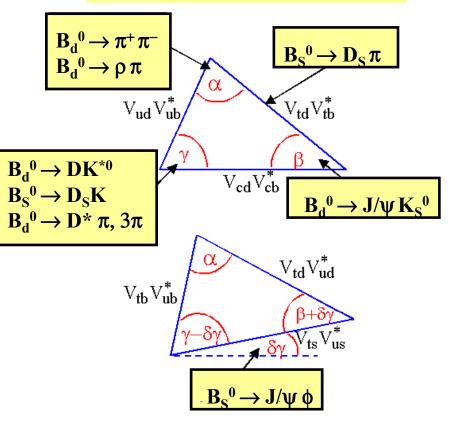


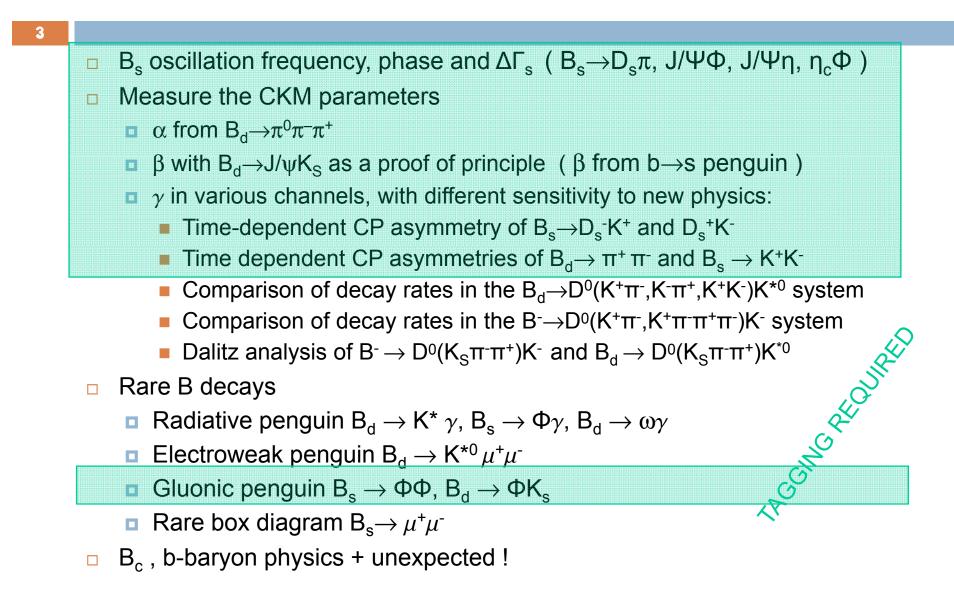
DISCRETE '08 Symposium on Prospects in the Physics of Discrete Symmetries

11–16 December 2008, IFIC, Valencia, Spain

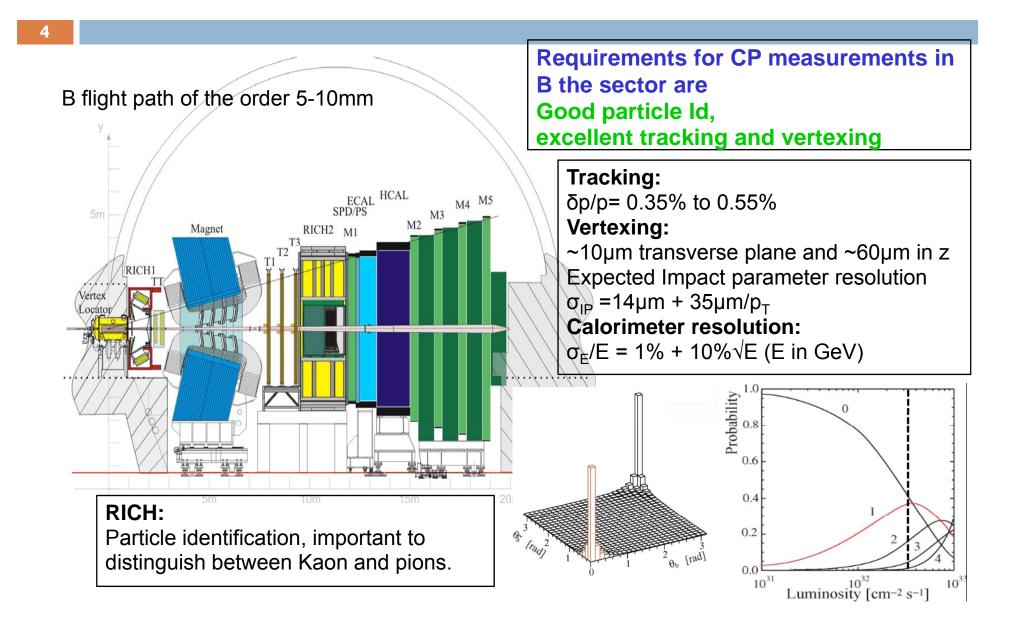
Flavour Tagging performance in LHCb

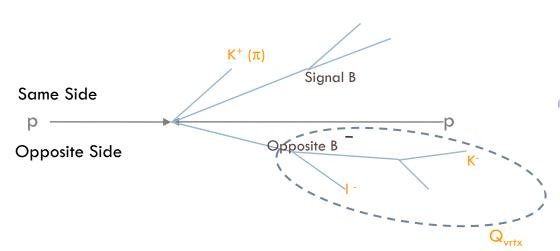

Marc Grabalosa Gándara (14/12/08)

Motivation


2

- LHCb is a 2nd generation precision experiment coming after B-Factories and Tevatron
- Improve precision on γ and other CKM parameters
- Many measurments require the knowledge of the initial flavour of the B meson


Unitarity Triangles


Importance of tagging

LHCb Overview

Flavour Tagging

 Taggers:

 muons

 electrons

 kaons

 vertex charge

 SS

 kaons or pions (when B_{d,u})

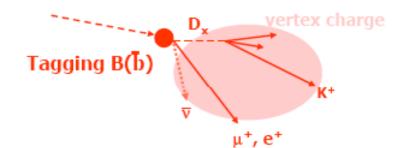
If several candidates for the same tagger exist \rightarrow Select the one with highest Pt.

Tagging efficiency

 $\varepsilon_{tag} = \frac{N_R + N_W}{N_R + N_W + N_U}$

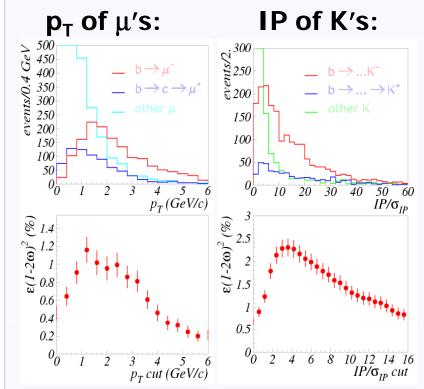
Wrong tag fraction

$$\omega = \frac{N_W}{N_R + N_W}$$

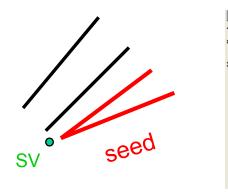

Effective efficiency

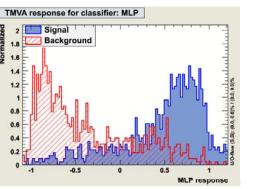
 $\varepsilon_{eff} = \varepsilon_{tag} (1 - 2\omega)^2$

Taggers make individual decisions about the flavour with varying accuracy, which is evaluated by a NNet.


Opposite-side tagger (OS)

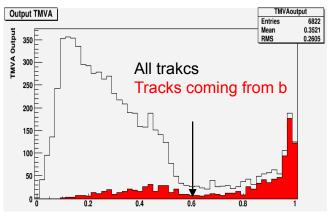
 \Box Tagging *objects* from b \rightarrow c \rightarrow s chain.

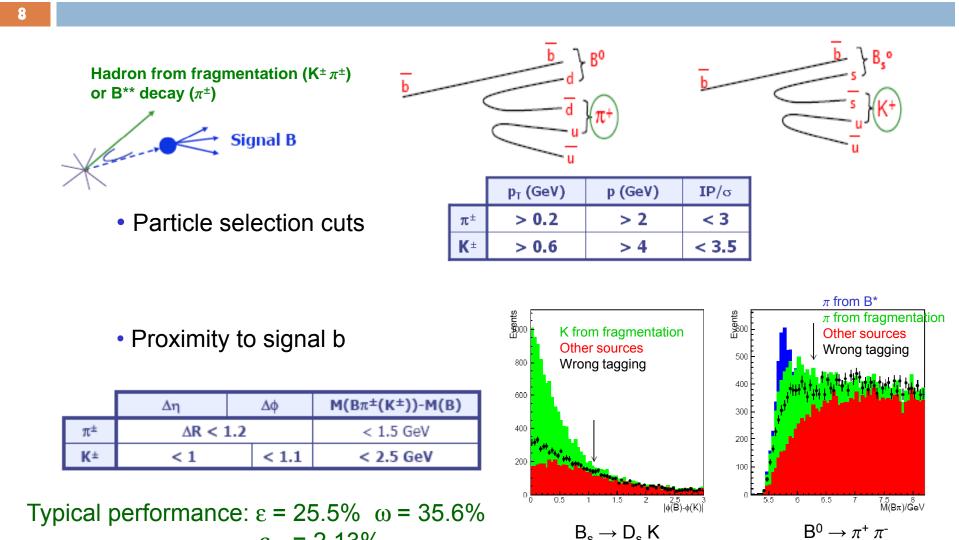

□ Kinematic and geometrical variables (IPS, P, Pt,...) show a dependence in purity of right vs wrong tags → CUTS


	р _т (GeV)	p (GeV)	IP/ơ
μ^{\pm}	> 1.1		
e±	> 1.1	> 4	
K±	> 0.4	> 4	> 3.5

OS Vertex Charge tagger

Use long tracks to build a 2-seed vertex after some kinematic cuts
 Use a NN to select good candidate (2-seed) to SV




Other tracks are added iteratively _____
 Weighted charge can be used as a tagger

$$Q_{\rm vtx} = \frac{\sum_i p_{\rm T}^{\kappa}(i)Q_i}{\sum_i p_{\rm T}^{\kappa}(i)}$$

Typical performance: $\varepsilon = 43\% \quad \omega = 42\% \quad \varepsilon_{eff} = 1.14\%$

Same-side tagger (SS)

 ε_{eff} = 2.13%

Taggers

9

□ The tag (b or bbar) is decided by the charge of the tagging object

- Combine the taggers to obtain a final decision of the tag
- Sort in 5 categories depending on the probability of the tag to be correct

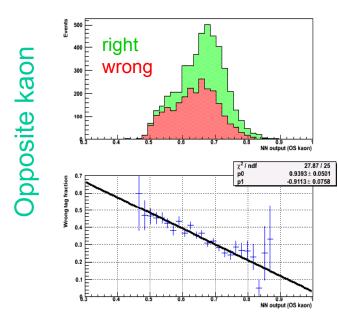
Neural Net

• Obtain a wrong tag fraction (ω) for each event from the NN output

• Has a higher efficency

Combine Particle IDentification (PID)

• Sort events based on the PID of the track ordering them in ω


- NN independent. Simple method
- Has a lower efficency

Each method will give a tag and a category (related with the reliability)

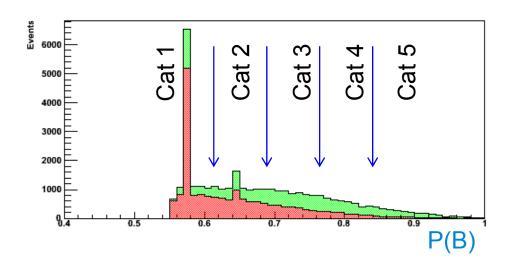
Neural Net method

10

- □ For each event, each tagger will give an ω as a function of the NN output.
- □ The wrong tag fraction is fit linearly on the Neural Net output.


```
\omega_{tagger(K)} (NNet) = a_0 + a_1 NNet
```

Combination of taggers


11

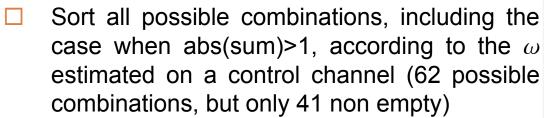
- \Box Each tagger will have its own ω_{tagger} (NNet).
- The final probability for the event will be a combination of the tagger wrong tag fractions:

$$P^{+1} = (1 - \omega_k) \omega_e \dots$$

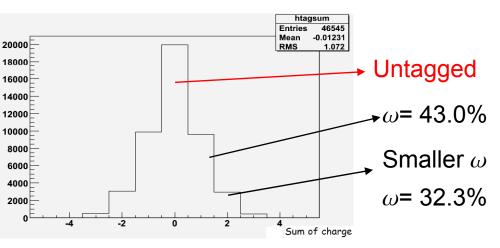
$$P^{-1} = \omega_k (1 - \omega_e) \dots$$

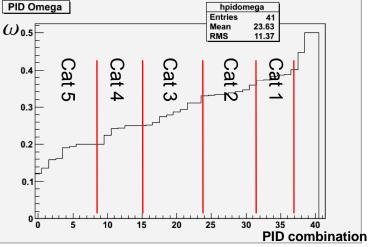
$$P(\overline{B}) = 1 - P(B)$$

□ To calculate the final combined effective efficiency, we bin the events in 5 categories (and treat them separately in the CP fits).


PID based combination of taggers

12


Form possible combinations according:


• Particle Identification (PID) Muons, electrons , kaons, kaons or pions SS , vertex charge

 Sum of the individual tagger decisions (sum of charges) abs(sum) > 1

□ Bin events in 5 categories

Results, ex. $B_s \rightarrow J/\psi \phi$

13

Performance of taggers:

	E tag	ω	E eff
muons	6,15 ± 0,08	32,5 ± 0,6	0,76 ± 0,05
electrons	2,78 ± 0,05	29,9 ± 0,9	0,45 ± 0,04
kaons	15,33 ± 0,12	34,4 ± 0,4	1,49 ± 0,07
SS kaons	25,56 ± 0,14	35,6 ±0,3	2,13 ± 0,09
vtx charge	32,79 ± 015	40,8 ± 0,3	1,11 ± 0,07

□ Combine all taggers to obtain the global effective efficency, which is the direct sum of ε_{eff} in the 5 tagging categories.

	E tag	ω	E eff
Using Nnet	53,96 ± 0,16	33,13 ± 0,21	6,14 ± 0,14
PID combination	56,65 ± 0,17	35,33 ± 0,22	4,89 ± 0,14

□ NNet ε_{eff} increases by ~20%

Performances for a few channels

14

	E _{eff} %	ε%	ω%
$B_s \rightarrow D_s \pi$	8.85 ± 0.18	60.7	30.9
$B_d \rightarrow J/\psi K^*$	4.29 ± 0.09	53.2	35.8
$B_d \rightarrow \pi\pi$	5.52 ± 0.16	56.8	34.4
$B_{u} \rightarrow J/\psi K^{+}$	4.11 ± 0.11	53.1	36.1

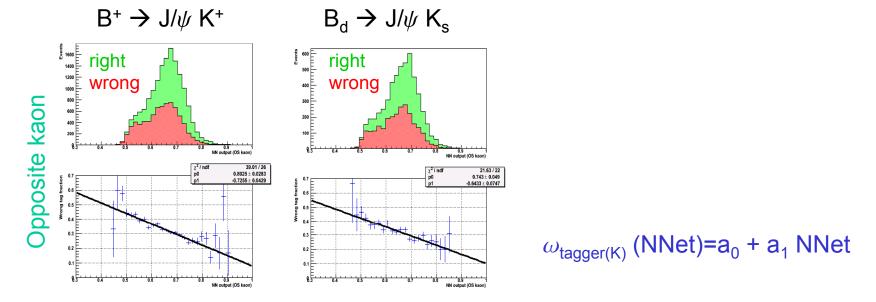
Differences can be due to different signal B spectra, trigger...

Control channels

- 15
 - Accumulate high statistics in various flavour-specific modes
 - \square ω can be extracted by:
 - B[±]: just comparing tagging with observed flavour
 - **\square** B_d and B_s need fit of oscillation

Channel	Yield/2 fb ⁻¹	B/S	δω / ω (2fb ⁻¹) estimate	
$B^+ \rightarrow J/\psi(\mu\mu)K^+$	1.7 M	0.4	0.15%	
B ⁺ →D ⁰ π ⁺	0.7 M	0.8	0.25%	
Β ^ο →J/ψ(μμ)Κ* ^ο (Κ ⁺ π ⁻)	0.7 M	0.2	0.2%	
$B_s \rightarrow D_s^+ \pi^-$	0.08 M	0.3	0.7%	J
$B_d^{\ o} \rightarrow D^{*-} \mu^+ \nu$	9 M	0.4	0.05%	
$B^+ \rightarrow D^{0} {}^{(*)} \mu {}^+ \nu$	3.5 M	0.6	0.1%	
$B_s \rightarrow D_s^{(*)} \mu^+ \nu$	2 M	0.1	0. 5%	J

Topology close to that of signal channels


Semileptonics: • High statistics • More difficult topology

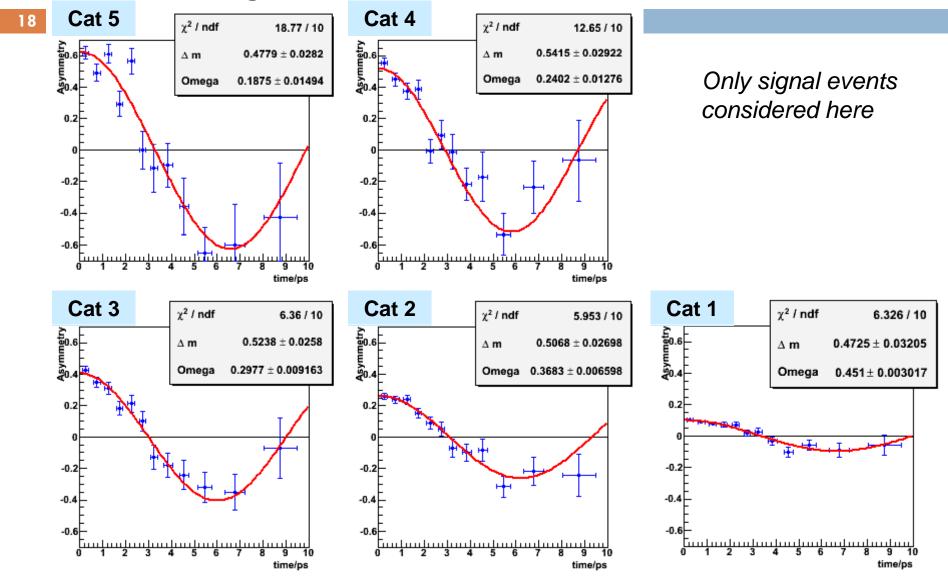
Taggers can be calibrated using these control channels.

Use of control channels

16

- \square B⁺ \rightarrow J/ ψ K⁺ is a flavour specific channel
- No true MC information needed
- □ The ω obtained in a given tagger for B⁺ → J/ ψ K⁺ can be used the same taggers in other channels

Control channels will allow to measure ω directly from data, with the statistical accuracy required for physics measurements


Mistag extraction for $\rm B^{0} \rightarrow J/\psi \; K_{s}$

17

One of the first measurements requiring flavour tagging of the B will be sin 2β from B⁰ \rightarrow J/ $\psi(\mu\mu)K_s$ as a benchmark to demonstrate LHCb capability in CP-asymmetry measurements

- For the evaluation of the mistag rate, the following strategy, using $B^+ \rightarrow J/\psi(\mu\mu)K^+$ and $B^0 \rightarrow J/\psi(\mu\mu)K^{*0}$ as control channels, is foreseen:
- With B⁺→J/ψ(µµ)K⁺ events determine for each tagger the dependence of the mistag rate on the kinematical properties of the tagger.
 Combine these probabilities into a single probability per event.
- Use this function to subdivide $B^0 \rightarrow J/\psi(\mu\mu)K^{*0}$ and $B^0 \rightarrow J/\psi(\mu\mu)K_s$ events into 5 samples of decreasing mistag-rate (tag categories).
- Fit to flavour oscillations of $B^0 \rightarrow J/\psi(\mu\mu)K^{*0}$ events, as a function of propertime, in each of the 5 samples, to measure the mistag rate per category. Use these 5 mistag rates in the CP fit of $B^0 \rightarrow J/\psi(\mu\mu)K_S$ events, also subdivided into 5 categories.

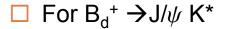
Fit to flavour oscillations of $B_0 \rightarrow J/\psi K_0^*$ in 5 categories

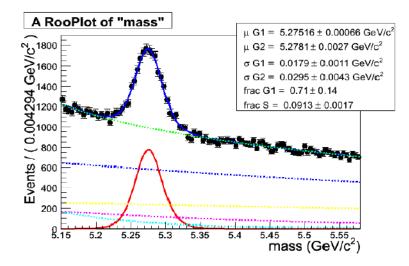
Control channel check

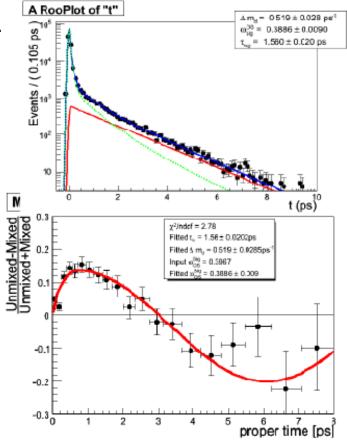
19

from MC truth from propertime fit

category	$B^0 \rightarrow J/\psi K_S$	B⁰→J/ψ K*⁰	B⁰→J/ψ K*₀
ω ₁ (%)	45.4 ± 0.3	44.8 ± 0.2	45.1 ± 0.3
ω ₂ (%)	35.7 ± 0.7	36.8 ± 0.5	36.8±0.7
ω ₃ (%)	28.3 ± 0.9	29.7 ± 0.7	29.8 ± 0.9
ω ₄ (%)	23.5 ± 1.3	23.7 ± 0.9	24.0 ± 1.3
ω ₅ (%)	17.3 ± 1.5	18.8 ± 1.1	18.8 ± 1.5


□ Results from propertime fit are compatible to MC truth.


 \Box In one year, 2/fb, with 215k events, $\sigma(\sin 2\beta) \sim 0.02$


Background on control channels

20

- Control channels will be used with data events, where full account of background has to be taken.
- □ We have devised the strategies to cope with it.

Conclusions

- Flavour tagging is a fundamental ingredient for B physics measurements in LHCb.
- Control channels will allow to measure ω directly from data, with the required statistical accuracy, taking into account many possible effects (backgrounds, trigger, etc.)
- Expected effective tagging efficiency at LHCb is $\sim 6 9$ % for B_s and $\sim 4 5$ % for B_{d.u} channels