The nature of the electroweak Higgs sector Discrete 2008, December 11-16 Valencia (Spain)

Mariano Quirós

Institució Catalana de Recerca i Estudis Avançats (ICREA), and IFAE Barcelona (Spain)

December 13, 2008

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

OUTLINE

The outline of this talk is

Outline

- The Standard Model
- Supersymmetry
- Little Higgs
- Gauge-Higgs unification
- Unhiggs
- Conclusion

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSN

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Conclusion

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

STANDARD MODEL

 In the Standard Model the electroweak symmetry is spontaneously broken by the Higgs mechanism where an SU(2)_L doublet Higgs boson is needed

Higgs mechanism

$$H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}, \ \mathcal{L}_{Higgs} = |D_{\mu}H|^2 - \frac{\lambda}{2} \left[|H|^2 - \frac{v^2}{2} \right]^2 + \mathcal{L}_Y$$

- ► The term |D_µH|² gives a mass to gauge bosons W and Z which absorb the Goldstone bosons H⁺ and ImH⁰
- The term \mathcal{L}_Y gives a mass to SM fermions
- The Higgs can "regularize" the bad UV behaviour of gauge bosons with longitudinal polarization

$$\epsilon_L^\mu \simeq \frac{p^\mu}{M_V}$$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

Unitarity bound Theoretical constraints Experimental constraints Standard Model Drawbacks Little Hierarchy Problem

MSSM

.ittle Higgs

Gauge-Higgs unification Conformal Higgg Conclusion

Unitarity bound

The Higgs unitarizes the scattering of longitudinal gauge bosons

Partial wave decomposition

$$\mathcal{A} = 16\pi \sum_{\ell} (2\ell+1) \mathcal{P}_{\ell}(\cos\theta) \mathbf{a}_{\ell}, \quad \sigma = rac{16}{\pi} \sum_{\ell} (2\ell+1) |\mathbf{a}_{\ell}|^2$$

Optical theorem

$$\sigma = \frac{1}{s} Im \mathcal{A}(\cos \theta = 1) \Rightarrow Im(a_{\ell}) = |a_{\ell}|^2 \Rightarrow Re(a_{\ell})| \leq \frac{1}{2}$$

$$W_L$$
 W_L W_L $\mathcal{A} \propto g^2 rac{s^2}{M_W^4} \Rightarrow s \leq M_W^2$ W_L W_L

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

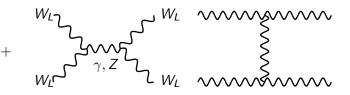
Standard Model

Unitarity bound

Theoretical constraints experimental

constraints Standard Model Drawbacks Little Hierarchy Problem

MSSM


.ittle Higgs

Gauge-Higgs Inification

Conformal Higgg

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

$$a_0 = rac{{{g}^2 s}}{{16\pi M_W^2 }} \Rightarrow \sqrt{s} \le 1.7 \, TeV$$

$$W_{L}$$

$$W_{L$$

Including the ZZ scattering one gets

 $m_H \leq 780 ~GeV$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

Unitarity bound

Theoretical constraints

Experimental constraints Standard Model Drawbacks Little Hierarchy Problem

MSSN

Little Higgs

Gauge-Higgs unification

Conformal Higgg

THEORETICAL CONSTRAINTS

The Higgs mass

 $m_H^2 = 2\lambda v^2$ is an independent parameter in the SM.

• Loop corrections to the λ parameter

RGE

$$8\pi^2 \frac{d\lambda}{d\log\Lambda} = 3(4\lambda^2 + 2h_t^2\lambda - h_t^2) + \dots$$

produce two bounds on m_H for a given scale Λ

- For large values of λ (large Higgs masses) there is a Landau pole for some value of Λ: triviality bound
- For small values of λ (small Higgs masses) the quartic coupling becomes negative for some value of Λ: stability bound

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

Unitarity bound

Theoretical constraints

Experimental constraints Standard Model Drawbacks Little Hierarchy Problem

MSSM

Little Higgs

Gauge-Higgs unification Conformal Higgg

Triviality bounds

For large Higgs masses RGE are dominated by

$$8\pi^2 rac{d\lambda}{d\log\Lambda} \simeq 12\lambda^2$$

and λ increases with Λ

$$\lambda(\Lambda) \simeq rac{m_H^2}{2 v^2 - rac{3 m_H^2}{2 \pi^2} m_H^2 \log rac{\Lambda}{v}}$$

For fixed Λ there is a lower bound on the Higgs mass

$$m_H^2 \leq rac{4\pi^2 v^2}{3\log(\Lambda/v)}$$

For fixed m_H there is an upper bound on Λ

 $\Lambda \leq v \exp(4\pi^2 v^2/3m_H^2)$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

Unitarity bound

Theoretical constraints

Experimental constraints Standard Model Drawbacks Little Hierarchy Problem

MSSM

.ittle Higgs

Gauge-Higgs unification Conformal Higg

Stability bounds

▶ For small Higgs masses RGE are dominated by

$$8\pi^2 \frac{d\lambda}{d\log\Lambda} \simeq -3h_t^4$$

and λ decreases with Λ

$$\lambda(\Lambda)\simeq\lambda-rac{3}{8\pi^2}h_t^4\lograc{\Lambda}{v}$$

When λ(Λ) < 0 the potential is unbounded from below
 For fixed Λ there is a lower bound on the Higgs mass

$$m_H^2 \geq \frac{3h_t^2 m_t^2}{2\pi^2} \log \frac{\Lambda}{v}$$

For fixed m_H there is an upper bound on Λ

 $\Lambda \leq v \exp(2\pi^2 m_H^2/3h_t^2m_t^2)$

The nature of the electroweak Higgs sector

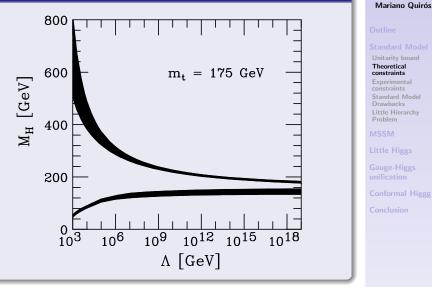
Mariano Quirós

Outline

Standard Model

Unitarity bound

Theoretical constraints


Experimental constraints Standard Model Drawbacks Little Hierarchy Problem

MSSM

.ittle Higgs

Gauge-Higgs unification

The Standard Model Window

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

The nature of the electroweak Higgs

sector

EXPERIMENTAL CONSTRAINTS

▶ Non-observation of the Higgs at LEP-2 in the process $e^+e^- \rightarrow ZH$ imposes the direct lower bound

Direct search limit

 $m_{H} > 114.4 ~GeV$

 The Higgs mass enters the quantum corrections of electroweak observables, in particular through the ρ = 1 + Δρ = 1 + T and S parameters

$$T = rac{\Pi_{33}(0) - \Pi_{+-}(0)}{M_W^2} \simeq rac{3G_F}{8\pi^2\sqrt{2}} \left[m_t^2 - (M_Z^2 - M_W^2) \log rac{m_H^2}{M_Z^2}
ight]$$

 $S \propto \Pi_{3B}'(0) \simeq rac{1}{6\pi} \log rac{m_H}{M_Z}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The nature of the electroweak Higgs sector

Mariano Quirós

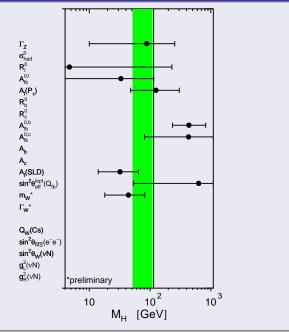
Outline

Standard Model

Unitarity boun Theoretical constraints

Experimental constraints

Standard Model Drawbacks Little Hierarchy Problem


MSSN

.ittle Higgs

Gauge-Higgs unification

Conformal Higgg

Electroweak observables

The nature of the electroweak Higgs sector

Mariano Quirós

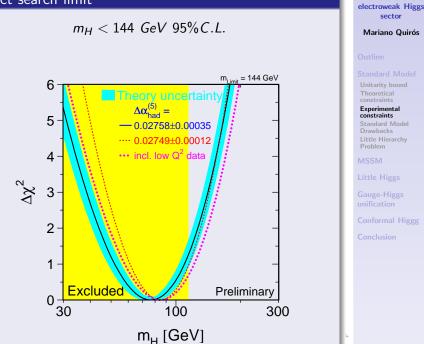
Outline

Standard Model

Unitarity boun Theoretical constraints

Experimental constraints

Standard Model Drawbacks Little Hierarchy Problem


MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Indirect search limit

The nature of the

Standard Model Drawbacks

 Big Hierarchy problem: The Higgs mass is sensitive to UV physics. Quantum corrections are quadratically sensitive to the cutoff Λ

$$\Delta m_{H}^{2}(F,B) = \mp \frac{n_{F,B}g_{F,B}^{2}}{16\pi^{2}}\Lambda^{2}$$

They are not protected by any symmetry which is enhanced when $m_H = 0$

On the contrary fermions masses

$$\Delta m_F \propto rac{m_F}{16\pi^2}\log\Lambda$$

are protected by chiral symmetry for $m_F = 0$

- Electroweak symmetry breaking requires a tachyonic mass for the Higgs
- Dark Matter: there is no candidate
- There is no gauge coupling unification
- Strong CP-problem: axion required

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

Unitarity bou Theoretical constraints

Experimental constraints

Standard Model Drawbacks

Little Hierarchy Problem

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

The Little Hierarchy Problem/LEP paradox

The leading quantum correction to the Higgs mass parameter is expected to come from the top sector as

$$\Delta m_H^2 = -\frac{3h_t^2}{8\pi^2}\Lambda^2$$

In the absence of tuning this implies a lower bound on the cutoff scale as

$$\Lambda < 600 \; GeV \left(rac{m_H}{200 \; GeV}
ight)$$

- Why did LEP not detect any deviation from the SM predictions? (LEP paradox)
- In particular one can parametrize the new effects as non-renormalizable operators (d = 6)

$$\mathcal{L}_{eff} = rac{c_1}{\Lambda^2} \left(ar{e} \gamma^\mu e
ight)^2 + \dots$$

• If $c_i = \mathcal{O}(1) \Rightarrow \Lambda > 10 \text{ TeV} \Rightarrow \text{tension}$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

Unitarity bour Theoretical constraints

Experimental constraints Standard Mode

Little Hierarchy Problem

MSSM

Little Higgs

Gauge-Higgs unification Conformal Higgg

MSSM

Minimal Supersymmetric Extension of the Standard Model

Higgs sector

An extended Higgs sector

$$H_1 = \left(\begin{array}{c} H_1^0 \\ H_1^- \end{array}\right)_{-1/2}, \quad H_2 = \left(\begin{array}{c} H_2^+ \\ H_2^0 \end{array}\right)_{1/2}$$

- After the Higgs mechanism ⟨H₁⁰⟩ = v₁, ⟨H₂⁰⟩ = v₂, tan β = v₂/v₁ there are five Higgses left: two scalar (h, H), one pseudoscalar (A) and two charged (H[±])
- Supersymmetry has to be broken, e.g. by embedding the MSSM into a local supersymmetry
- The Higgs spectrum is determined by two free parameters: m_A and tan β

$$m_{H^{\pm}} = m_A^2 + M_W^2, \qquad m_{h,H}^2 = rac{1}{2} \left[m_A^2 + M_Z^2 \mp \sqrt{(m_A^2 + M_Z^2)^2 - 4m_A^2 M_Z^2 \cos^2 2\beta}
ight]$$

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Solutions to SM drawbacks Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Big Hierarchy problem

- Because quantum corrections to the Higgs mass from bosonic loops have opposite signs there is a cancellation between supersymmetric partners. Supersymmetry protects the Higgs mass
- When supersymmetry is broken by *soft* terms the supersymmetric cancellation holds up to supersymmetry breaking terms
- Quadratic divergences are still absent
- Hierarchy problem is *technically* solved by the non-renormalization theorems of supersymmetry

Dark Matter

There is a natural candidate for Cold Dark Mater in the MSSM: the lightest neutralino, provided that *R*-parity is unbroken

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

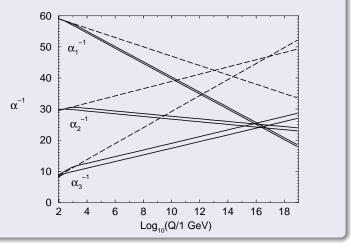
MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM


Little Higgs

Gauge-Higgs unification

Conformal Higgg

Gauge coupling unification

Consistently with LEP measurements and if superparticles are at \sim TeV scale gauge couplings unify at a scale $M_{GUT}\sim 2\times 10^{16}~{\rm GeV}$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

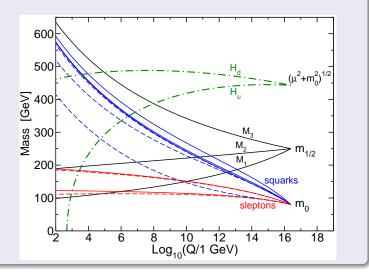
Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs


Gauge-Higgs unification

Conformal Higgg

Conclusion

Electroweak breaking

If soft breaking parameters are generated at M_{GUT} a tachyonic mass can be triggered by RGE at the weak scale

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Conclusion

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stability/triviality problems

The stability (λ < 0) and triviality/Landau pole (λ → ∞) problems are solved because of the supersymmetric relation

$\lambda = \frac{1}{8}(g^2 + g'^2)$

- Because the gauge couplings remain perturbative (and positive) up to M_{GUT} there is no stability and/or triviality problem in the MSSM
- As a consequence: the Higgs mass (unlike in the SM) is NOT a free parameter. For the SM-like Higgs

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{M_S^2} \left(1 - \frac{A_t^2}{12M_S^2} \right) \right]$$

ヘロマ 人間マ ヘヨマ ヘロマ

э

► The Higgs mass is a prediction in a supersymmetric theory ⇒ theoretical constraints

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

ittle Higgs.

Gauge-Higgs unification

Conformal Higgg

THEORETICAL CONSTRAINTS

- The Higgs mass is a prediction in the MSSM
 - At the tree level there is the absolute bound

Tree-level

$$m_h^2 \le M_Z^2$$

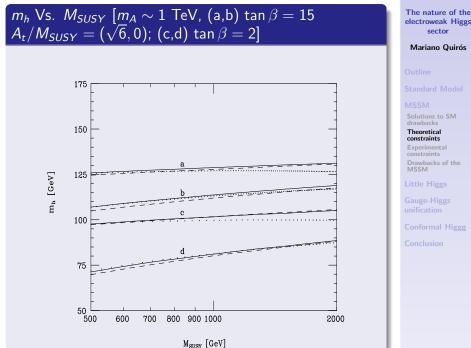
At one-loop there is an important contribution controlled by the top/stop sector

One-loop

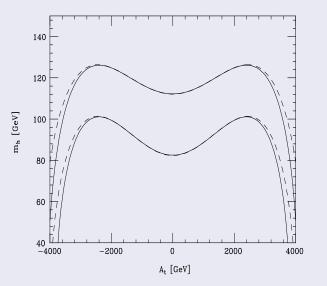
$$\Delta m_h^2 = \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{M_S^2} \left(1 - \frac{A_t^2}{12M_S^2} \right) \right]$$

$$\frac{A_t^2}{12M_s^2}\bigg)\bigg]$$

Even if the one-loop contribution can be larger than the tree-level perturbation theory holds


Little fine-tuning problem

To satisfy the experimental bounds a stop around the TeV scale is needed which produces a $\sim 1\%$ fine-tuning in the determination of the 7-mass


The nature of the electroweak Higgs sector

Mariano Quirós

Theoretical constraints

m_h Vs. A_t $[M_{SUSY}, m_A \sim 1$ TeV, tan $\beta = 15, 2]$

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

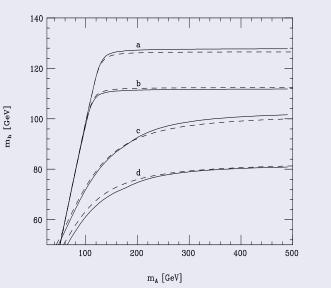
Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs


Gauge-Higgs unification

Conformal Higgg

Conclusion

 \mathbf{r}

m_h Vs. m_A [$M_{SUSY} \sim 1$ TeV]

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM


Little Higgs

Gauge-Higgs unification

Conformal Higgg

Conclusion

Ý

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

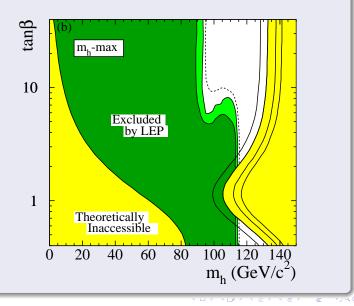
Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs


Gauge-Higgs unification

Conformal Higgg

Conclusion

 \mathbf{r}

Experimental constraints from LEP-2

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Drawbacks of the MSSM

- \blacktriangleright Little fine tuning: $\sim 1\%$ fine-tuning
- Large number ($\sim 10^2$) of free parameters
- Uncertainty in the mechanism of supersymmetry breaking:
 - Gravity mediation:
 - Universal mechanism solving the $\mu/B\mu$ problem
 - Its minimal version reduces the number of free parameters to a few
 - So-called Supergravity models
 - Gauge mediation
 - It is flavor blind
 - It has $\mu/B\mu$ problems
 - Gravitino is the LSP
 - Anomaly mediation
 - Tachyonic sleptons
- Supersymmetric flavor problem: supersymmetric partners can create FCNC and CP violating operators
- Gravity mediation has to be subdominant (~ 0.1% of gauge mediation)

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Solutions to SM drawbacks

Theoretical constraints

Experimental constraints

Drawbacks of the MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

LITTLE HIGGS

- Little Higgs models aim to solve the Little Hierarchy problem
- The symmetry that protects the (little) hierarchy is a global symmetry of which the Higgs is an approximate (pseudo) Goldstone boson
- It is inspired from low energy hadronic physics: there π^{±0} are Goldstone bosons associated to the spontaneous breaking SU(2)_L × SU(2)_R → SU(2)_I
- ▶ Similarly the Higgs is the Goldstone boson of a global symmetry $G_0 \rightarrow H_0$. It is in the coset space $H \in G_0/H_0$
- The symmetry $H \rightarrow H + c$ is broken (in particular) by Yukawa interactions

$$\Rightarrow m_H^2 \sim rac{lpha_t}{4\pi} \Lambda^2 \Rightarrow LEP$$
 paradox

► LH is a clever construction to avoid the appearance of the lowest order contribution to m²_H The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Collective breaking General structure General features

Gauge-Higgs unification

Conformal Higgg

Collective breaking

 The mass of a Higgs pseudo-Goldstone boson from the different couplings α_i that break the Goldstone symmetry is

$$m_{H}^{2} = \left(c_{i}\frac{\alpha_{i}}{4\pi} + c_{ij}\frac{\alpha_{i}\alpha_{j}}{(4\pi)^{2}}\right)\Lambda^{2}$$

where the coefficients are controlled by selection rules
► If the Goldstone symmetry is restored when any single coupling α_i = 0

⇒ To totally destroy the Goldstone symmetry one requires the combined effect [collective breaking] of at least two non-zero couplings

$$\Rightarrow m_{H}^{2} \sim \left(rac{lpha}{4\pi}
ight)^{2} \Lambda^{2} \Rightarrow \Lambda \sim 10 \ TeV$$

 This is a solution to the LEP paradox/Little Hierarchy problem The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

Collective breaking General structure General features

Gauge-Higgs unification

Conformal Higgg

General structure

- ► There is a global group G_g which spontaneously breaks to a subgroup H_g at a scale $f \sim 1$ TeV and the theory becomes strong at the scale $\Lambda \sim 4\pi f \sim 10$ TeV [Scales are similar to Λ_{QCD} and f_{π} in QCD]
- ▶ The subgroup $G_l \subset G_g$ is gauged: $G_l \supset SU(2) \times U(1)$
- ▶ The combination of spontaneous and collective breaking makes: $G_l \rightarrow SU(2) \times U(1)$ leaving heavy vector bosons and fermions with masses

 $M_{Heavy} \sim g \ f \sim 1 \ TeV$

► Higgs is part of the Goldstone multiplet which parametrizes the coset space G_g/H_g

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Collective breaking General structure General features

Gauge-Higgs unification

Conformal Higgg

General structure

- The generators of G₁ do not commute with the generators of the Higgs and thus gauge and Yukawa couplings collectively break the Goldstone symmetry and induce a Higgs mass
- The global invariance of the SM must be extended according to the different models (Littlest, Simplest,...)
- There are same spin partners for every SM field.
- When computing corrections to the Higgs mass these partners enforce the selection rule $c_i = 0$ by cancelling the one-loop quadratic divergent contributions of the Higgs field
- For instance if $SU(3) \subset G_g$
 - The quarks appear in triplets or singlets

$$\left(\begin{array}{c}t\\b\\T\end{array}\right)_{L}, t_{R}, b_{R}, T_{R}$$

▶ The Higgs boson arises as a pseudo-Goldstone boson from the spontaneous breaking $SU(3) \rightarrow SU(2) \times U(1)$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Collective breaking General structure General features

Gauge-Higgs unification

Conformal Higgg

General structure

- The gauge structure is also enlarged
- $\begin{array}{ccccc} Model & G_g & H_g & G_l \\ Littlest & SU(5) & SO(5) & [SU(2) \times U(1)]^2 \\ Simplest & SU(3)^2 & SU(2)^2 & SU(3) \times U(1) \\ \blacktriangleright \ Littlest: \end{array}$
 - $SU(5) \rightarrow SO(5)$: 24-10=14 Goldstone bosons
 - 4 absorbed by the broken gauge group
 - 10 Goldstone bosons= 4 (Higgs doublet)+6 (Higgs triplet)
- The one-loop quadratic divergence from the top quark

$$\Delta M_H^2 \sim -\frac{\alpha_t}{4\pi} \Lambda^2$$

is cancelled by that from the T quark

The one-loop quadratic divergence from the W gauge boson

$$\Delta M_H^2 \sim \frac{\alpha_W}{4\pi} \Lambda^2$$

is cancelled by that from the W_H gauge boson

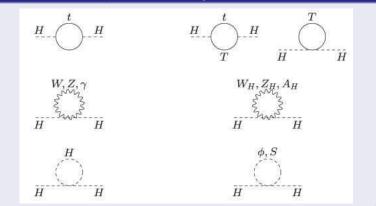
The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM


Little Higgs

Collective breaking General structure General features

Gauge-Higgs unification

Conformal Higgg

Cancellation of quadratic divergences

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

General structure General features

Gauge-Higgs unification

Conformal Higgg

Electroweak breaking

It is triggered by the t - T sector analogously to the MSSM

$$\Delta m_H^2 = -\frac{3}{8\pi^2} h_t^2 m_T^2 \log \frac{\Lambda}{m_T}$$

Since $\Delta m_H^2 \sim m_T^2$ electroweak breaking requires some tuning of at least 5% as in the MSSM

Dark Matter

In the Littlest LH models one can introduce a T-parity such that SM particles (extra particles) are T-even (T-odd). In this case the lightest T-odd gauge bososon is a candidate to DM

Electroweak precision tests

T-parity forbids the mixing between T-odd and T-even gauge bosons leading naturally to S = 0

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

Collective breaking General structure

General features

Gauge-Higgs unification

Conformal Higgg

GAUGE HIGGS UNIFICATION

- We have explored two symmetries protecting the Higgs from quadratic divergences: supersymmetry and a global symmetry
- In higher dimensional theories there is another symmetry which could do the job: a gauge symmetry
- The gauge bosons of a higher dimensional gauge symmetry decompose as

Lorentz Decomposition

$$\mathcal{A}^{\mathcal{A}}_{\mathcal{M}} = \mathcal{A}^{\mathcal{A}}_{\mu}, \ \mathcal{A}^{\mathcal{A}}_{i} \ [\mu = 0, \dots, 3, i = 1, \dots, d]$$

• A^A_μ are gauge bosons in four dimensions

• A_i^A are scalar in the adjoint representation

Orbifold constructions

We need to compactify extra dimensions in an orbifold: e.g. for d=1 (A_{μ},A_5) S^1/\mathbb{Z}_2

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

How to get a doublet from an adjoint Radiative symmetry breaking Difficulties with GHU Wayouts

Conformal Higgg

The orbifold group has to act non trivially on the group generators such that:

Orbifold Decomposition

$$egin{aligned} &\mathcal{A}^{\mathcal{A}}_{\mu} = \mathcal{A}^{\mathcal{a}}_{\mu}(\textit{even}), \ &\mathcal{A}^{\hat{a}}_{\mu}(\textit{odd}) \ &\mathcal{A}^{\mathcal{A}}_{5} = \mathcal{A}^{\mathcal{a}}_{5}(\textit{odd}), \ &\mathcal{A}^{\hat{a}}_{5}(\textit{even}) \end{aligned}$$

Only even fields have zero modes φ⁽ⁿ⁾_{even}, n = 0, 1, 2, ... while odd field have only non zero modes φ⁽ⁿ⁾_{odd}, n = 1, 2, ...
 The Higgs mechanism acts for all modes as

Higgs mechanism

$$(A^{\hat{a}}_{\mu} massless + A^{\hat{a}}_{5})^{(n \neq 0)} = A^{\hat{a}}_{\mu}^{(n \neq 0)} massive$$

 $(A^{a}_{\mu} massless + A^{a}_{5})^{(n \neq 0)} = A^{a}_{\mu}^{(n \neq 0)} massive$

The massless states are the zero modes

Massless states

$$A_{\mu}^{a(n=0)}, A_{5}^{\hat{a}(n=0)}$$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higg

Gauge-Higgs unification

How to get a doublet from an adjoint Radiative symmetry breaking Difficulties with GHU Wayouts

Conformal Higgg

- To get a doublet out of an adjoint one has to make a careful orbifold breaking
- One has to enlarge the gauge group since the

SM Higgs is NOT in the adjoint representation of $SU(2) \times U(1)$

For instance

$$SU(3) \rightarrow SU(2) \times U(1)$$

Achieved by the orbifold action $A_\mu(-y)=UA_\mu(y)U^\dagger,\ A_5(-y)=-UA_5(y)U^\dagger$ with

$$diag(-1, -1, +1)$$

which breaks SU(3) into $SU(2) \times U(1)$

The Higgs mass is protected from quadratic divergences in the bulk of the extra dimension by the five-dimensional gauge symmetry

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ (?)

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

How to get a doublet from an adjoint

Radiative symmetry breaking Difficulties with GHU Wayouts

Conformal Higgg

- ► The orbifold has two fixed points at $y = 0, \pi R$ which are singular and four-dimensional
- ► The Higgs mass is protected from quadratic divergences at the fixed points by the shift symmetry (inherited from the five-dimensional gauge invariance) $\delta A_5 = \partial_y A_5$

How to get the gauge bosons

$$\begin{pmatrix} A_{\mu}^{3} + A_{\mu}^{8}/\sqrt{3} & A_{\mu}^{2} - iA_{\mu}^{2} & A_{\mu}^{4} - iA_{\mu}^{5} \\ A_{\mu}^{1} + iA_{\mu}^{2} & -A_{\mu}^{3} + A_{\mu}^{8}/\sqrt{3} & A_{\mu}^{6} - iA_{\mu}^{6} \\ A_{\mu}^{4} + iA_{\mu}^{5} & A_{\mu}^{6} + iA_{\mu}^{7} & -2A_{\mu}^{8}/\sqrt{3} \end{pmatrix}$$

How to get the Higgs bosons

$$\begin{pmatrix} A_5^3 + A_5^8/\sqrt{3} & A_5^2 - iA_5^2 & A_5^4 - iA_5^5 \\ A_5^1 + iA_5^2 & -A_5^3 + A_5^8/\sqrt{3} & A_5^6 - iA_5^6 \\ A_5^4 + iA_5^5 & A_5^6 + iA_5^7 & -2A_5^8/\sqrt{3} \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

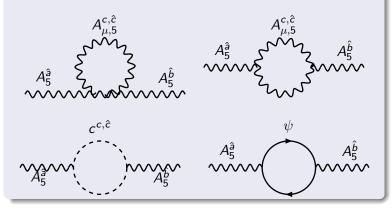
Standard Model

MSSN

Little Higg

Gauge-Higgs unification

How to get a doublet from an adjoint


Radiative symmetry breaking Difficulties with GHU Wayouts

Conformal Higgg

 Since the space is compactified there can be finite contributions to the A²/₅ mass proportional to 1/R

Hosotani breaking

The diagrams contributing to the mass of $A_5^{\hat{a}}$ are

 $m_{\hat{a}}^{2} = \frac{3g^{2}}{32\pi^{4}R^{2}}\zeta(3)\left[3C_{2}(\mathcal{G}) - 4T(R)N_{f}\right]$

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSN

Little Higgs

Gauge-Higgs unification

How to get a doublet from an adjoint

Radiative symmetry breaking Difficulties with GHU Wayouts

Conformal Higgg

There is a number of difficulties with this (otherwise very nice) scenario

Drawbacks

- ► In more than five dimensions a (quadratically divergent) tadpole localized at the fixed points F_{ij} is generated by radiative corrections while the quartic Higgs coupling is sizeable and generated by the term F²_{ij} in the bulk
- In five dimensions there is no localized tadpole but there is neither a tree-level quartic coupling which means difficulties with too small a Higgs mass
- ► It is difficult to have a theory with the correct prediction for the weak angle [extra U(1)'s are usually required]
- Fermion masses are difficult to accomodate since they come from gauge couplings: in particular the top quark use to be too light
- The compactification scale is usually too small in conflict with EWPT
- The theory has a very low cutoff after which it becomes non-perturbative

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

How to get a doublet from an adjoint

Radiative symmetry breaking

Difficulties with GHU Wayouts

Conformal Higgg

Some of these difficulties can be alleviated by embedding GHU in a warped (Randall-Sundrum) five-dimensional space time

Wayouts

- Warped models are valid up to scales of order M_{GUT} or M_{Planck} and they can unify
- The Higgs is holographic, i.e. it is localized towards the IR brane [at higher scales it is composite]
- Fermion masses can be implemented by means of their localization, i.e. five-dimensional masses
- The top quark (to get a big mass) is localized as the Higgs. So it is also holographic
- EWPT as well as corrections to the $Zb\bar{b}$ vertex lead to KK-masses in the 2.5 4 TeV, which imply $\sim 1\%$ fine-tuning for the Higgs mass (similar to the MSSM)
- These models are the modern version of technicolor theories: they make use of the AdS/CFT correspondence for calculability

The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

How to get a doublet from an adjoint Radiative symmetry breaking Difficulties with GHU Wavouts

Conformal Higgg

Conformal Higgs

Unparticles

- Recently Georgi ^a has introduced a new way of studying conformal sectors, with a fixed point at the scale Λ, that couple to the Standard Model.
- Fields in a conformal theory can acquire large anomalous dimensions γ and modify the scaling dimension d of the field
- If the conformal symmetry is broken at a scale m_g, which provides a continuum of states above the mass gap the propagator for a scalar particle can be described as

$$\Delta(p) \propto rac{1}{(-p^2+m_g^2-i\epsilon)^{1-\gamma}}$$

• The particle propagator is reached for the case $\gamma = 0$

 The nature of the electroweak Higgs sector

Mariano Quirós

Outlin

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

^aH. Georgi, hep-ph/0703260

Un-Higgs

- Making a step forward along the previous direction one can speculate with the idea that the Higgs is an object of a conformal theory (unparticle) with a fixed point at a scale Λ and a scaling dimension d = 1 + γ, where γ is the anomalous dimensions: an un-Higgs ^a
- The un-Higgs is coupled to the SM fields by Yukawa interactions

$$\mathcal{L} = h_t rac{1}{\Lambda^\gamma} \mathcal{H}^\dagger ar{q}_L t_R + h.c.$$

- For γ > 0 the operator is irrelevant and does not take the conformal theory out of the fixed point
- The conformal symmetry should be broken at a scale m_g which is related to the VEV of the un-Higgs, v^d: it can be triggered by SM top-loop effects

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

^aD. Stancato and J. Terning, 0807.3961 [hep-ph]

The fine-tuning/hierarchy problem

The Higgs mass term is given by

 The radiative corrections induced by the top Yukawa coupling are

 $\delta m_{H}^{2(1-\gamma)} = \frac{3h_{t}^{2}}{8\pi^{2}}\Lambda^{2(1-\gamma)}$

 $m_{\mu}^{2(1-\gamma)}|H|^{2}$

The sensitivity of the Higgs mass to radiative corrections is

 $1 + \frac{3h_t^2}{8\pi^2} \left(\frac{\Lambda^2}{m_H^2}\right)^{1-\gamma}$

- For γ = 0 it is the usual sensitivity appearing from quadratic divergences
- For $\gamma \to 1$ the sensitivity is tiny for any value of Λ
- For instance for γ = 0.7 one can push Λ = 10 TeV without much tuning

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg

Conclusions

- The last word will be from LHC
- One possibility is that the theory below M_{Planck} is just the Standard Model: in that case we should try to find other solutions to the hierarchy problem, as e.g. an anthropic solution/landscape
- If the Higgs is light (< 135 GeV) then an excellent candidate is the MSSM although supersymmetric particles should show up at LHC
- If the Higgs is heavy then other particles should appear to restore agreement with present electroweak precision tests
- If there is no Higgs at all other resonances should appear to restore unitarity in WW scattering
- Even if the Higgs is found we will (probably) need a linear collider for Higgs precision physics

The nature of the electroweak Higgs sector

Mariano Quirós

Outline

Standard Model

MSSM

Little Higgs

Gauge-Higgs unification

Conformal Higgg