} and θ_{23} depend only on the charged lepton masses
Theoretical Prediction Experimental Theoretical
$\sin \theta_{13} \approx \frac{1}{\sqrt{2}} x \frac{\left(1+4 x^{2}-\tilde{m}_{\mu}^{4}\right)}{\sqrt{1+\tilde{m}_{\mu}^{2}+5 x^{2}-\tilde{m}_{\mu}^{4}}} \quad\left(\sin ^{2} \theta_{13}\right)^{e x p}=0.01_{-0.011}^{+0.016} \quad \sin ^{2} \theta_{13}=1.1 \times 10^{-5}$
$\sin \theta_{23} \approx \frac{1}{\sqrt{2}} \frac{1-2 \tilde{m}_{\mu}^{2}+\tilde{m}_{\mu}^{4}}{\sqrt{1-4 \tilde{m}_{\mu}^{2}+x^{2}+6 \tilde{m}_{\mu}^{4}}} \quad\left(\sin ^{2} \theta_{23}\right)^{\exp }=0.5_{-0.06}^{+0.07} \quad \sin ^{2} \theta_{23}=0.5$
$x=m_{e} / m_{\mu}$ and $\tilde{m}_{\mu}=m_{\mu} / m_{\tau}$
The solar angle θ_{12} is strongly dependent on the neutrino masses but depends only very weakly on the charged lepton masses

$$
\tan \theta_{12}^{2}=\frac{\left(\Delta m_{12}^{2}+\Delta m_{13}^{2}+\left|m_{\nu_{3}}\right|^{2} \cos ^{2} \phi_{\nu}\right)^{1 / 2}-\left|m_{\nu_{3}}\right|\left|\cos \phi_{\nu}\right|}{\left(\Delta m_{13}^{2}+\left|m_{\nu_{3}}\right|^{2} \cos ^{2} \phi_{\nu}\right)^{1 / 2}+\left|m_{\nu_{3}}\right|\left|\cos \phi_{\nu}\right|}
$$

The neutrino mass spectrum I

In the present model, the experimental restriction

$$
\left|\Delta m_{21}^{2}\right|<\left|\Delta m_{23}^{2}\right|
$$

implies an inverted neutrino mass spectrum $m_{\nu_{3}}<m_{\nu_{1}}, m_{\nu_{2}}$

From our previous expressions for $\tan \theta_{12}$

$$
\left|m_{\nu_{3}}\right|=\frac{\sqrt{\Delta m_{13}^{2}}}{2 \cos \phi_{\nu} \tan \theta_{12}} \frac{1-\tan ^{4} \theta_{12}+r^{2}}{\sqrt{1+\tan ^{2} \theta_{12}} \sqrt{1+\tan ^{2} \theta_{12}+r^{2}}}
$$

where $\quad r=\Delta m_{21}^{2} / \Delta m_{23}^{2}$.
The mass $\left|m_{\nu_{3}}\right|$ gets its minimal value when $\sin \phi_{\nu}=0$,

$$
\left|m_{\nu_{3}}\right| \approx \frac{1}{2} \frac{\sqrt{\Delta m_{13}^{2}}}{\tan \theta_{12}}\left(1-\tan ^{2} \theta_{12}\right)
$$

Neutrino mass spectrum II

- We wrote the neutrino mass differences, $m_{\nu_{i}}-m_{\nu_{j}}$, in terms of the differences of the squared masses $\Delta_{i j}^{2}=m_{\nu_{i}}^{2}-m_{\nu_{j}}^{2}$ and one of the neutrino masses, say $m_{\nu_{3}}$.
- The mass $m_{\nu_{2}}$ was taken as a free parameter in the fitting of our formula for $\tan \theta_{12}$ to the experimental value
- with

$$
\Delta m_{21}^{2}=7.65 \times 10^{-5} \mathrm{eV}^{2} \quad \Delta m_{13}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}
$$

and

$$
\tan \theta_{12}=0.661
$$

we get

$$
\left|m_{\nu_{3}}\right| \approx 0.021 \mathrm{eV} \Longrightarrow\left|m_{\nu_{2}}\right| \approx 0.054 \mathrm{eV} \quad \text { and } \quad\left|m_{\nu_{1}}\right| \approx 0.053 \mathrm{eV}
$$

- The neutrino mass spectrum has an inverted hierarchy of masses

S_{3} symmetry and tribimaximal form of the mixing matrix

WE ASSUME

$$
\begin{aligned}
& \delta=\delta_{\nu}-\delta_{e}=\pi / 2 \\
& \quad \mathbf{V}_{P M N S}^{t h}=\mathbf{V}_{P M N S}^{t r i}+\Delta \mathbf{V}_{P M N S}^{t r i}
\end{aligned}
$$

where

$$
\begin{gathered}
\mathbf{V}_{P M N S}^{t r i}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{array}\right) \\
\Delta \mathbf{V}_{P M N S}^{t r i}=\Delta \mathbf{V}_{\mathbf{e}}+\delta t_{12} \frac{\left(\sqrt{2}+\delta t_{12}\right)}{1+\frac{2}{3} \delta t_{12}\left(\sqrt{2}+\delta t_{12}\right)} \widetilde{\boldsymbol{\Delta} \mathbf{V}_{\nu}} \\
\Delta \mathbf{V}_{\mathrm{e}} \sim m_{e} / m_{\mu}=4.8 \times 10^{-3} \\
\delta t_{12}=\frac{\sqrt{2}}{2}-t_{12} \\
\delta t_{12}^{(\exp)}=\frac{\sqrt{2}}{2}-0.661 \approx 0.046
\end{gathered}
$$

$V_{P M N S}^{\mathrm{th}}$ is nearly tri-bimaximal!!!

FCNC I

In the Standard Model the FCNC at tree level are suppressed by the GIM mechanism.
Models with more than one Higgs $S U(2)$ doublet have tree level FCNC due to the exchange of scalar fields. The mass matrix written in terms of the Yukawa couplings is

$$
\mathcal{M}_{Y}^{e}=Y_{w}^{E 1} H_{1}^{0}+Y_{w}^{E 2} H_{2}^{0},
$$

FCNC processes:

Figure 1: The diagram in the left contributes to the process $\tau^{-} \rightarrow 3 \mu$. The three diagrams in the right contribute to the process $\tau \rightarrow \mu \gamma$.

Yukawa matrices in the mass representation

The Yukawa matrices in the mass basis defined by

$$
\begin{gathered}
\tilde{Y}_{m}^{E I}=U_{e L}^{\dagger} Y_{w}^{E I} U_{e R} \\
\tilde{Y}_{m}^{E 1} \approx \frac{m_{\tau}}{v_{1}}\left(\begin{array}{ccc}
2 \tilde{m}_{e} & -\frac{1}{2} \tilde{m}_{e} & \frac{1}{2} x \\
-\tilde{m}_{\mu} & \frac{1}{2} \tilde{m}_{\mu} & -\frac{1}{2} \\
\frac{1}{2} \tilde{m}_{\mu} x^{2} & -\frac{1}{2} \tilde{m}_{\mu} & \frac{1}{2}
\end{array}\right)_{m}
\end{gathered}
$$

and

$$
\tilde{Y}_{m}^{E 2} \approx \frac{m_{\tau}}{v_{2}}\left(\begin{array}{ccc}
-\tilde{m}_{e} & \frac{1}{2} \tilde{m}_{e} & -\frac{1}{2} x \\
\tilde{m}_{\mu} & \frac{1}{2} \tilde{m}_{\mu} & \frac{1}{2} \\
-\frac{1}{2} \tilde{m}_{\mu} x^{2} & \frac{1}{2} \tilde{m}_{\mu} & \frac{1}{2}
\end{array}\right)_{m}
$$

all off diagonal terms give rise to FCNC processes!!

Branching ratios

We define the partial branching ratios (only leptonic decays) as

$$
\operatorname{Br}\left(\tau \rightarrow \mu e^{+} e^{-}\right)=\frac{\Gamma\left(\tau \rightarrow \mu e^{+} e^{-}\right)}{\Gamma(\tau \rightarrow e \nu \bar{\nu})+\Gamma(\tau \rightarrow \mu \nu \bar{\nu})}, \quad \Gamma\left(\tau \rightarrow \mu e^{+} e^{-}\right) \approx \frac{m_{\tau}^{5}}{3 \times 2^{10} \pi^{3}} \frac{\left(Y_{\tau \mu}^{1,2} Y_{e e^{\prime}}^{1,2}\right)^{2}}{M_{H_{1,2}}^{4}}
$$

thus

$$
\operatorname{Br}\left(\tau \rightarrow \mu e^{+} e^{-}\right) \approx \frac{9}{4}\left(\frac{m_{e} m_{\mu}}{m_{\tau}^{2}}\right)^{2}\left(\frac{m_{\tau}}{M_{H_{1,2}}}\right)^{4}
$$

Similar computations lead to

$$
\begin{gathered}
\operatorname{Br}(\tau \rightarrow e \gamma) \approx \frac{3 \alpha}{8 \pi}\left(\frac{m_{\mu}}{M_{H}}\right)^{4} \\
\operatorname{Br}(\tau \rightarrow \mu \gamma) \approx \frac{3 \alpha}{128 \pi}\left(\frac{m_{\mu}}{m_{\tau}}\right)^{2}\left(\frac{m_{\tau}}{M_{H}}\right)^{4}, \\
\operatorname{Br}(\tau \rightarrow 3 \mu) \approx \frac{9}{64}\left(\frac{m_{\mu}}{M_{H}}\right)^{4}, \\
\operatorname{Br}(\mu \rightarrow 3 e) \approx 18\left(\frac{m_{e} m_{\mu}}{m_{\tau}^{2}}\right)^{2}\left(\frac{m_{\tau}}{M_{H}}\right)^{4} \\
\operatorname{Br}(\mu \rightarrow e \gamma) \approx \frac{27 \alpha}{64 \pi}\left(\frac{m_{e}}{m_{\mu}}\right)^{4}\left(\frac{m_{\tau}}{M_{H}}\right)^{4}
\end{gathered}
$$

FCNC: Numerical results

Table 1: Leptonic processes via FCNC

FCNC processes	Theoretical BR	Experimental upper bound BR	References
$\tau \rightarrow 3 \mu$	8.43×10^{-14}	5.3×10^{-8}	B. Aubert et. al. (2007)
$\tau \rightarrow \mu e^{+} e^{-}$	3.15×10^{-17}	8×10^{-8}	B. Aubert et. al. (2007)
$\tau \rightarrow \mu \gamma$	9.24×10^{-15}	6.8×10^{-8}	B. Aubert et. al.(2005)
$\tau \rightarrow e \gamma$	5.22×10^{-16}	1.1×10^{-11}	B. Aubert et. al. (2006)
$\mu \rightarrow 3 e$	2.53×10^{-16}	1×10^{-12}	U. Bellgardt et al. (1998)
$\mu \rightarrow e \gamma$	2.42×10^{-20}	1.2×10^{-11}	M. L. Brooks et al. (1999)

Small FCNC processes mediating non-standard quark-neutrino interactions could be important in the theoretical description of the gravitational core collapse and shock generation in the explosion stage of a supernova

Muon Anomalous Magnetic Moment

The anomalous magnetic moment of the muon is related to the gyroscopic ratio by

$$
a_{\mu}=\frac{\mu_{\mu}}{\mu_{B}}-1=\frac{1}{2}\left(g_{\mu}-2\right)
$$

In models with more than one Higgs $S U(2)$ doublet, the exchange of flavour changing neutral scalars also contribute to the anomalous magnetic moment of the muon

$$
\delta a_{\mu}^{(H)}=\frac{Y_{\mu \tau} Y_{\tau \mu}}{16 \pi^{2}} \frac{m_{\mu} m_{\tau}}{M_{H}^{2}}\left(\log \left(\frac{M_{H}^{2}}{m_{\tau}^{2}}\right)-\frac{3}{2}\right)
$$

From our results: $Y_{\mu \tau} Y_{\tau \mu}=\frac{m_{\mu} m_{\tau}}{4 v_{1} v_{2}}$

$$
\delta a_{\mu}^{(H)}=\frac{m_{\tau}^{2}}{(246 G e V)^{2}} \frac{\left(2+\tan ^{2} \beta\right)}{32 \pi^{2}} \frac{m_{\mu}^{2}}{M_{H}^{2}}\left(\log \left(\frac{M_{H}^{2}}{m_{\tau}^{2}}\right)-\frac{3}{2}\right), \tan \beta=\frac{v_{s}}{v_{1}}
$$

From the experimental upper bound on ($\mu \rightarrow 3 e$), we get $\tan \beta \leq 14$, Hence

$$
\delta a_{\mu}=1.7 \times 10^{-10}
$$

Contribution to the anomaly of the muon's magnetic moment

The difference between the experimental value and the Standard Model prediction for the anomaly is

$$
\Delta a_{\mu}=a_{\mu}^{e x p}-a_{\mu}^{S M}=(28.7 \pm 9.1) \times 10^{-10}
$$

$\Delta a_{\mu} \sim 3 \sigma$ (three standard deviations) !!
But, the uncertainty in the computation of higher order hadronic effects is large

$$
\begin{gathered}
\delta a_{\mu}^{L B L}(3, h a d) \\
\frac{\delta a_{\mu}^{(H)}}{\Delta a_{\mu}} \approx \frac{1.7}{28} \approx 6 \% \quad \text { and } \quad \delta a_{\mu}^{(H)}<\delta a_{\mu}(3, h a d)
\end{gathered}
$$

The contribution of the exchange of flavour changing scalars to the anomaly of the muon's magnetic moment, $\delta a_{\mu}^{(H)}$, is small but not negligible, and it is compatible with the best, state of the art, measurements and theoretical predictions.

Summary

- By introducing in the theory three $S U(2)_{L}$ Higgs doublet fields, we extended the concept of flavour and generations to the Higgs sector and formulated a minimal S_{3}-invariant Extension of the Standard Model
- A further reduction of free parameters is achieved in the leptonic sector by introducing a Z_{2} symmetry
- The magnitudes of the three mixing angles θ_{12}, θ_{23} and θ_{13}, are determined by an interplay of the $S_{3} \times Z_{2}$ symmetry, the see-saw mechanism and the lepton mass hierarchy
- The mixing angles, θ_{23} and θ_{13}, depend only on the masses of the charged leptons and are in excellent agreement with the best experimental values
- The solar mixing angle, θ_{12}, fixes the scale and origin of the neutrino mass spectrum which has an inverted mass hierarchy with values

$$
\left|m_{\nu_{2}}\right| \approx 0.054 \mathrm{eV}, \quad\left|m_{\nu_{1}}\right| \approx 0.053 \mathrm{eV}, \quad\left|m_{\nu_{3}}\right| \approx 0.021 \mathrm{eV}
$$

- The branching ratios of all flavour changing neutral current processes in the leptonic sector are strongly suppressed by the $S_{3} \times Z_{2}$ symmetry and powers of the small mass ratios m_{e} / m_{τ}, m_{μ} / m_{τ}, and $\left(m_{\tau} / M_{H_{1,2}}\right)^{4}$, but could be important in astrophysical processes
- The anomalous magnetic moment of the muon gets a small but non-negligible contribution from the exchange of flavour changing scalar fields

Conclusions

- The Minimal S_{3}-Invariant Extension of the Standard Model describes successfully masses and mixings in the quark (not shown here) and leptonic sectors with a small number of free parameters.
- It predicts the numerical values of θ_{13} and θ_{23} neutrino mixing angles.
- It predicts a small deviation of the neutrino mixing matrix from the tri-bimaximal form proportional to the small ratio m_{e} / m_{μ}, in excellent agreement with the experimental values of the neutrino mixing angles.
- It also predicts values for the branching ratios of the the lepton flavour violating processes well below the experimental upper bounds.
- It gives a small but non-negligible contribution to the anomaly of the magnetic moment of the muon.

