The Omega Effect as a Discriminant of SpaceTime Foam

Sarben Sarkar

King's College London, Dept. of Physics

MRTN-CT-

Outline

- Theories with Broken CPT? Various philosophies
- Systems to search for CPT violation
- Orders of magnitude
- Suitable formalism? string based/ thermal bath based/ Lindblad based
- No one measure of breaking: subtle phenomenology of decoherence effects
- Entanglement
- Modified entanglement ω effect
- Entanglement generated by evolution

Issues in CPT symmetry

- Meaning of CPT symmetry
- Theoretical foundations
- How can CPT be violated?
- Theoretical models, ideas and order of magnitude of effects
- Models of quantum gravity violating quantum coherence
- CPT violation tests involving coherence:
- Entangled states of neutral K and B mesons
- Neutrino oscillations

CPT theorem

- $\Theta=C($ harge $)-P($ arity $)-T($ ime $)$ symmetry
- is a symmetry of a local, unitary. Lorentz invariant quantum field theory in flat space-time with lagrangian L
- Proof based on covariance properties of Wightman functions under Lorentz transformations and the unitarity of the latter
- For quantum gravity QG
- no Lorentz invariance
- no unitarity due to inacessibility of states within horizons
- lacking QG, arguments based on semi-classical intuition
- Breakdown of invariance

Highly curved space-time backgrounds, such as the black hole horizon type, leading to space-time foams arising in models of quantum gravity

Decoherence vs CPT Violation in Quantum Mechanics

- Distinguish 2 types of CPT violation CPTV
- (I) CPTV within QM

$$
\delta M=m_{K^{0}}-m_{\bar{k}^{0}}, \delta \Gamma=\cdots
$$

- This could be due to spontaneous violation of Lorentz symmetry, extensions of the standard model
- (ii) CPTV through decoherence (entanglement with QG environment) e.g. through recoil parameters in a D particle model of the environment or other parameters in the Lindblad formalism
- Experimentally they can be disentangled e.g. through the study of the ratios

$$
A(t)=\frac{R\left(\bar{K}_{t=0}^{0} \rightarrow f\right)-R\left(K_{t=0}^{0} \rightarrow f\right)}{R\left(\bar{K}_{t=0}^{0} \rightarrow \bar{f}\right)+R\left(K_{t=0}^{0} \rightarrow f\right)}
$$

where \boldsymbol{R} represents decay rate into final state \boldsymbol{f}

- Here we shall discuss another quantity involving entanglement

Discrete space-time

- At (Planck scale)
$10^{-35} \mathrm{~m}$ discrete Lorentz violation?
- Microscopic black holes: inaccessible degrees of freedom (certainly at low energy)
- Other types of spacetime defects in string theories in terms of Dbranes
- Collectively space-time foam

\qquad
I-
-

 refractive index

Page 1980)

- Hilbert spaces H_{i}
- H_{1} space of initial states $\operatorname{Let}|\mathrm{X}\rangle \in \mathrm{H}_{1},|\mathrm{Y}\rangle \in \mathrm{H}_{2},|\mathrm{Z}\rangle \in \mathrm{H}_{3}$
- H_{2} space of states of hidden hypersurfaces of micro black holes

$$
\operatorname{Let}|\overline{\mathrm{X}}\rangle=\Theta|\mathrm{X}\rangle,|\overline{\mathrm{Y}}\rangle=\Theta|\mathrm{Y}\rangle,|\overline{\mathrm{Z}}\rangle=\Theta|\mathrm{Z}\rangle
$$

- H_{3} space of final states

Evolution of initial state: $x_{A}|\mathrm{X}\rangle_{A} \rightarrow S_{A b c} x_{A}|\overline{\mathrm{Y}}\rangle_{b}|\overline{\mathrm{Z}}\rangle$

- Pure state

Mixed state
\$ is not invertible
i.e. lack of unitarity

- Differing views with unitarity:
- Holography for strings in anti-de Sitter space-time (Maldacena, Witten); Euclidean approach and superposition of space-times (Hawking)

$$
\begin{aligned}
&|X\rangle_{A}{ }^{A}\langle X| \rightarrow \sum_{c, c^{\prime}} \$_{A c}{ }^{A c^{\prime}}|\bar{Z}\rangle_{c}{ }^{c^{\prime}}\langle\bar{Z}|=\text { mixed state } \\
& \text { where } \$_{A c}{ }^{A c^{\prime}}=\sum_{b, b^{\prime}} S_{A b c} S^{* A b^{\prime} c^{\prime}} \\
& \Rightarrow \$ \neq U U^{\dagger} \text { with } U=e^{i H t}
\end{aligned}
$$

> However these arguments depend heavily on supersymmetry

Continuation back from Euclidean may be problematic

CPT and non-unitarity

- For $\$ \neq U U^{+} \Theta$ not conserved
- since if Θ is conserved $\$^{-1}$ exists
- Proof:
$\rho_{\text {out }}^{\prime}=\$ \rho_{\text {in }}^{\prime}, \Theta \rho_{\text {in }}=\rho_{\text {out }}^{\prime}, \Theta^{-1} \rho_{\text {out }}=\rho_{\text {in }}^{\prime}$
$\Rightarrow \Theta \rho_{\text {in }}=\$ \rho^{\prime}{ }_{\text {in }}=\$ \Theta^{-1} \rho_{\text {out }}=\$ \Theta^{-1} \$ \rho_{\text {in }}$
- Hence $1=\Theta^{-1} \$ \Theta^{-1} \${ }^{\rho_{n}^{\prime}} \xrightarrow{\rho^{\prime}}$
and so \$ is invertible

- Decoherence from space-time foam can lead to a lack of an inverse for $\$$ and so non-conservation of Θ

Order of magnitude of CPTV

- Although QG not solved, estimates can be given for orders of magnitude at comparatively low energies
- Since $G_{N} \sim \frac{1}{M_{P}{ }^{2}}$ and $M_{P}=10^{19} \mathrm{GeV}$ effective lagrangian approach in terms of expansion in powers of $\frac{E}{M_{P}}$ with
E being typical low energy scale of probe
- Gives leading order quantum correction $o\left(\left[\frac{E}{M_{P}}\right]^{2}\right)$
- Energy change $\sim \frac{E^{3}}{M_{P}{ }^{2}}$
- Neutrinos at Ice Cube may be sensitive
- Neutral mesons insensitive

Other non-perturbative approaches: loop gravity, stringy
QG can lead to larger detectable o $\begin{gathered}E^{2} \\ M_{p} \text { iscrete } 08 \text { valencia }\end{gathered}$ effects

New EPR entanglement from broken CPT (Bemabeu,

 Mavromatos and Sarkar, PRD)- Θ operator does not exist - K° and K° can be distinguished
- EPR pair correlations produced in decay
- Φ has $J^{P C}=1^{--}$, particle-antiparticle symmetry,

$$
|i\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}(-\bar{q})\right\rangle\left|\bar{K}^{0}(\bar{q})\right\rangle-\left|\bar{K}^{0}(-\bar{q})\right\rangle\left|K^{0}(\bar{q})\right\rangle\right)
$$

- conservation of parity and strangeness in strong interaction
- Relaxing $C P=+$ gives ω effect: decay product has additional piece $\left.\quad \frac{\omega}{\sqrt{2}}\left(K^{0}(-\bar{q})\right)\left|\bar{K}^{0}(\bar{q})+\left|\bar{K}^{0}(-\bar{q})\right| K^{0}(\bar{q})\right)\right)$
- QG origin for such an initial state? String picture?
- Is such entanglement generated during evolution in spacetime foam?

D-particle foam and thermal bath

t

- Closed string scatters off a D-particle
- D-particle recoils on scattering
- Weak nonconformality described by logarithmic conformal field theory
- In brane worlds D-particles in the bulk cross the brane and interact with matter
- Foam has also been modelled by a thermal bath (Garay)
- Lindblad phenomenology

Stringy Master Equation

- Master equation for stringy low-energy matter

$$
\frac{\partial}{\partial t} \rho=i[\rho, H]+\alpha^{\prime} \Omega\left[g_{M N},\left[g^{M N}, \rho\right]\right]
$$

in de Sitter space with α^{\prime} Regge slope, cosmological constant, H the matter Hamiltonian

- For a single scattering event the distortion caused is

$$
g_{0 i} \propto g_{s} \frac{\Delta p_{i}}{M_{s}}
$$

where g_{s} is the string coupling, M_{s} is the string mass scale and Δp_{i} is the momentum transfer in a collision

- The recoil aspects can be incorporated in a phenomenological manner by making $g_{0 i}$ flavour changing

Phenomenological 2 Flavour Stringy Decoherence

- Model momentum transfer operator due to recoil by $\frac{\Delta p}{M_{p}} \sim \frac{r^{r}}{M_{p}} \hat{p}$
where r is a gaussian random variable $\langle r\rangle=0$ and $\quad\left\langle r^{2}\right\rangle=\Delta$
T Target space metric state $\quad \rho_{g r a v}=\int d^{5} r f\left(r_{\mu}\right)\left|g\left(r_{\mu}\right)\right\rangle\left\langle g\left(r_{\mu}\right)\right|$
with $\quad \begin{aligned} & \left\langle r_{\mu}\right\rangle=0, \quad\left\langle r_{\mu} r_{\nu}\right\rangle=\Delta_{\mu} \delta_{\mu \nu}, \\ & \Delta_{\mu}=O\left(\frac{E^{2}}{M_{p}^{2}}\right)\end{aligned}$
- Semi-classical picture with $\left|g\left(r_{\mu}\right)\right\rangle$ a coherent state
- Neutral meson two flavour structure incorporated in metric tensor with components

$$
g^{00}=\left(-1+r_{4}\right) 1, \quad g^{01}=g^{10}=r_{0} 1+r_{1} \sigma_{1}+r_{2} \sigma_{2}+r_{3} \sigma_{3}, \quad g^{11}=\left(1+r_{5}\right) 1
$$

- No hair theorem permits the non-conservation of flavour
- For neutral mesons flavour denotes particle/antiparticle or the different mass eigenstates

Klein-Gordon equation with recoil fluctuations

- In mass eigenstate basis the Klein-Gordon equation is
with

$$
\left(g^{\alpha \beta} D_{\alpha} D_{\beta}-m^{2}\right) \Phi=0
$$

- Associated Hamiltonian \hat{H} is

$$
\hat{H}=g^{01}\left(g^{00}\right)^{-1} \hat{k}-\left(g^{00}\right)^{-1} \sqrt{\left(g^{01}\right)^{2} \hat{k}^{2}-g^{00}\left(g^{11} \hat{k}^{2}+\widehat{m}^{2}\right)}
$$

acting on the space of states $|p, \uparrow\rangle$ or $|p, \downarrow\rangle$ with $\hat{k}|p,\{\uparrow, \downarrow\}\rangle=p|p,\{\uparrow, \downarrow\}\rangle)$
and

$$
\bar{m}^{2}=\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right) 1+\frac{1}{2}\left(m_{1}^{2}-m_{2}^{2}\right) \sigma_{3}
$$

- In terms of mass eigenstates $\left|K_{s}\right\rangle(=|\psi\rangle),\left|K_{\iota}\right\rangle(=|\uparrow\rangle)$. the ω effect state is

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}\binom{\left.|k, \uparrow\rangle^{(1)} \mid-k, \downarrow\right)^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}}{+\omega\left(|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}\right)}
$$

- Strictly space-time foam is entangled with the 2-meson state and so would lead to a density matrix description

Gravitational dressing of states

- To lowest order in $\Delta, \quad \hat{H}_{I}=-\left(r_{1} \sigma_{1}+r_{2} \sigma_{2}\right) \hat{k}$
- The gravitational dressing $\left|k^{(i)}, \downarrow\right\rangle_{\varrho G}^{(i)}$ of $|k, \downarrow|^{(i)}$ is

$$
\left|k^{(i)}, \downarrow\right|_{\varrho G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\alpha^{(i)}\left|k^{(i)}, \uparrow\right\rangle^{(i)}
$$

where

$$
\alpha^{(i)}=\frac{\left({ }^{(i)}\left(\uparrow, k^{(0)}\left|\hat{H}_{2}\right| k^{(i)}, \downarrow\right)^{(i)}\right.}{E_{2}-E_{1}} \quad \text { and } \quad E_{i}=\left(m_{i}^{2}+k^{2}\right)^{\frac{1}{2}}
$$

- $\begin{aligned} & \text { Similarly }\left|k^{(i)}, \downarrow\right\rangle_{\varrho G}^{(i)} \text { with } \\ & \text { becomes }\left|k^{(i)}, \uparrow\right|_{\varrho G}^{(i)}=\left|k^{(i)}, \uparrow\right|^{(i)}+\beta^{(i)}\left|k^{(i)}, \downarrow\right\rangle^{(i)}, ~\end{aligned}$

$$
\beta^{(0)}=\frac{{ }^{(i)}\left\langle\downarrow, k^{(0)}\right| \hat{H}_{l}\left|k^{(0)}, \uparrow\right\rangle^{(i)}}{E_{1}-E_{2}}
$$

- Dressed antisymmetric state

$$
|\Psi\rangle_{Q G}=|k, \uparrow\rangle_{Q G}^{(1)}|-k, \downarrow\rangle_{Q G}^{(2)}-|k, \downarrow\rangle_{Q G}^{(1)}|-k, \uparrow\rangle_{Q G}^{(2)}
$$

Generation of ω effect

$$
\begin{aligned}
& |\Psi\rangle_{Q G}=|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\left(\beta^{(1)}-\beta^{(2)}\right)|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}+ \\
& \left(\alpha^{(2)}-\alpha^{(1)}\right)|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\beta^{(1)} \alpha^{(2)}|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}-\alpha^{(1)} \beta^{(2)}|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}
\end{aligned}
$$

- For (a) $r_{i} \propto \delta_{i 1} \Rightarrow \alpha^{(i)}=-\beta^{(i)}$ no ω effect
- So (b) $r_{i} \propto \delta_{i 2} \Rightarrow \alpha^{(i)}=\beta^{(i)}$, ω effect
- (a) corresponds to non-strangeness conservation in ϕ decay
- (b) corresponds to a strangeness conserving decay
-Averaging density matrix over $r_{i} \rightarrow$ terms of $o\left(|\omega|^{2}\right)$

$$
\begin{gathered}
|\omega|^{2}=O\left(\frac{1}{\left(E_{1}-E_{2}\right)^{2}}\left\langle\downarrow, k^{(i)}\right| \hat{H}_{I}\left|k^{(i)}, \uparrow\right\rangle^{2}\right)=O\left(\frac{\Delta_{2} k^{2}}{\left(E_{1}-E_{2}\right)^{2}}\right) \sim \frac{\Delta_{2} k^{2}}{\left(m_{1}-m_{2}\right)^{2}} \\
\Delta_{2} \sim \frac{\varsigma^{2} k^{2}}{M_{P}^{2}} \Rightarrow|\omega|^{2} \sim \frac{\varsigma^{2} k^{4}}{M_{P}^{2}\left(m_{1}-m_{2}\right)^{2}}
\end{gathered}
$$

- D particle recoil picture
- For neutral kaons with momenta of order the rest energies
- For B mesons $|\omega| \sim 10^{-6} \zeta$
- For $1>\zeta \geq 10^{-2} \quad$ not far from current sensitivities

ω effect from evolution

- Evolution with stochastic recoil hamiltonian from CPT invariant state can lead to
With

$$
\sigma_{0}=\frac{\Delta_{1 / 2}^{1 / 2} k}{\left(k^{2}+m_{1}^{2}\right)^{1 / 2}-\left(k^{2}+m_{2}^{2}\right)^{1 / 2}}
$$

- On taking $\Delta_{1}^{1 / 2}=|s| \frac{k}{M_{P}} \quad$ similar magnitude to initial state
- How robust?
- Lindblad (popular phenomenology in particle physics, Markovian, positive probabilities)

$$
\frac{d \rho}{d t}=i[\rho, H]-\frac{1}{2} \sum_{k}\left(L_{k}^{\dagger} L_{k} \rho+\rho L_{k}^{\dagger} L_{k}-2 L_{k} \rho L_{k}^{\dagger}\right)
$$

- Based on the idea of dynamical semigroup
- Although $\left|K_{\iota}\right\rangle\left|K_{\iota}\right\rangle$ and $\left|K_{s}\right\rangle\left|K_{s}\right\rangle$ are generated the relative weights for ω effect cannot (N Mavromatos et al.)

(Thermal) bath model and ω effect

- Thermal bath has minimum information since only mean energy $\hbar \bar{n} v$ is known and

$$
\rho_{\text {bath }}=\sum_{n=0}^{\infty} \frac{\bar{n}^{n}}{(1+\bar{n})^{n+1}}|n\rangle\langle n|
$$

$$
\text { but more generally } \rho=\sum_{n, m=0}^{\infty} \rho_{n m}|n\rangle\langle m|
$$

Arguments have been given (Garay) why such models may be relevant for modelling space-time foam

- The hamiltonian for the total system (neutral mesons + bath) is given by the Jaynes-Cummings model

$$
H=\hbar v a^{\dagger} a+\frac{1}{2} \hbar \Omega \sigma_{3}^{(1)}+\frac{1}{2} \hbar \Omega \sigma_{3}^{(2)}+\hbar \gamma \sum_{i=1}^{2}\left(a \sigma_{+}^{(i)}+a^{\dagger} \sigma_{-}^{(i)}\right)
$$

- Both dressed states and evolving the total system and tracing over the bath do not lead to an ω effect

Conclusions

- The ω effect is a sensitive test for discriminating against different models of quantum decoherence
- A non-conventional approach motivated by D-particles is needed
- Clearly other defects are allowed within string theory and robustness of the effect needs investigation

