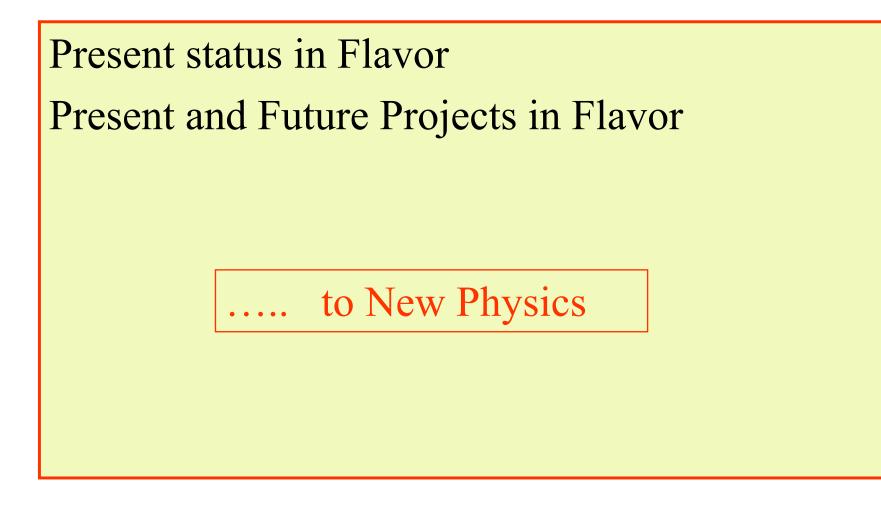
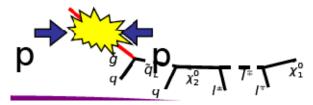
The Future of Super Flavor Factories



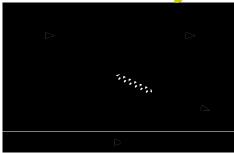
Marcello A. Giorgi Università di Pisa & INFN Pisa DISCRETE '08 December 16 ,2008 IFIC Valencia

Valencia Dec16,2008 Marcello A. Giorgi

Outline


Marcello A. Giorgi

How move to New Physics

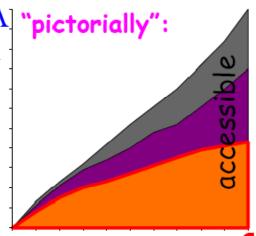

Move to New Physics in two ways:

Relativistic way

LHC (Energy Frontier)

Quantum way

Flavor (High precision measurements)


The two ways are complementary

Valencia Dec16,2008

High Luminosity potential

- Flavour precision measurements sensitive to New Physics (NP)
 - Measure interference effect in known processes
 - Measure decays: rare or forbidden in Standard Model
- NP effects governed by
 - New Physics Scale NP(Λ)
 - Effective coupling C
 - Different Intensities (from interactions)
 - Different Patterns (for instance from simmetries)

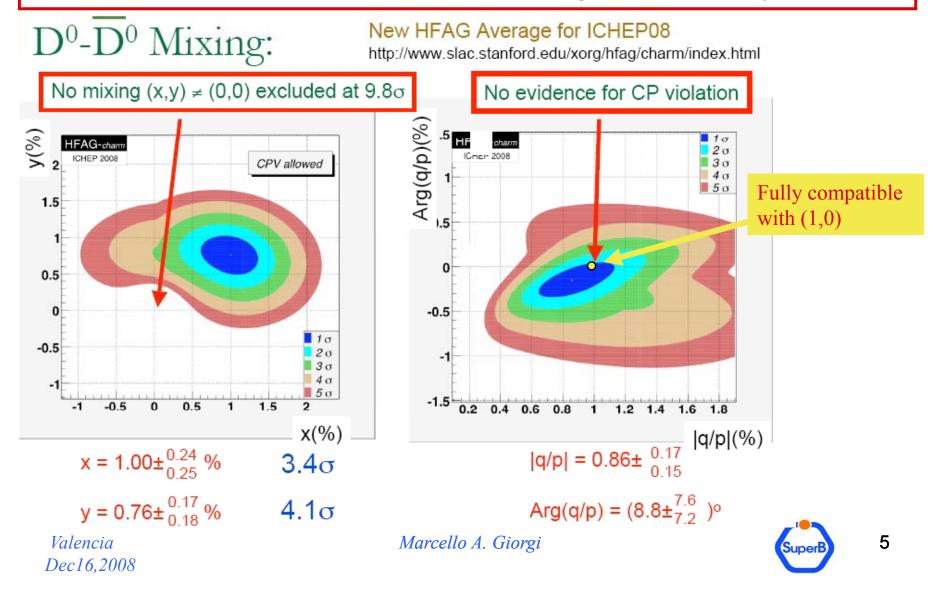
With 7-10x1010 pair bb, cc, $\tau\tau$ (75-100 ab⁻¹) it is possible

NP(Λ) found at LHC

- Determine couplings FV e CPV of NP
- Look for heavier states
- Study the flavour structure of NP

NP(Λ) not found at LHC

- Look for indirect signals of NP
- Link them to explaining NP models
- Constrain regions in parameter space with
 - $NP(\Lambda)$ sensitivity up several tens of TeV.


Some channels as τ LFV clear segnals of NP

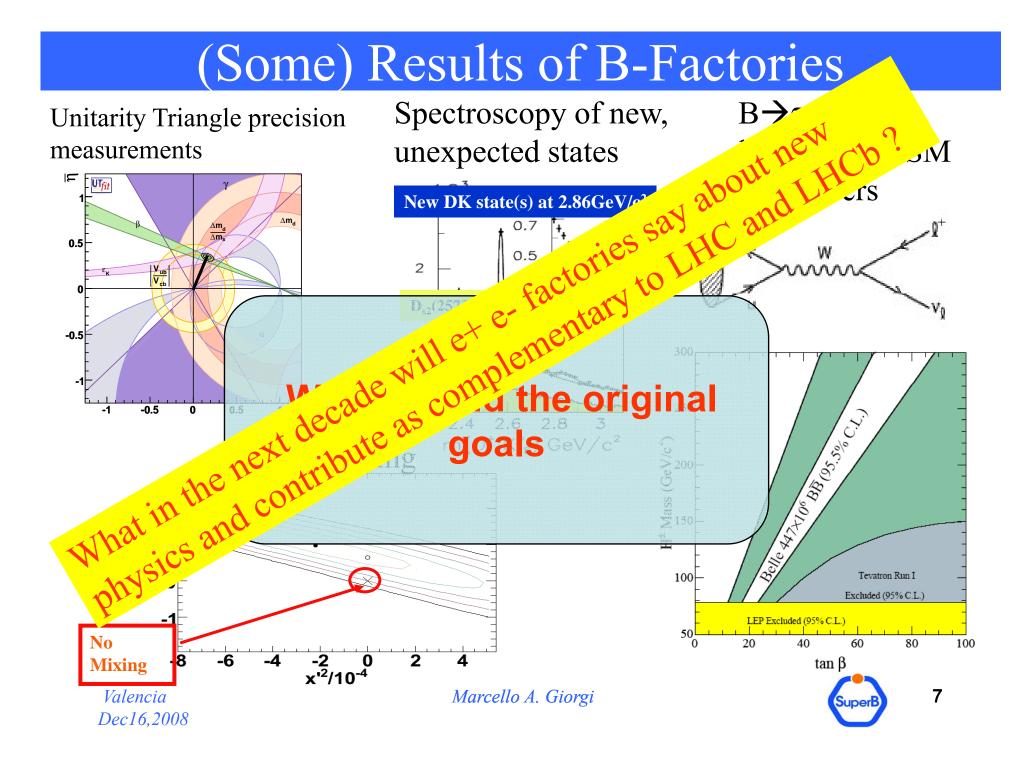
Valencia Dec16,2008

Charm beyond b- Is NP accessible from Charm if CPV?

• 2007 BABAR & BELLE: Charm mixing $inD^{\circ}\overline{D^{\circ}}$ decay

and on b...

- From b experiments is coming the confirmation and the triumph of CKM.
- Thanks to the measurements of the CP asymmetries and rare b decays, mainly at e⁺ e⁻ Bfactories PEPII and KEKB but also at FNAL Tevatron


(2006 B_s oscillations from CDF and D0 The mixing parameter $x(B_s) = \Delta M(B_s) / \Gamma(B_s) \cong 25$ and no evidence for $\Delta \Gamma(B_s) \neq 0$.

 $CDF: \Delta M(B_s) = (1.17 \pm 0.01) \times 10^{-2} eV - (17.77 \pm 0.12) ps^{-1}$ D0: $\Delta M(B_s) = (1.25 \pm 0.13) \times 10^{-2} eV - (19 \pm 2) ps^{-1}$

The SM prediction is : $\Delta M(B_s) = (1.20^{+0.43}_{-0.10}) \times 10^{-2} eV - (18.3^{+6.5}_{-1.5}) ps^{-1}$

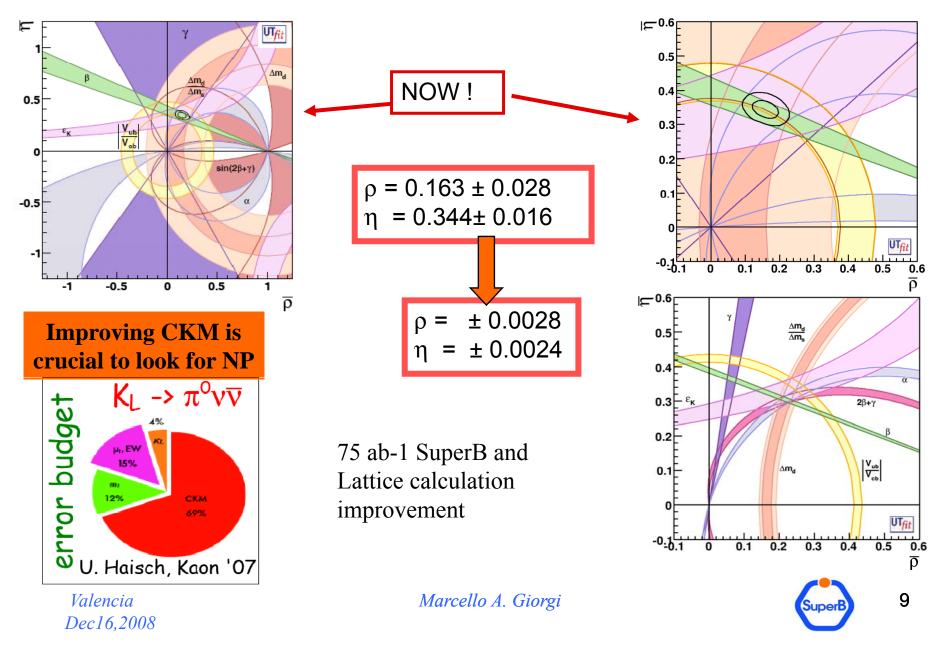
Valencia Dec16,2008

To new Physics:Constraints on CKM+ rare lepton decays

Precise measurements of CKM parameters in quark sector, challenging new physics can come from a wide spectrum of future projects (some approved, some close to approval, some....):

In Kaons there are projects for a next generation of experiments :

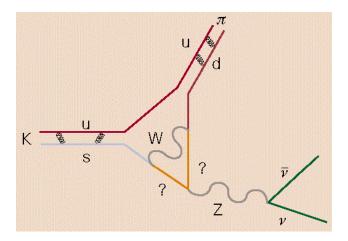
 $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ and $K^{0} \rightarrow \pi^{0} \nu \nu$


at CERN and at JPARC.

Dedicated experiments on μ -e LVF at PSI (running), $\mu \rightarrow e$ conversion at JPARC and FNAL in future. In b, c and τ : LHCb at CERN, BES upgrade, KEKB + SuperKEKB, Super c- τ at Novosibirsk and SuperB studying very rare processes in quark and lepton sectors.

Valencia Dec16,2008

Improving CKM precision


Future from Kaons

Valencia Dec16,2008 Marcello A. Giorgi

Short-Distance $K \rightarrow \pi \ell \overline{\ell}$ decays

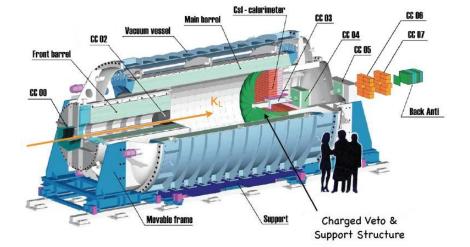
A single hadronic current with well-measured $(K-\pi)$ matrix element (isospin-related), strong suppression of LD effects and few effective operators: this is **theoretical heaven**

$K_L \rightarrow \pi^0 \mu^+ \mu^ 10^{-11} (CPV_{dir} 1 \cdot 10^{-12})$ $< 3.8 \cdot 10^{-10}$ (FNAL KTeV) $CPC+CPV$ 2 ev. (0.87 bkg) $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ $8.2 \cdot 10^{-11} (at 5\% par.)$ $1.73^{+1.15}_{-1.05} \cdot 10^{-10}$ (BNL E787+E949)Dedicated expts. 3+4 evts. (0.5+2.1 bkg) $K_L \rightarrow \pi^0 \nu \bar{\nu}$ $2.8 \cdot 10^{-11} (at 2\% par.)$ $< 6.7 \cdot 10^{-8}$ (WEW E201.)CPV dir (WEW E201.)	$K_L \rightarrow \pi^0 e^+ e^-$	10 ⁻¹¹ (CPV _{dir} 3·10 ⁻¹²)	< 2.8 ·10 ⁻¹⁰ (FNAL KTeV)	CPC+CPV 3 ev. (2.05 bkg)
K $\rightarrow \pi^{0} V \bar{V}$ 8.2 10 - (at 3 76 par.) (BNL E787+E949) 3+4 evts. (0.5+2.1 bkg) K_{*} $\rightarrow \pi^{0} V \bar{V}$ 2.8 10 ⁻¹¹ (at 2% par.) < 6.7 \cdot 10^{-8}	$K_L ightarrow \pi^0 \mu^+ \mu^-$	10 ⁻¹¹ (CPV _{dir} 1·10 ⁻¹²)		
$K_{\star} \rightarrow \pi^{0} V V = 12.8 \cdot 10^{-11} (af 2\% par)$	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	8.2·10 ⁻¹¹ (at 5% par.)		-
L (KEK E391a) "Nothing to nothing"	$K_L \rightarrow \pi^0 \nu \bar{\nu}$	2.8·10 ⁻¹¹ (at 2% par.)	< 6.7 ·10 ⁻⁸ (KEK E391a)	CPV dir "Nothing to nothing"

Valencia Dec16,2008

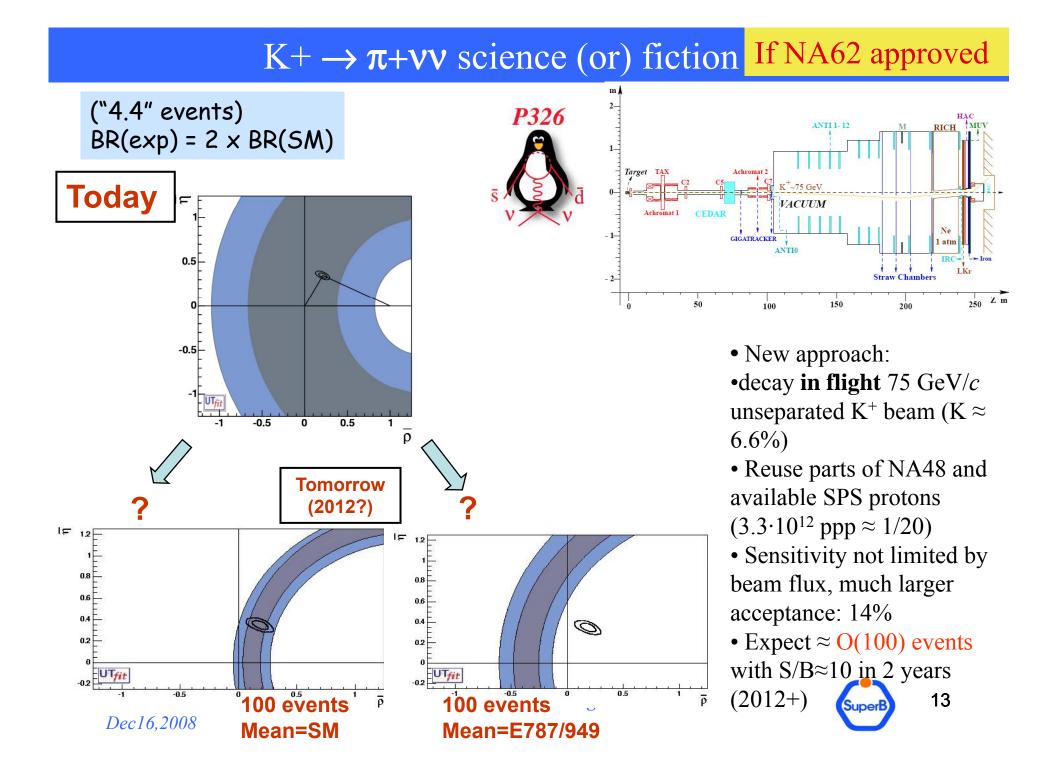
$K_L \rightarrow \pi^0 \nu \overline{\nu}$ "holy grail"

BR(SM) = $(2.5 \pm 0.4) \cdot 10^{-11}$ Non-parametric theoretical uncertainty ~ 1%


Unmeasurable parent particle. No kinematic constraints. VETO !!!

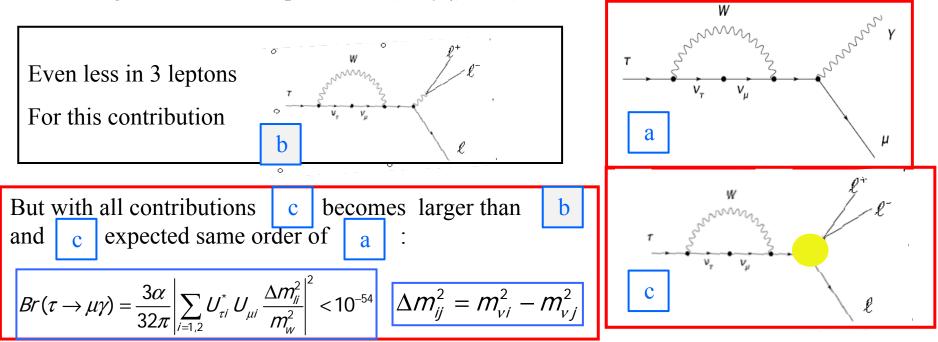
Low-energy approach:

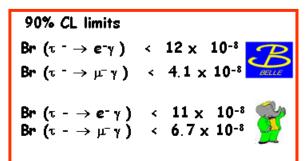
 K_L TOF for kinematics, large prod. angle, large beam emittance, γ tracking (KOPIO at BNL, canceled)


High-energy approach:

excellent vetoing, "pencil" beam for kinematics, high p_T E391a at KEK now E17 at J-PARC (3 to 100 events, 2012+)

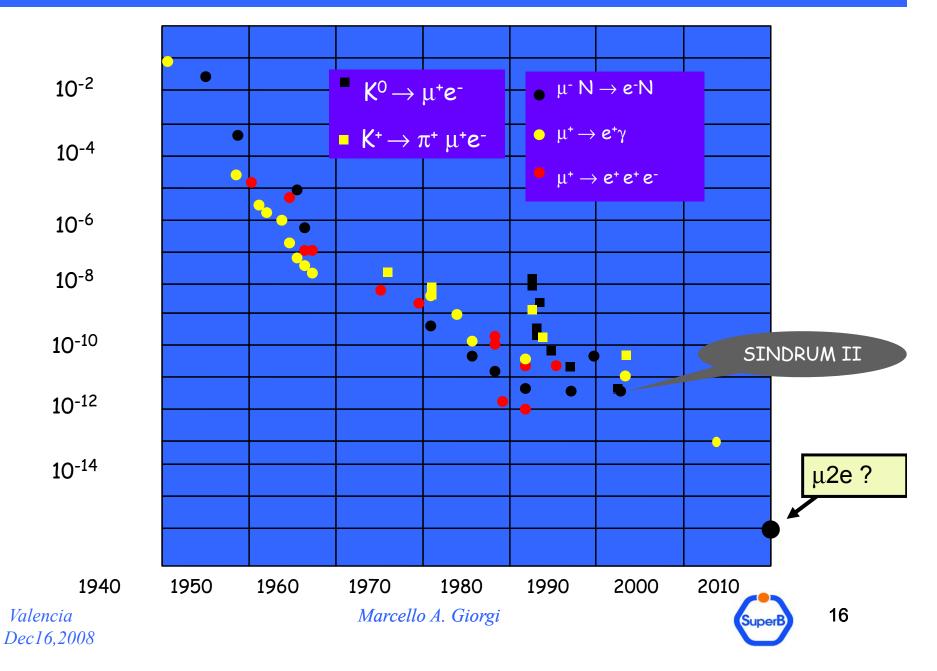
Valencia Dec16,2008 Marcello A. Giorgi

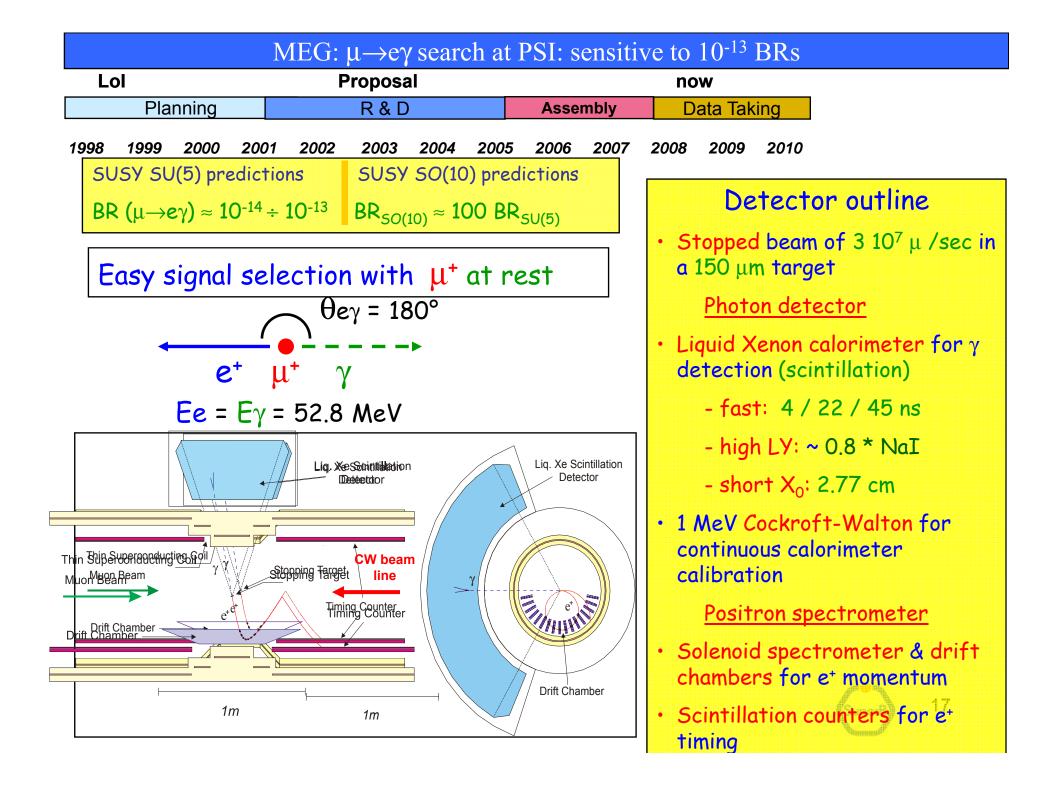

LFV dedicated experiments


Valencia Dec16,2008 Marcello A. Giorgi

LFV in tau and muon decay

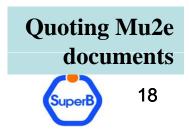
Standard Model allows LFV.In charged leptons it can occur in loops with expected low branching fractions. Es: expected Br $(\tau \rightarrow \mu \gamma) < O(10^{-40} \div 10^{-54})$




Observable lepton decays with FV will allow a clear indication of New Physics.Many New Physis models predict strong enhancement of violating decays of μ and τ . In many models measurable and even quite large τ BR [O(10⁻⁸)] are expected.

Valencia Dec16,2008 Marcello A. Giorgi

History of Lepton Flavor Violation Searches no tau

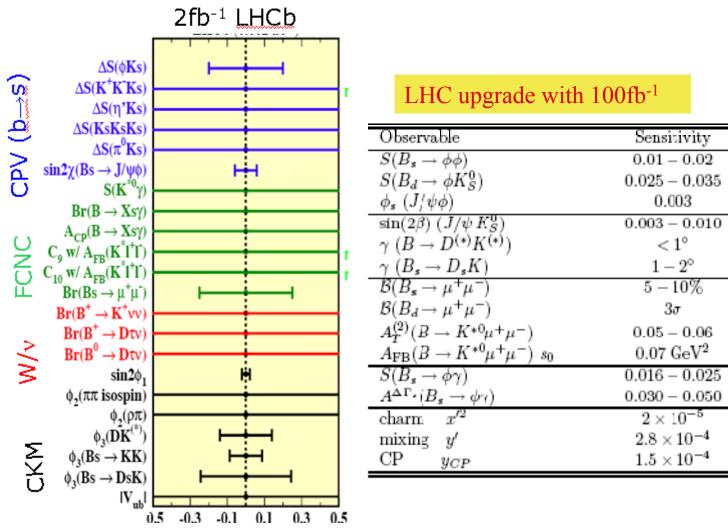


Experimental Approach (Mu2e at FNAL)

If μ^- are stopped in a target A, muonic atom in 1s state are formed (t $\leq 10^{-16}$ s)

• 3 main reactions: capture, $\mu^-A \rightarrow \nu_{\mu}A'$, decay, $\mu^- \rightarrow e^-\nu\nu$, conversion, $\mu^-A \rightarrow e^-A'$ In the conversion process : $\mu A \rightarrow eA$:

- Electron are monoenergetic (105 MeV) (it is the main tool to remove background)
- high rates are possible- no coincidence required (needed instead in $\mu \rightarrow e\gamma$)
- The goal of M • The use of lifetime • $-4x10^{20}$ properties and initial costing done matrix Conceptual designs and initial costing done matrix Collaboration is being assembled. Very hard the beam specs., almost no protons in the inter bunck is also matrix (an aggressive R&D program on beam is needed, very hard is also matrix for a so low fraction of protons O(10⁻⁹) In principle JPARC could allow $R_{me} \sim 10^{-18}$, thanks to the higher muon flux.



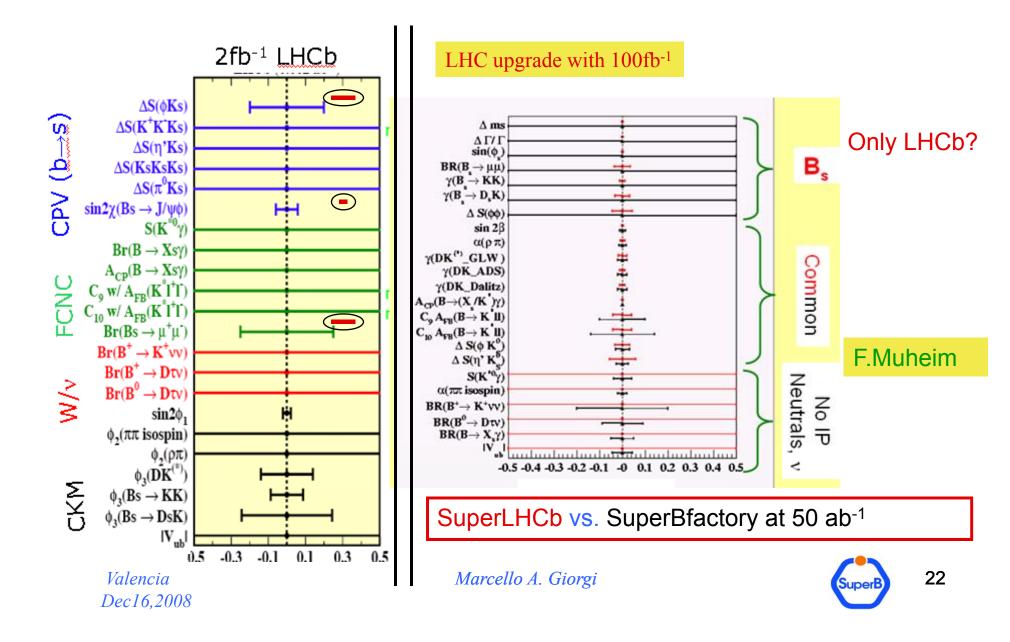
Future on B-tau-charm physics and Flavor Factories

Marcello A. Giorgi

From LHCb, expect:

Valencia Dec16,2008 Marcello A. Giorgi

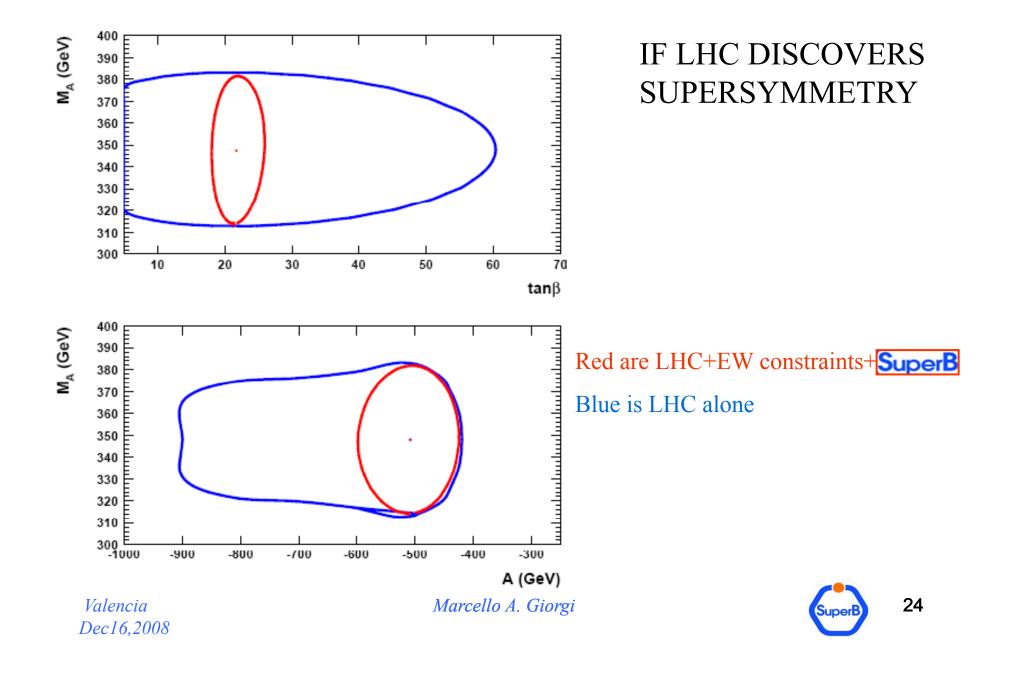
Super flavor factory projects

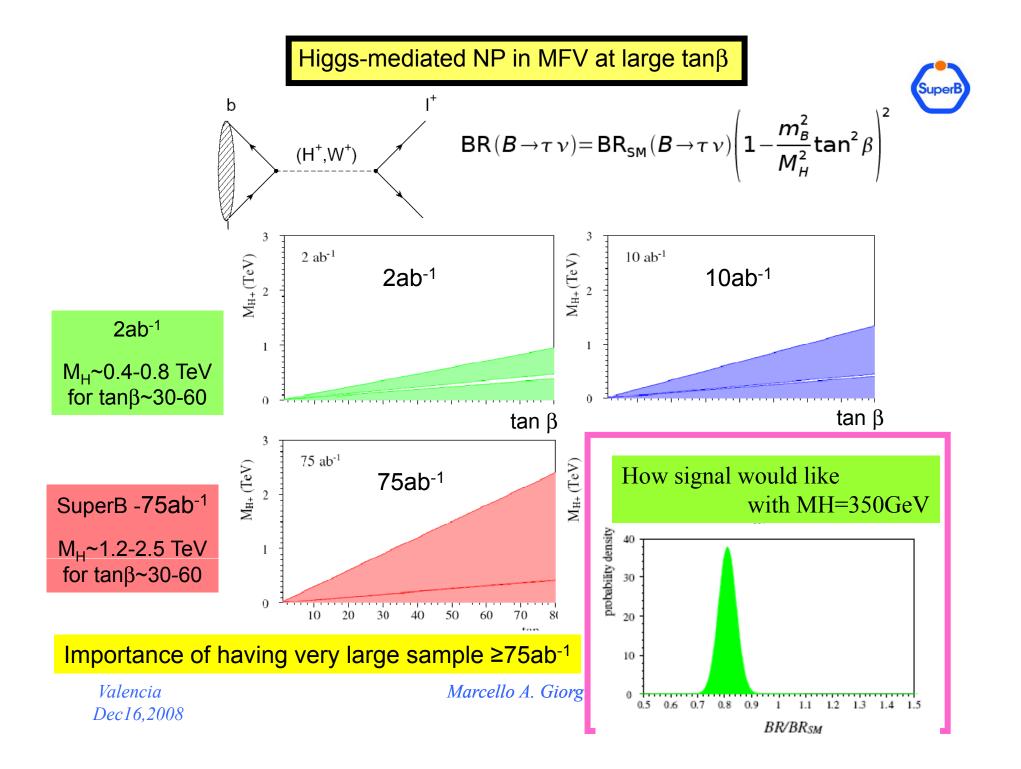

Machine project	Cms Energy (GeV)	Mode	Polarization of e ⁻ beam >80% for τ	Luminosity (cm ⁻² s ⁻¹)
Super c-τ BINP (Russia)	3.0÷4.5	Symmetric	Yes	1÷2 10 ³⁵
SuperKEKB (Japan)	10.58	Asymmetric	No	2÷8 10 ³⁵
Super <i>B</i> - Roma	10.58 4.0	Asymmetric	Yes	1÷4 10 ³⁶

SuperB is expected to integrate 75 ab⁻¹ in 5 years

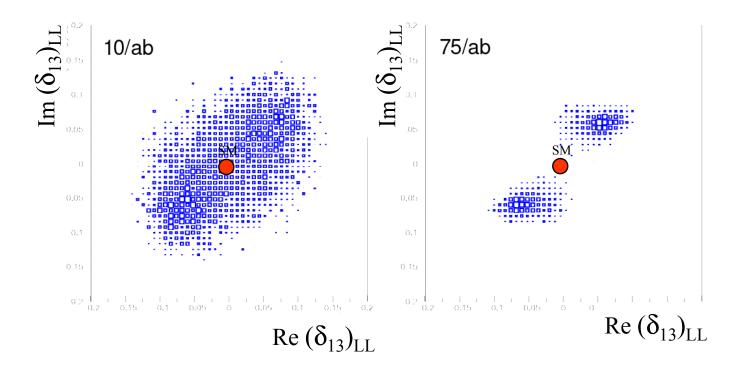
Valencia Dec16,2008 Marcello A. Giorgi

From LHCb, expect:

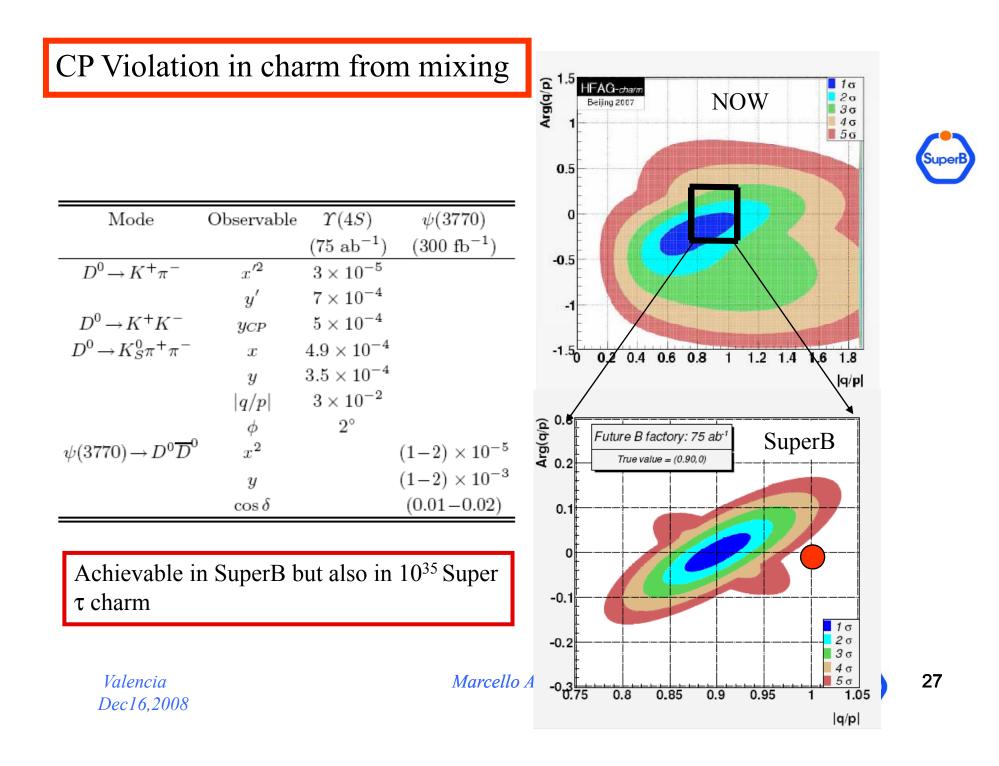



B Physics @ Y	$\mathcal{I}(\mathbf{AS})$		Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
D I llysics @ 1	$(+0)_{ab^{-1}}$	$\operatorname{Super}B(75 \text{ ab}^{-1})$	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\ln(2eta)~(J/\psiK^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta)~(J/\psiK^{st 0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\mathrm{n}(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)
$\mathrm{s}(2eta)~(Dh^0)$	0.20	0.04			
$(J/\psi \pi^0)$	0.10	0.02	${\cal B}(B o au u)$	20%	4% (†)
(D^+D^-)	0.20	0.03	${\cal B}(B o \mu u)$	visible	5%
(ϕK^0)	0.13	0.02(*)	${\cal B}(B o D au u)$	10%	2%
$(\eta' K^0)$	0.05	0.01(*)			
$egin{array}{c} K_{s}^{0}K_{s}^{0}K_{s}^{0} \ K_{s}^{0}\pi^{0} \ \end{array} \ K_{s}^{0}\pi^{0} \ \end{array}$	$0.15 \\ 0.15$	0.02 (*) 0.02 (*)	${\cal B}(B o ho\gamma)$	15%	3% (†)
$U_{s}K_{s}^{0}$	0.13	0.02 (*)	${\cal B}(B o \omega \gamma)$	30%	5%
$(f_0 K_s^0)$	0.12	0.02 (*)	$A_{CP}(B ightarrow K^* \gamma)$	0.007 (†)	$0.004 \ († *)$
(10119)	0.12	0.02 (*)	$A_{CP}(B ightarrow ho \gamma)$	~ 0.20	0.05
$(B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	0.004 (†)
$(B \to DK, D \to \text{suppressed states})$	a) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)
$(B \rightarrow DK, D \rightarrow \text{multibody states})$) $\sim 9^{\circ}$	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)
$(B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$(B ightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B \to K^*\ell\ell)$	7%	1%
(B ightarrow ho ho)	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%
$(B \to \rho \pi)$	~ 12°	2°	$A^{FB}(B o X_s \ell \ell) s_0$	35%	5%
(combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^0_{g}\pi^{\mp})$	20°	5°	$\mathcal{B}(B \to \pi \nu \bar{\nu})$	-	possible
Physics	Sensitivi	ty			
	Bellerer	~	Dhuging (a)	V(5S)	
${\cal B}(au o \mu \gamma)$	2×10^{-9}		Physics @ `	$(35)_{ab^{-1}}$	Error with 30 ab^{-1}
		ΔΓ		$0.16 \ {\rm ps}^{-1}$	$0.03 \ {\rm ps}^{-1}$
${\cal B}(au o e \gamma)$	$2 imes10^{-9}$	Γ		$0.07~\mathrm{ps}^{-1}$	$0.01 \ {\rm ps}^{-1}$
		$\beta_{\rm e}$ from	om angular analysis	20°	8°
$\mathcal{B}(au o \mu \mu \mu)$	$2 imes 10^{-1}$	$U A_{SL}^s$	0 ,	0.006	0.004
	-			0.004	0.004
$\mathcal{B}(au ightarrow eee)$	$2 imes10^{-1}$		$\mu ightarrow \mu^+ \mu^-)$	-	$< 8 \times 10^{-9}$
	1	•		- 0.08	< 8 × 10 0.017
${\cal B}(au o \mu \eta)$	$4 imes10^{-1}$	$ V_{td} $			
		$D(D_s$	$ ightarrow \gamma\gamma)$	38%	7%
${\cal B}(au o e\eta)$	$6 imes10^{-1}$	β_s from β_s	om $J/\psi\phi$	10°	3°
$egin{aligned} \mathcal{B}(au o e\eta) \ \mathcal{B}(au o \ell K_s^0) \end{aligned}$		B. fr	om $B_s \to K^0 \bar{K}^0$	24°	11°
$\mathcal{B}(au o \ell K_S^0)$	$2 imes10^{-1}$		1 /1(1)	cello A. Olorz	ι
		_		0	
,					

Charm m	nixing	and Cl	P					
Mode	Observable	. ,	$\psi(3770)$					
		(75 ab^{-1})	(300 fb^{-1})					
$D^0 \rightarrow K^+ \pi^-$	x'^{2}	3×10^{-5}						
$D^0 \rightarrow K^+ K^-$	y'	7×10^{-4}						
$D^{\circ} \rightarrow K^{+}K$ $D^{0} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}$	y_{CP}	$\begin{array}{c} 5\times10^{-4}\\ 4.9\times10^{-4}\end{array}$						
$D \rightarrow \kappa_S \pi^+ \pi$	$x \\ y$	4.9×10 3.5×10^{-4}						
	q/p	3×10^{-2}						
	ϕ	2°						
$\psi(3770) \mathop{\rightarrow} D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$					
	y		$(1-2) \times 10^{-3}$					
	$\cos \delta$		(0.01 - 0.02)					
Charge E	CNC							
Charm F	CNC		Sensitivity					
$D^0 \rightarrow e^+ e^-, L$	$D^0 o \mu^+ \mu$	_	$1 imes 10^{-8}$					
$D^0 \to \pi^0 e^+ e^-,$	$D^0 \to \pi^0$	$^{0}\mu^{+}\mu^{-}$	$2 imes 10^{-8}$					
$D^0 ightarrow \eta e^+ e^-,$	$D^0 \rightarrow \eta \mu^{-1}$	$^+\mu^-$	$3 imes 10^{-8}$					
$D^0 \rightarrow K^0_s e^+ e^-$	$, D^0 \rightarrow K$	$K^0_s \mu^+ \mu^-$	$3 imes 10^{-8}$					
$D^+ \rightarrow \pi^+ e^+ e^-$	$D^+ \to \pi$	$\pi^+\mu^+\mu^-$	$1 imes 10^{-8}$					
$D^0 ightarrow e^\pm \mu^\mp$			$1 imes 10^{-8}$					
$D^+ \to \pi^+ e^\pm \mu^\mp$	F		$1 imes 10^{-8}$					
$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$			$2 imes 10^{-8}$					
$D^0 o \eta e^{\pm} \mu^{\mp}$			$3 imes 10^{-8}$					
$D^0 \rightarrow K^0_s e^{\pm} \mu^{\mp}$	=		$3 imes 10^{-8}$					
$D^+ \rightarrow \pi^- e^+ e^+$	$D^+ \to D^+$	$K^{-}e^{+}e^{+}$	$1 imes 10^{-8}$					
$D^+ \to \pi^- \mu^+ \mu^-$			$1 imes 10^{-8}$					
$D^+ \rightarrow \pi^- e^{\pm} \mu^{\mp}$			$1 imes 10^{-8}$					

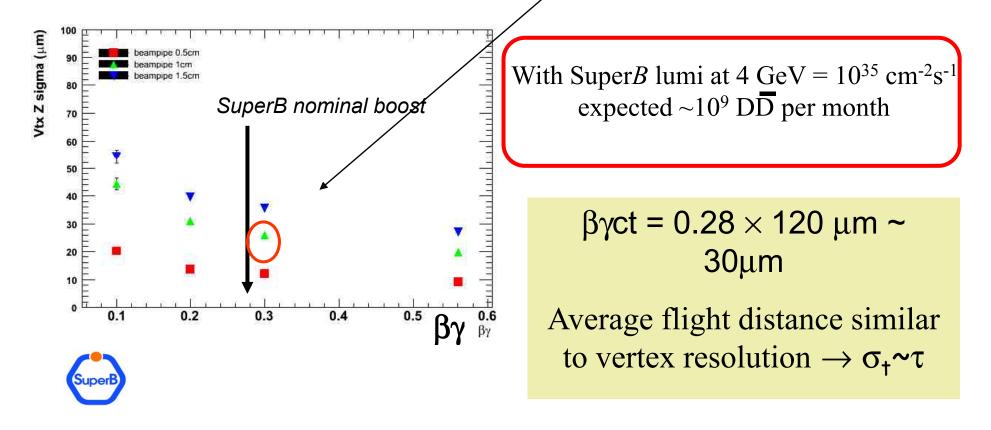

23 SuperB

COMPLEMENTARY: LHC and Flavour with 75 ab⁻¹


Determination of coupling [in this case : $(\delta_{13})_{LL}$] with 10 ab⁻¹ and 75 ab⁻¹

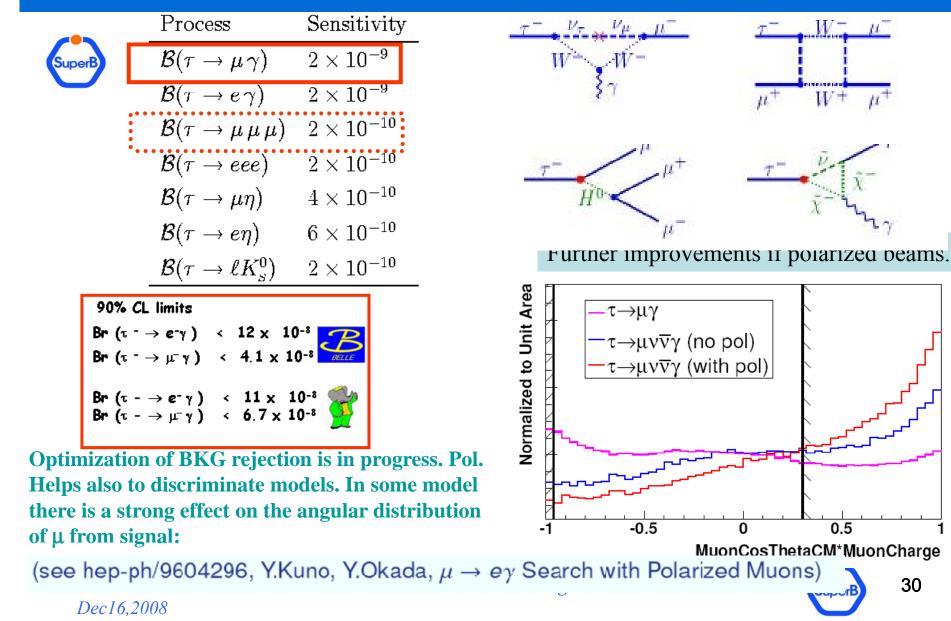
Importance of having very large sample >75ab⁻¹

Valencia Dec16,2008 Marcello A. Giorgi


<u>Charm</u>

- Charm events at threshold are very clean: pure DD, no additional fragmentation
- High signal/bkg ratio: optimal for decays with neutrinos.
- Quantum Coherence: new and alternative CP violation measurement wrt to $\Upsilon(4S)$. Unique opportunity to measure D⁰-D⁰ relative phase.
- Increased statistics is not an advantage running at threshold: cross-section 3x wrt 10GeV but luminosity 10x smaller.
- SuperB lumi at 4 GeV = 10^{35} cm⁻²s⁻¹ produces ~ 10^9 DD pairs per month of running. (using Cleo-c cross-section measurement [$\sigma(e^+e^- \rightarrow D^0D^0) \sim 3.6 \text{ nb}$] +[$\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.8 \text{ nb}$] ~ 6.4 nb)
- Super tau-charm could well study mixing and CP violation direct/indirect, but not in time dependent analysis as done in in B factories.
- Time-dependent measurements at 4 GeV **only** possible at SuperB to extract weak Phase thanks to the improved time measurement and to the option of running at charm threshold.

Valencia Dec16,2008


Time dependent measurements at DD threshold: only possible at SuperB

- Proper time resolution dominated by decay vertex resolution.
 - Production vertex precisely determined thanks to nm beamspot dimensions

is also a τ factory \rightarrow golden measurement LFV (Complementarity with $\mu \rightarrow e \gamma$)

Comparison with Snowmass points on Tau using also Polarization

SuperB with 75	SPS	$M_{1/2}~({ m GeV})$	M_0 (GeV)	A_0 (GeV)	$tan \beta$	μ
ab-1, evaluation	1a	250	100	-100	10	> 0
assuming the	1 b	400	200	0	30	> 0
most	2	300	1450	0	10	> 0
conservative	3	400	90	0	10	> 0
scenario about	4	300	400	0	50	> 0
syst. errors	5	300	150	-1000	5	> 0

NP predictions for experimentally constrained SUSY in a number of standard scenarios
 B.C.Allanach *et al.*, hep-ph/0202233

LFV	Snowmass points predictions SuperB								
	1a	1 b	2	3	4	5	90% UL	5σ disc	SuperB
$BF(\tau \to \mu \gamma) \times 10^{-9}$	4.2	7.9	0.18	0.26	97	0.019	1÷2	5	
$BF(\tau \rightarrow 3\mu) \times 10^{-12}$	9.4	18	0.41	0.59	220	0.043	200	880	

SuperKEKB worse by a factor 2.5 and 4.5 in $\tau \rightarrow \mu\gamma$ and >5 in $\tau \rightarrow 3\mu$

Valencia Dec16,2008

Tau g-2

Start with the expt. with μ $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$ assume Super*B* at 75 fb⁻¹, 80% *e*⁻ beam polarization extend to all tau decay channels combine 2 measurement methods for Re{*F*₂}

studies on simulated events show no limiting syst. effects

	Super <i>B</i>						
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	<1

SuperKEKB, without beam polarization, expected worse by factor \approx 10, and worse systematics

Make use of all the informations (total x-section, angular distribution, f-b asymmetry. Measure Re and Im parts

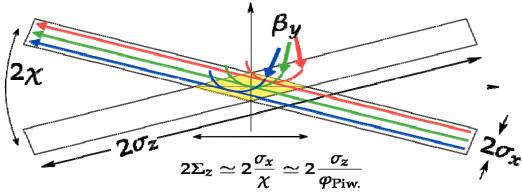
Valencia Dec16,2008

TOOLS (1):Luminosity

 $\mathcal{L} = f_{\text{coll.}} \times \frac{N_{e^+} N_{e^-}}{4\pi \sigma_x \sigma_y} \times R_{locometrical}_{\text{Reduction factor}}$

For gaussian bunches:

- N_e^+ (N_e^-) is the number of positrons (electrons) in a bunch
- f_{coll} is the collision frequency
- $\sigma_x(\sigma_y)$ is the horizontal (vertical) r.m.s. size at the I.P.
- R_1 is the Luminosity Reduction factor by incomplete overlap: crossing angle and "hour glass" effect.


•**TRADITIONAL** (brute force): increase the numerator Currents increase: from 1A on 2 A up to 4.1 A on 9.4 A- **Wall Plug Power**, HOM,CSR: hard to surpass $5 \ 10^{35} \text{ cm}^2\text{s}^{-1}$ **Crab** <u>Crossing</u> to increase **R**₁ and to optimize beam dynamic

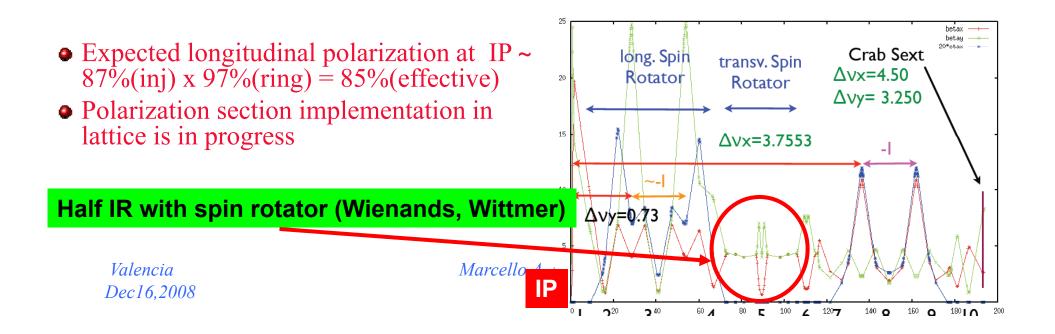
•Super*B*: decrease the denominator (same currents as PEP-II) Bunch sizes: from $\sigma_y = 3\mu m$ down to $\sigma_y = 40$ nm Luminosity: 10^{36} cm²s⁻¹ (baseline). Crab <u>Waist</u> and large Piwinsky angle to optimize beam dynamic

Valencia Dec16,2008

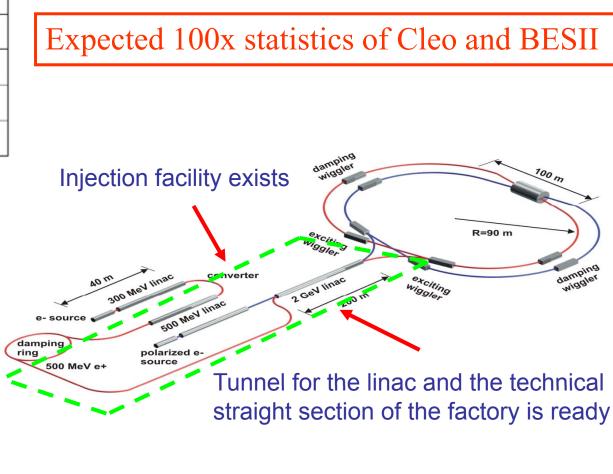
Crab Waist : The SuperB solution

- Crab waist: modulation of the y-waist position, particles collides a same β_y realized with a sextupole upstream the IP.
- Minimization of nonlinear terms in the beam-beam interaction: reduced emittance growth, suppression of betatron and sincro-betatron coupling
- Maximization of the bunch-bunch overlap: luminosity gain
- Low wall power

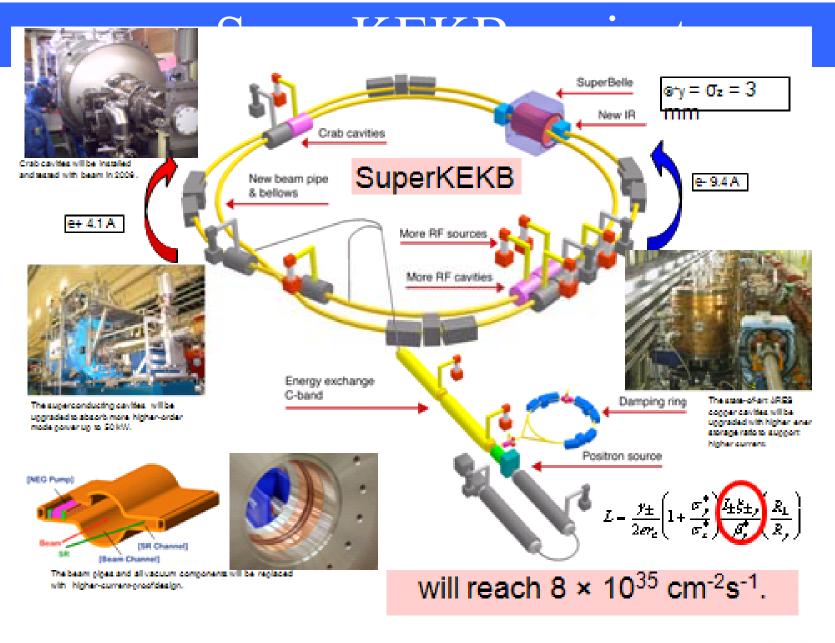
SuperB and Super c-τ are based on the crabwaist concept invented in 2006 by P.Raimondi in 2006.


TESTED IIN LNF WITH DAFNE (500 MeV beams)

Valencia Dec16,2008


TOOLS (2):Polarization

- Polarization of one beam is included in *SuperB* and also in *Super* τ -charm
 - Polarization in LER would be less expensive, in HER easier
 - HER chosen for SuperB
- Longitudinal polarization times and short beam lifetimes indicate a need to inject vertically polarized electrons.
 - The plan is to use a polarized e⁻ source similar to the SLAC SLC source.
- There are several possible IP spin rotators:
 - Solenoids look better at present (vertical bends give unwanted vertical emittance growth)


Layout of Novosibirsk Project based on Crab Waist Concept From the talk by Anton Bogomyagkov

'	Tune shift ξ_y	0.	13
]	Particles per bunch	$7 \cdot 10$	10
]	Luminosity, $cm^{-2}sec^{-1}$	$1 \cdot 10$	35
]	Hour glass $\frac{\sigma_x}{\theta \beta_y}$	1.0	95
	Piwinski angle $\varphi = \frac{\sigma_z \theta}{\sigma_x}$	12.0	21
	Energy, GeV	2	
	Beam current, A	1.36	
	Number of bunches	295	
	β_x , mm	20	
	β_y, mm	0.76	
	ε_x , nm rad	10	2
	Coupling $\varepsilon_y/\varepsilon_x$, %	1	X
	Beam length σ_z , cm	1	
	Crossing angle, mrad	34	

Valencia Dec16,2008 Marcello A. Giorgi

Marcello A. Giorgi

SuperKEKB

Goal 🔍					
50		symbol	LER	HER	unit
	Beam Energy	E	3.5	8.0	GeV
	Beam current	1	9.4	4.1	Α
⁴⁰ 35 50ab ⁻¹ by 2020 / ↓	Circumference	С	3016		m
	Number of bunches	no	50		
	Number of particles	N/bunch	11.8	5.1	x1010
	Emittance	εχ	9	nm	
	Emittance ratio	ε _{γ/} ε _x	0.5		%
15 10 Initial target \longrightarrow 5 L~2×10 ³⁵ \longrightarrow	Beta (hor.) at IP	β _x *	200		mm
	Beta (ver.) at IP	β _γ *	3		mm
	Bunch length	σ	3	mm	
0 2010 2012 2014 2016 2018 2020	Crossing angle	θ _x *	30 t	to 0	mrad
	Beam-Beam (hor.)	ξx	0.36		
	Beam-Beam (ver.)	ξγ	0.4	43	
	RF AC plug power	P _{AC}	7	3	MW

Machine Parameters of SuperKEKB

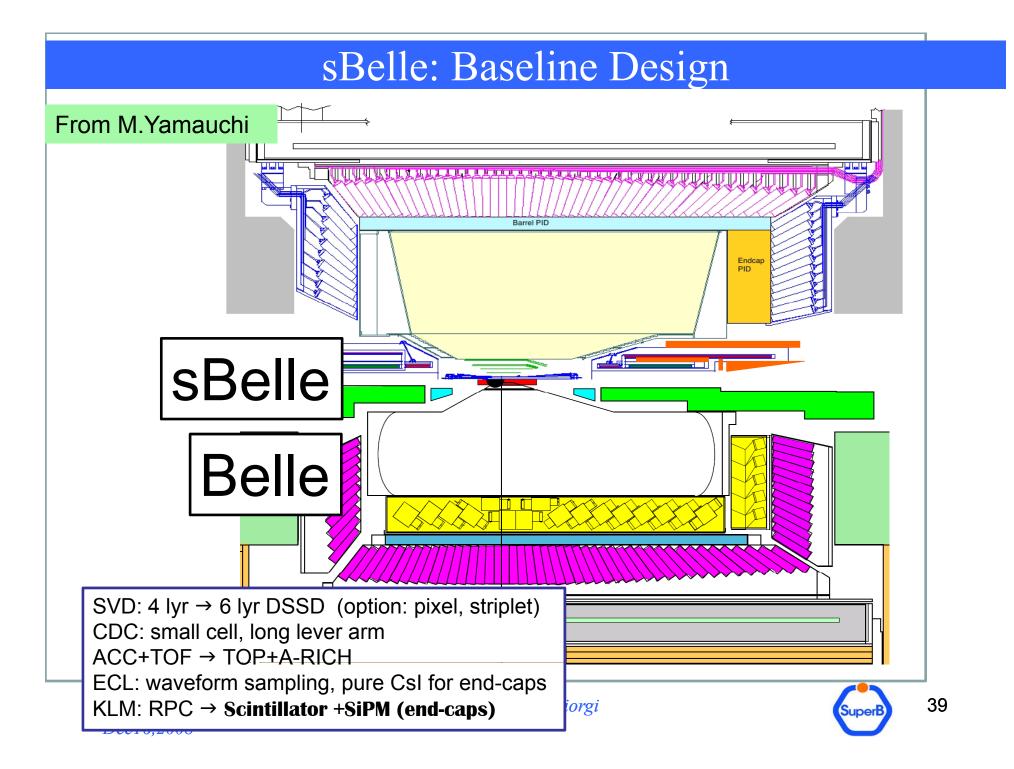
A new goal for SuperKEKB

From M.Yamauchi

Marcello A. Giorgi

L

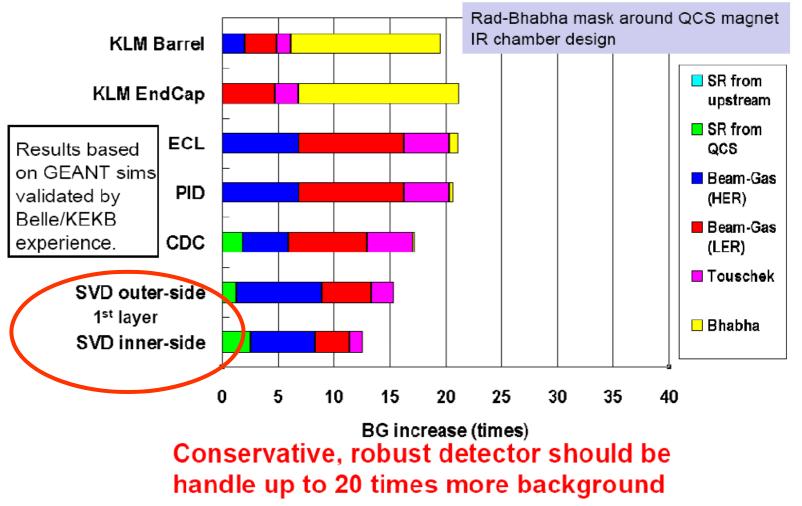
Luminosity


x10³⁵ cm⁻²s⁻¹

8.0

38

z


Valencia Dec16,2008

sBelle

Beam Background

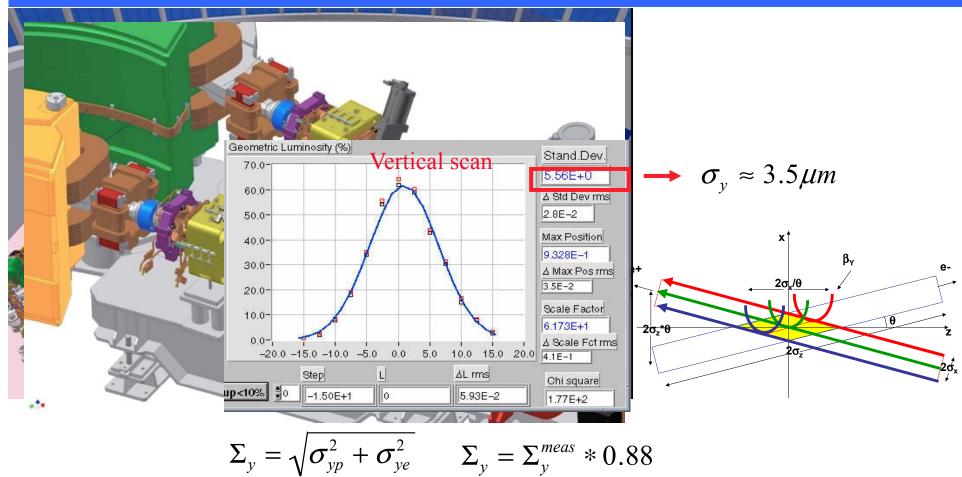
From M.Yamauchi

Valencia Dec16,2008

Silicon vertex :sBelle

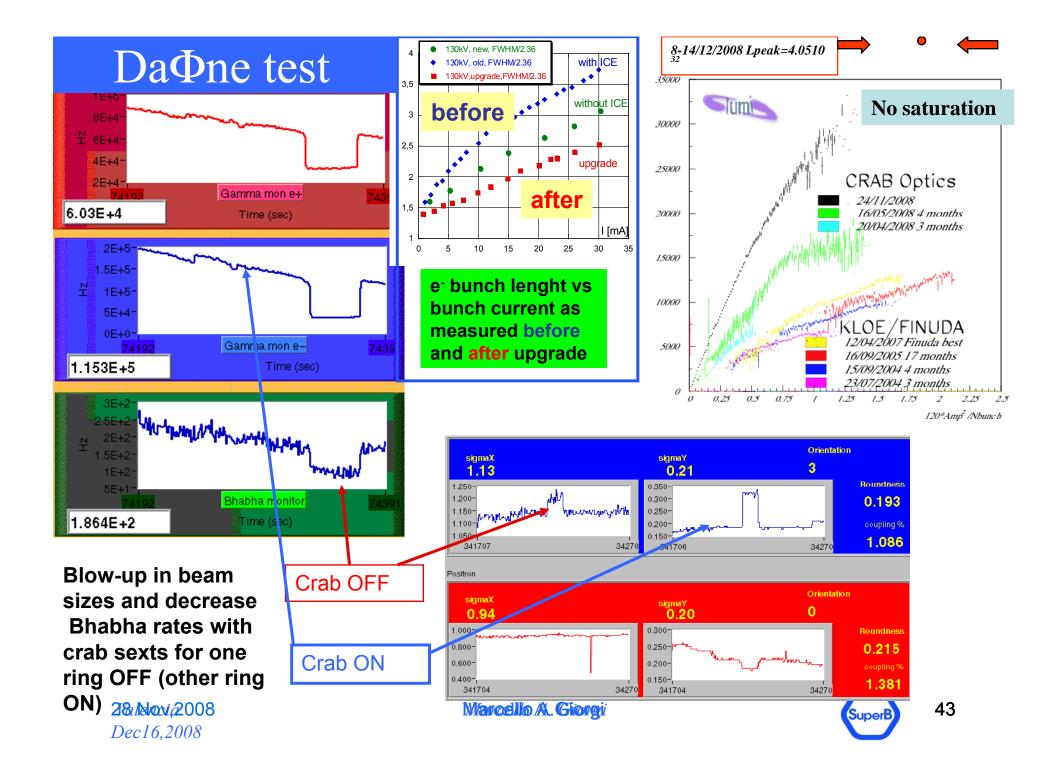
- Inner layers
 - Pixel detector
 MAPS, DEPFET, SOI
 - Or striplet?
- Outer layers
 - DSSD +
 - APV25
 - t_p = 50ns, pipelined, weak at C_d
 - VA1TA (currently used)
 - t_p = 800ns, hold & readout

8.5mm



Open questions:

- 1. Inner radius
- 2. Outer radius
- 3. Material budget
- 4. Readout pitch of outer layers
- 5. Slant angle


...and Crab Waist in Daone upgrade at FRASCATI

Large Piwinsky angle and "*crab waist*" with a pair of sextupoles/ring $(\Phi = tg(\theta)\sigma_z/\sigma_x)$ Currents comparable to present Factories, lower backgrounds, less HOM and instabilities.

Valencia Dec16,2008

KLOE2 in DaΦne

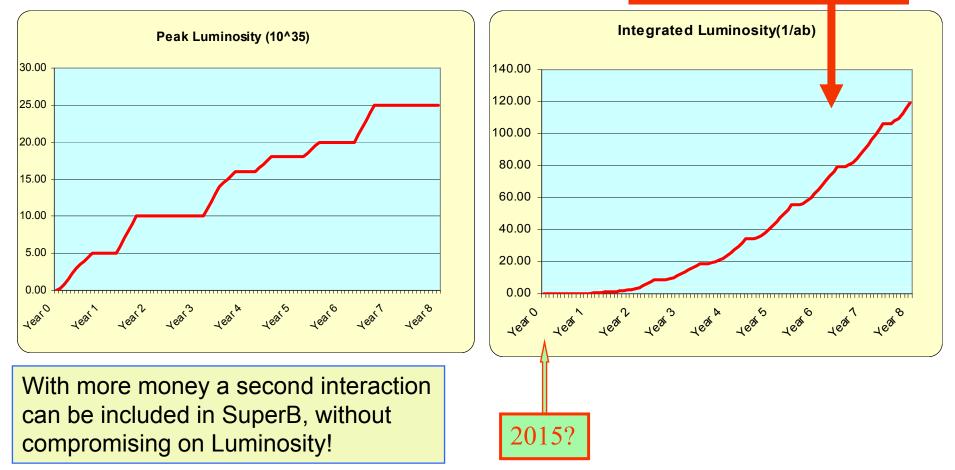
- With "Crab Waist" Da Φ ne is now currently running at more than 4 10³²
- and integrating \geq 13 pb⁻¹/day. More than 4 fb-1/ year is now feasible Project.
- A plan for the continuation of the KLOE physics program on the upgraded machine,
- has been started early in 2006 to improve the detector performance by means of:
- •The insertion of an inner tracker
- •The modification of the quadrupole calorimeters
- •The insertion of crystal calorimeters in the low $\boldsymbol{\theta}$ region
- •The insertion of a tagging system for $\gamma\,\gamma\,\text{events}$
- The experiment is expected to re-start its data taking by end 2009. Goal is with
- the completion of physics program as:
- Check universality in K₁₂ channels
- Studying rare decays
- Increasing precision on CPT violation parameters

SuperB parameters wrt SuperKEKB

	Nominal Upgrade		Ultimate		SuperKEKB				
	1.55.4.5		155 ()		155.4.5		155.4		
PARAMETER	LER (e+)		LER (e+)	HER (e-)	LER (e+)	HER (e-)		HER (e-)	
Energy (GeV)	4	7	4	7	4	7	3.5	8	IP beam distributions
Luminosity x 10 ³⁶	1.0		2.0		4.0		0.8	(0.4)	for KEKB
Circumference (m)	1800	1800							
Revolution frequency (MHz)	0.1								
Eff. long. polarization (%)	0	80							
RF frequency (MHz)		76							t ti
Momentum spread (x10 ⁻⁴)	7.9	5.6	9.0	8.0					a line
Momentum compaction (x10 ⁻⁴)	3.2	3.8	3.2	3.8					-15
Rf Voltage (MV)	5	8.3	8	11.8	17.5	27			
Energy loss/turn (MeV)	1.16	1.94	1.78	2.81					(a) a (a)
Number of bunches	12	51			25	02	50	00	· · · · · · · · · · · · · · · · · · ·
Particles per bunch (x10 ¹⁰⁾	5.	52			6.	78	12	5	,
Beam current (A)	1.	85			3.	69	9.4	4.1	
Beta y* (mm)	0.22	0.39	0.16	0.27				3	
Beta x* (mm)	35	20					2	00	
Emit y (pm-rad)	7	4	3.5	2			4	5	
Emit x (nm-rad)	2.8	1.6	1.4	0.8			9	(24)	
Sigma y* (microns)	0.039	0.039	0.0233	0.0233			0.	367	3 / 4 700
Sigma x* (microns)	9.9	5.66	7	4				42	-a. /
Bunch length (mm)		5	د	1.3				3	
Full Crossing angle (mrad)	-	8					3	30	x)==: 2.3 //40 **(.10)
Wigglers (#) 20 meters each	0	D	2	2					5
Damping time (trans/long)(ms)	40/20	40/20	28/14	28/14					IP beam distributions
Luminosity lifetime (min)	6			.35					
Touschek lifetime (min)	20	40	38	20					for SuperB
Effective beam lifetime (min)	5.0	5.7	3.1	2.9	_				(without transparency
Injection rate pps (x10 ¹¹) (100%)	2.6	2.3	5.1	4.6	10	9.1			
Tune shift y (from formula)	0.	15	0	.20			0.4	05	conditions)
Tune shift x (from formula)	0.0043		0.0059	0.0034			0.2	09	
RF Power (MW)	(1	7		25	58	1.2	8	3	

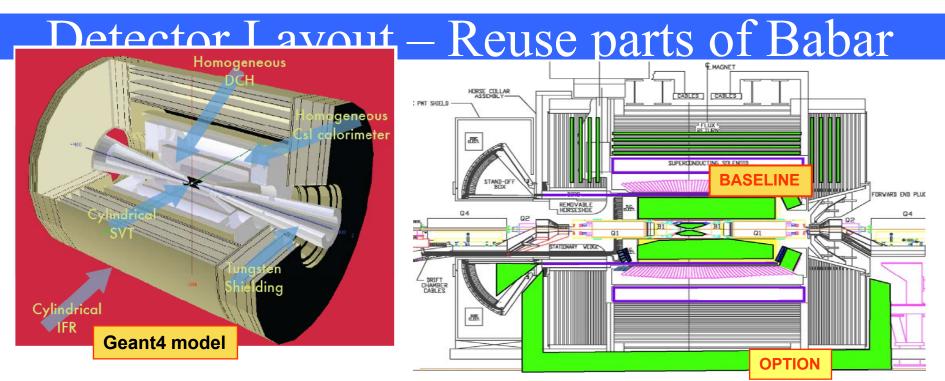
Luminosity doubled by doubling currents and wall power by a factor 2

Marcello A. Giorgi



Dec16,2008

SuperB expectation


With 7th year integrated Luminosity can grow at rate of \sim 40 ÷ 60 ab⁻¹/year

>80ab-1 after 6 years

Valencia Dec16,2008 Marcello A. Giorgi

Test beam goals for 2008-2010

Silicon Vertex Tracker

MAPS pixel devices: resolution, efficiency, readout speed

(now under test at CERN !)

Advanced trigger systems (Associative Memories)

Drift Chamber

Cell size, shape, and gas mixture

Particle ID system (forward system)

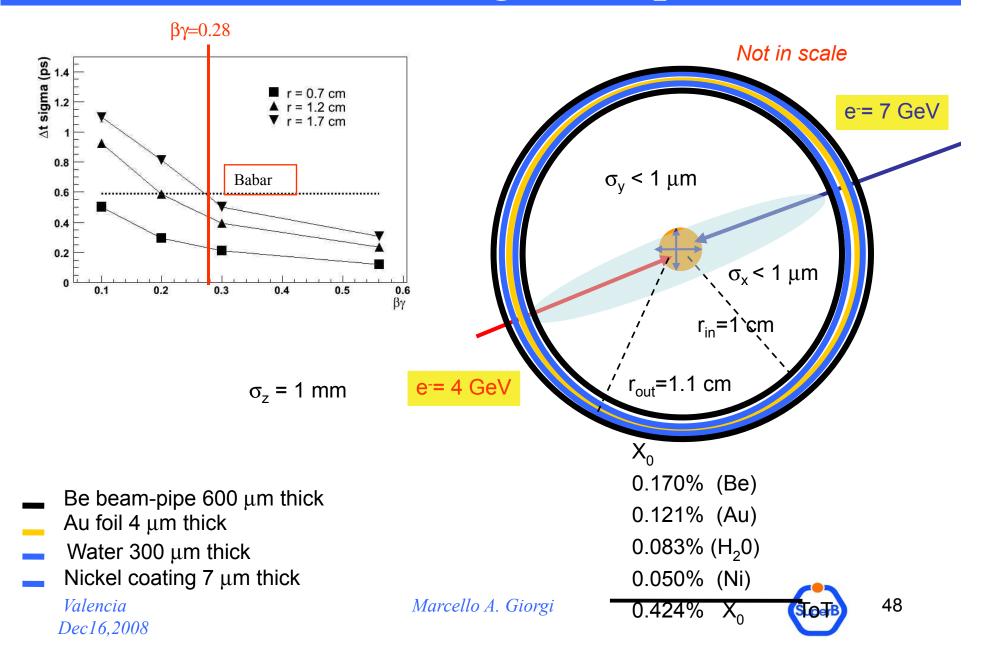
Radiators (Aerogel, NaF)

Photon detector (MCP, MAPMTs, SiPM) Timing for TOF system

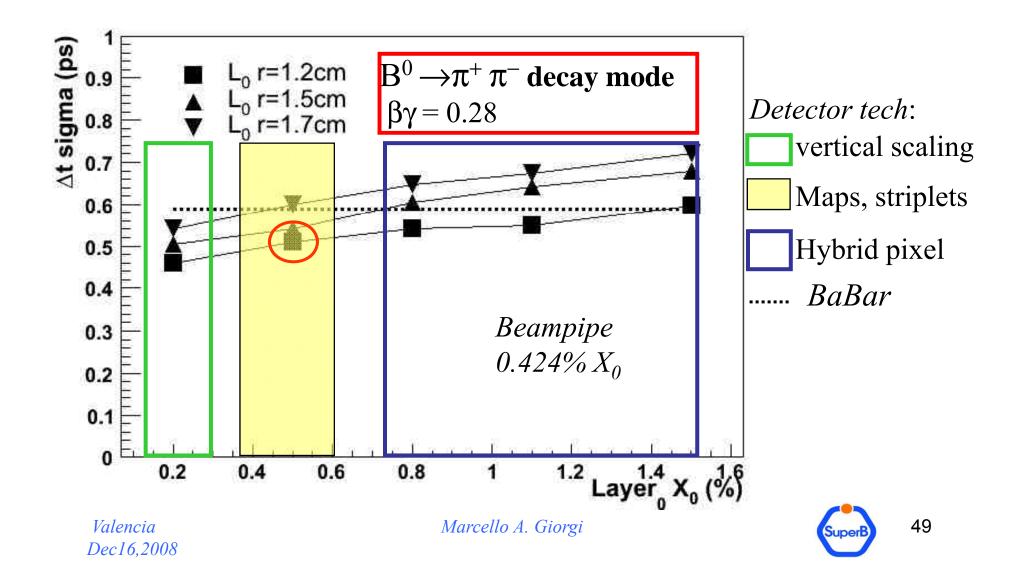
Electromagnetic Calorimeter

Forw: LYSO Crystals leakage, resolution, mechanical structure

Back: Lead-scintillator calorimeter resolution


Instrumented Flux Return

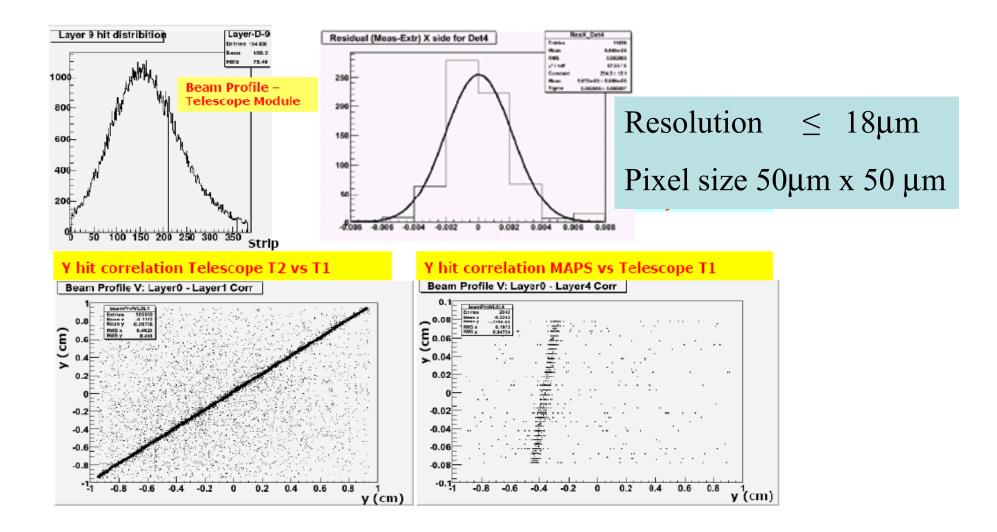
Scintillator, fibers, photon detector, readout electronics


Valencia Dec16,2008

Interaction region SuperB

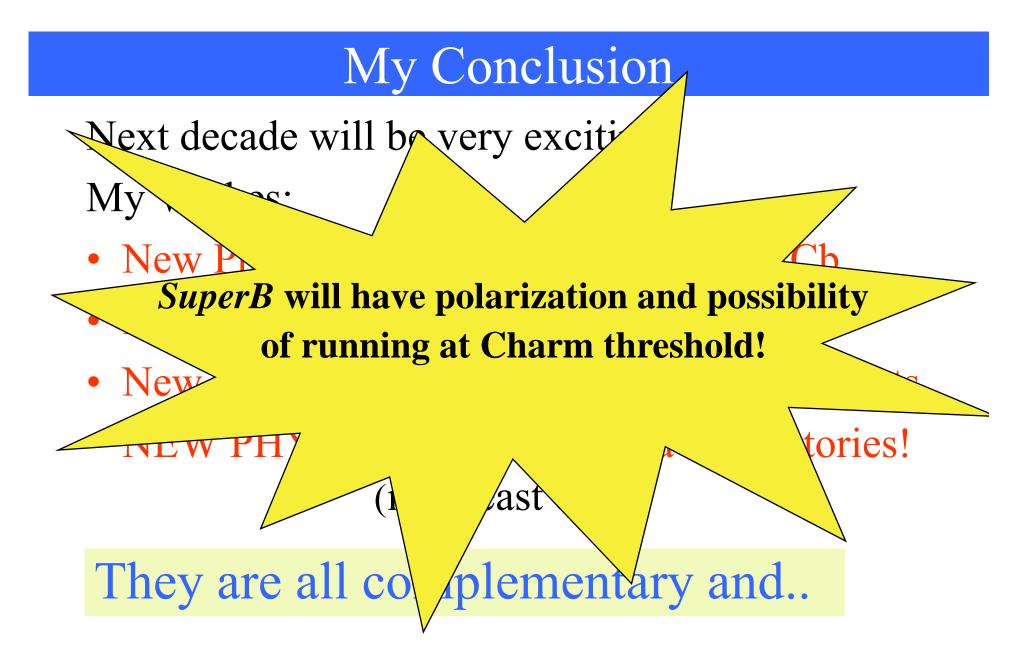


Example of physics studies: Δt resolution in $B \rightarrow \pi \pi$ decays vs L₀ X₀(%) 10 μ m intrinsic detector resolution


...and INCOLO IOI IICW

• Beam test september '08 @ CERN (T9). Main goals:

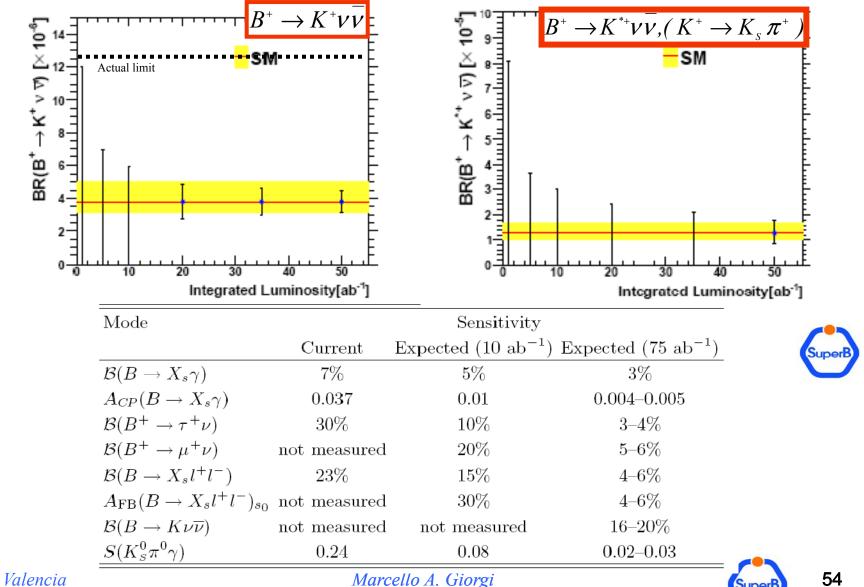
Valencia Dec16,2008

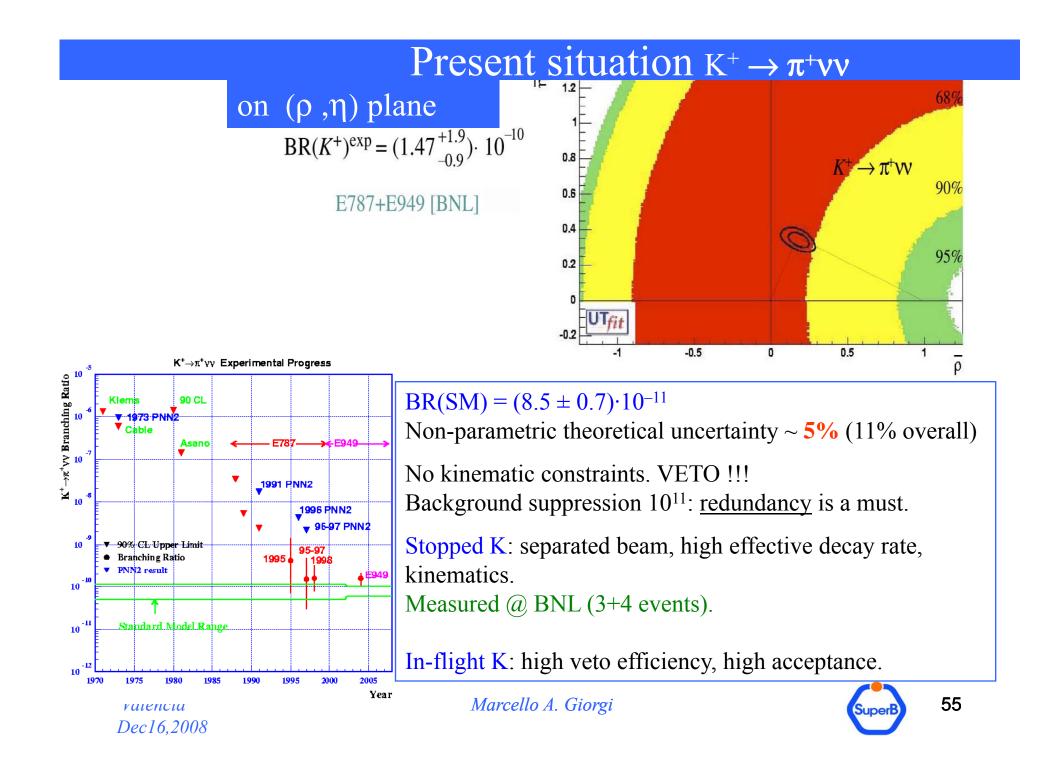


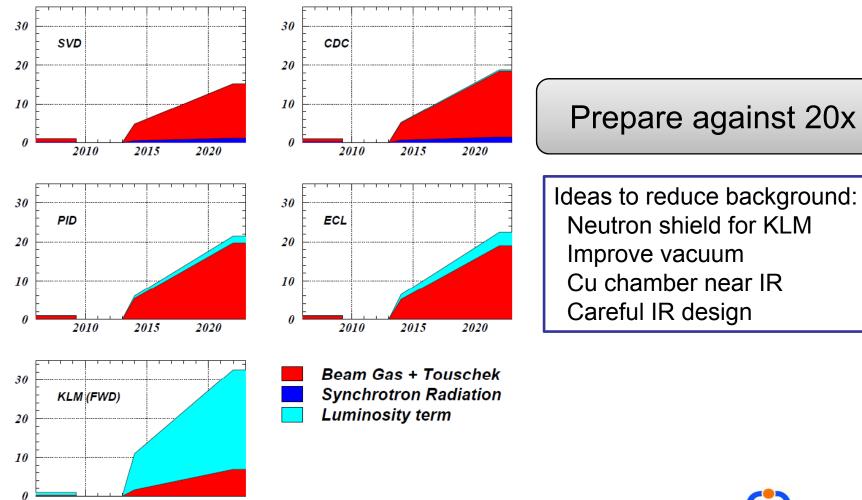
Efficiency plateau 80÷90%

Valencia Dec16,2008 Marcello A. Giorgi

Valencia Dec16,2008 Marcello A. Giorgi




Marcello A. Giorgi


Some comparison: Current $\rightarrow 10ab^{-1} \rightarrow 75ab^{-1}$

Dec16,2008

Beam Background (extrapolation)

