Searches for 4th Generation Particles & Heavy Neutrinos at CMS

Kai-Feng Chen

National Taiwan University

Symposium on Prospects in the Physics of Discrete Symmetries 11-16 December 2008, IFIC, Valencia, Spain

Introduction: 4th Generation Quarks

- The Standard Model: <u>At least</u> three generations of quarks are required for *CP* violation, however...
 - → CPV is far too small by 10 orders of magnitude.
 - → An extra family of quarks may resolve this big gap. (Hou, arXiv:0803.1234)
- Direct measurement of Invisible Z width: $Nv = 2.92 \pm 0.05$, but
 - → It does not guarantee that N(gen) = 3 exactly, e.g. heavy neutrino with mass > 0.5M_Z.
- Experimental limits from Tevatron direct searches:
 - → $M(t' \rightarrow qW) > 311 \text{ GeV}/c^2$.
 - → $M(b' \rightarrow bZ) > 268 \text{ GeV/}c^2$ (assuming 100% $b' \rightarrow bZ$, so it's not really firm). Also there are some searches for long lived b' decay, with 2D limits on M(b') and $c\tau$ plane.

Today we are focusing on the bottom-like 4th generation quark, b'.

Introduction: 4th Generation Quarks

Decay "pattern" of the b' quark

Rich Signatures

- Larger x-sec.
- For sizable $|V_{cb'}|$:
 - $b' \rightarrow cW \gg f^{(*)}W^{(*)}$
- Suppressed $|V_{cb'}|$: $b' \rightarrow cW \ll t^{(*)}W^{(*)}$
- FCNC:
 b' → bZ, bH

b' → tW dominance

- Lower x-sec.
- Large mass coverage.

LHC provides the chance for direct searches, from light to heavy!

(**△**today's topic)

Introduction: 4th Generation Quarks

A bottom-like quark that decays to top and W. (Mass > 255 GeV)

- Full decay chain: $b'b' \rightarrow tW tW \rightarrow bbW^+W^-W^+W^-$ (4 W-bosons!)
- Possible final states: 4L+2J, <u>3L+4J</u>, <u>2L+6J</u>, 1L+8J, 0L+10J

(clean & large modes first)

Production yields @ 100/pb

$$BR(W \rightarrow lv) = 1/3$$

$$BR(W \rightarrow jj) = 2/3$$

M(b') (GeV)	300	350	400	450	500
N(4L)	38	18	9	5	3
<u>N(3L)</u>	307	143	71	38	22
N(2L)	920	429	212	115	65
→ <u>same-sign 2L</u>	307	143	71	38	22
N(1L)	12.3k	572	283	153	86

Smaller Standard Model background is expected for same-sign 2L.

Introduction: Heavy Neutrinos

- Heavy Majorana neutrinos: predicted by many models, particularly, the <u>Left-Right Symmetry Model</u>:
 - Incorporates right-handed gauge bosons W_R , or Z', and the heavy right-handed Majorana neutrinos, N_ℓ ($\ell = e, \mu, \tau$), which can be the partners of the light neutrinos.
 - → Light neutrino masses are generated via SeeSaw mechanism: Neutrino oscillation indicates M(v) > 0, but this is not in the SM!
 - → Explains parity violation in weak interactions.
 - → Includes SM at ~1 TeV scale.
- In many SM extensions, $M(N_t) \sim 0.1 1$ TeV.

Perfect for searching these new particles at LHC & CMS!

Introduction: Heavy Neutrinos

The Model Parameters

- The key parameters: masses
 - → $M(W_R)$ & $M(N_\ell)$ ($\ell = e, \mu, \tau$).
- Possible reaction:

⇒
$$pp \rightarrow W_R + X \rightarrow N_\ell + \ell + X$$

 $\vdash \ell + W_R^* \rightarrow \ell + 2 \text{ jets}$

iet

- Best limit from D0: (Phys. Rev. Lett.100:211803,2008)
 - \rightarrow M(W_R) > 739 GeV/ c^2 , if W_R decays to leptons + quarks
 - → $M(W_R)$ > 768 GeV/ c^2 , if W_R decays to only quarks The best limit on $M(W' \rightarrow e \nu)$ is 1.0 TeV from D0 direct searches.

The CMS Experiment

The Analysis: b'→tW Searches

- Data set assumption:
 - 100 pb-1 at 14 TeV recorded by the CMS detector.
- **Trigger:** single "relax" electron trigger + single loose muon trigger.
- Lepton selections:
 - \rightarrow Electrons: cut-based ID, isolated from tracks, $p_T > 20 \text{ GeV/}c$.
 - \rightarrow Muons: must be isolated from tracks, $p_T > 20 \text{ GeV}/c$.
 - Requiring exact **2L with the same charge**, or **3L** in the final state.
- **Jet selections:** Iterative cone algorithm of 0.5 radius
 - → Same-sign 2L: at least 4 or more jets p_T > 35 GeV/c.
 - \rightarrow 3L: at least 2 or more jets $p_T > 35 \text{ GeV}/c$.
- Other requirements:
 - → Missing ET: MET > 40 GeV.
 - \rightarrow A Z-boson veto: $|M(\ell+\ell-)-M_7| > 10 \text{ GeV}/c^2$.
 - \rightarrow Objects isolation: $\Delta R(\ell,\ell) > 0.3 \& \Delta R(\ell,\text{jet}) > 0.3$

The Analysis: b'→tW Searches

Expected Yields @ 100/pb

b' Signal Assuming 100% b'→tW

M (<i>b</i> ') (GeV)	300	400	500
N(3L)	23.6	7.6	2.9
N(same-sign 2L)	44.7	14.6	5.1
Sum	68.2	22.2	8.0
S/N	9.3	3.0	1.1

- The signal is very significant, high S/N with 300 GeV/c².
- Good sensitivity up to $400 \text{ GeV}/c^2$.
- Background is dominated by the tt+jets events.

Background Sources

Process	tt+nj	ttZ(+j)	ttW (+j)	ttWW	Z/W+nj	WZ/ZZ	All
N(3L)	1.0	0.38	0.31	0.014	<1.4	0.21	1.9
N(same-sign 2L)	4.7	0.31	0.43	0.020	<1.4	<0.11	5.4
Sum	5.7	0.69	0.74	0.035	<1.4	0.21	7.3

QCD events are negligible (<0.3 events)

Resulting Figures (for 300 GeV/c2 b)

Signal observable: $HT = \sum p_T(jets) + \sum p_T(leps) + MET$ (carries mass information!)

Histograms are normalized to 100/pb luminosity

Background, mainly tt+jets

Background Estimation with Data

Background is normalized by the control sample:

Opposite sign 2L w/ the same jet requirement

(It's totally dominated by ttbar – as our wish!)

Signal Region

- Governed by the probability to
 - → observe a sign-flipped lepton (become same-sign 2L)
 - find an extra (fake) lepton (become 3L)

This is the dominant systematic error (17%~124%, depends on b' mass). Other big errors are MET (21%~30%), Jet energy scale (11%~27%). All the systematic uncertainties are determined assuming the early condition.

Counting Significance

HT Distributions for 300, 400, 500 GeV/ c^2 b' signals

ndent of

M(b') (GeV)	300	400	500	
b'b LO cross section (pb)	34.9	8.05	2.45	
Signal Yield	68.2	22.2	8.0	Background is
Background Yield		7.3 +10.5/-4.8		independent c
Significance (stat.+syst.)	7.5σ	2.0σ	0.0σ	b' mass.

Very significant (7.5 σ) if M(b') = 300 GeV/c². Not significant at all for 500 GeV/ c^2 , since background error > signal.

Exclusion Limit

In the case of no signal observed in data, we could set the exclusion limit accordingly at 95% C.L.

We use a Bayesian limit for null hypothesis tests, with all the systematic effects are included. By comparing to the Pythia LO

X-secs:

The Analysis: Heavy Neutrinos

- Data set assumption:
 - 100 pb-1 at 14 TeV recorded by the CMS detector.
- Trigger:
 - → Electron channel: high p_T electron (80 GeV) or very high p_T electron (120 GeV).
 - Muon channel: Isolated muon trigger.
- **Lepton selections:**
 - Requiring at least 2 electrons or 2 muons, $M(\ell \ell) > 200 \text{ GeV}/c^2$. (one with $p_T > 80 \text{ GeV/c}$, one with $p_T > 20 \text{ GeV/c}$.)
 - → Electrons: cut-based ID, isolation using tracker & calorimeter.
 - → Muons: track quality cuts, isolation using tracker & calorimeter.
- Jet selections: Iterative cone algorithm of 0.5 radius Requiring at least 2 jets, $p_T > 40 \text{ GeV}/c$.

The Analysis: Heavy Neutrinos

- Reconstructed kinematic variables:
 - Right-handed W_R boson mass, $M_{W_R}^{\text{cand}}$:

 The invariant mass of the combination, $\ell_1 \ell_2 J_1 J_2$.
 - \rightarrow Heavy neutrino mass, $M_{N_i}^{\text{cand}}$:
 The invariant mass of $\ell_2 J_1 J_2$, where ℓ_2 is the "softer" lepton.

Example signal distributions simulated with $M(W_R) = 2 \text{ TeV } \& M(N_\ell) = 500 \text{ GeV},$ (electron channel)

The Analysis: Heavy Neutrinos

Expected Yields @ 100/pb

Signal reference point: $M(W_R) = 1.5 \text{ TeV}, M(N_\ell) = 500 \text{ GeV}$

Electron channel

Process	Signal	tt	Z+nj	W+nj	γ+nj	QCD	WW	WZ	Others
Grand region	23	19	7.2	2.1	0.68	0.23	2.27	0.56	0.85
2D peak region	14	0.44	0.15	0.31	0	0	0.084	0	0.1

Muon channel

Process	Signal	tt	Z+nj	W+nj	γ+nj	QCD	WW	WZ	Others
Grand region	23	22	8.7	0.025	0	3.4	2.6	0.57	0.32
2D peak region	17.6	0.57	0.16	0	0	0	0.19	0	0

Grand region: $M_{W_p}^{\text{cond}} > 600 \text{ GeV}/c^2$

2D peak region: 1250 $< M_{W_R}^{cand} < 1720 \text{ GeV}/c^2$, 480 $< M_{N_I}^{cand} < 710 \text{ GeV}/c^2$

Resulting Figures

γ^{*}Z+jets

signal LRRP

1000

M(ll)

1500

2000

Background

- Background is checked by the control samples:
 - \rightarrow top events: selecting the cross flavor $e^{-\mu}$ events.
 - \rightarrow Z+jets: relax the M($\ell\ell$) cut to 80 GeV/ c^2 .

The Fits & Results

Signal is extracted by a maximum likelihood fit in 2 dimensions:

$$P(M_{W_R}, M_{N_I}) = N_S \times BW(M_{W_R}) \times BW(M_{N_I}) + N_B \times P_B(M_{W_R}, M_{N_I})$$

The signal is modeled by two Breit-Wigners. (mean are free, widths are quasi-free in the fits)

2D Background shape from smooth histograms

Weighted sample (a mixture of signal and background MC events)

The Fits & Results

We only consider $M(N_{\ell}) < M(W_R)$ at this moment.

- The limit is obtained by pseudo experiments.
- For the exclusion limit, systematic uncertainties are included in the consideration.

Summary & Conclusion

- We have performed two feasibility studies, assuming a data set of 100 pb⁻¹ at 14 TeV at CMS. The systematic uncertainties at early condition are considered.
- Search for a 4^{th} generation bottom-like quark, $b' \rightarrow tW$:
 - → If the b' quark is as light as 300 GeV/ c^2 , a **7.5** σ discovery can be made using a simple counting experiment.
 - → Or, we could exclude such $b' \rightarrow tW$ signal up to M(b') < 480 GeV at 95% confidence level if only SM processes observed.
- The study for right-handed W-boson & heavy neutrinos:
 - → We analyzed the possibility of two leptons & two jets final states.
 - These new particles can be observed at the level of 5σ in the mass region that goes up to $M(W_R) = 2.1$ TeV, $M(N_\ell) = 1.2$ TeV.
- Looking forward to the first data from LHC.