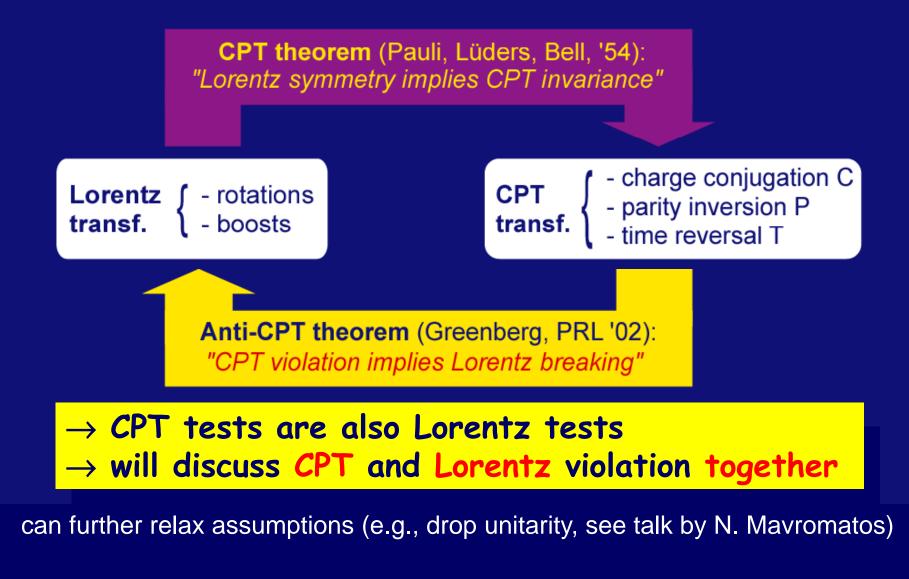

Discrete08

CPT and Lorentz violation as signatures for Planck-scale physics


Ralf Lehnert Max-Planck-Institut für Physik München

MAX-PLANCK-GESELLSCHAFT

<u>Prologue:</u> Connection between Lorentz and CPT symmetry

Local, point-particle quantum field theories:

<u>Outline:</u>

A. Motivation

B. SME test framework

C. Phenomenology and tests

A. Motivations for spacetime-symmetry tests

(i) philosophical necessity

spacetime symmetries are cornerstone of:

- present-day physics
- many candidate fundamental theories

---- spacetime symmetries must be tested

(ii) possibility of testing Planck-scale physics

Nongravitational physics is well described by Standard Model (SM),

- phenomenological (many parameters) but:

- several distinct interactions
- excludes gravity

Solution:	look for more fundamental theory	
-----------	----------------------------------	--

Candidates: string (M) theory, loop gravity, supergravity, ...

Problem: Planck-scale measurements (attainable energies \ll Planck scale)

common approach: scan predictions of a given theory for sub-Planck effects accessible with near-future technology, e.g.,

novel particles (SuSy)
large extra dimensions & microscopic black holes

- gravitational-wave background ...

Alternative approach: What *can* be measured with Planck precision? *Is* there a corresponding quantum-gravity effect?

Symmetries:

- allow exact theoretical prediction
- are typically amenable to ultrahigh-precision (null) tests

Tests of spacetime symmetries could probe Planck-scale physics

Quantum gravity: likely to affect spacetime structure

- More than 4 dimensions?
- Non-commuting coordinates?
- Discreteness?
- "Foamy" structure? ...

Sample mechanisms for Lorentz violation:

String field theory (Kostelecký *et al* '89; '90; '91; '95; '00) nontrivial vacuum through spontaneous Lorentz breakdown

Spacetime foam (Ellis *et al* '98) nontrivial vacuum though virtual black holes

Nontrivial spacetime topology (Klinkhamer '00) nontrivial vacuum though compact conventional dim.

Loop quantum gravity (Alfaro *et al* '00) nontrivial vacuum though choice of spin-network state

Noncommutative geometry (Carroll *et al* '01) nontrivial vacuum through fixed $\theta^{\mu\nu} \sim [x^{\mu}, x^{\nu}]$

B. The SME test framework

(1) new transformations

- vacuum remains "empty"
- no Minkowski structure
- deformed lightcone

<u>E.g.</u>: Robertson's framework, its Mansouri-Sexl extension, DSR, ...

(2) "background" fields

- ext. "fields" in vacuum
- conv. Minkowski structure
- conv. lightcone

 microscopic, dynamical, can be motivated (Sec. A)

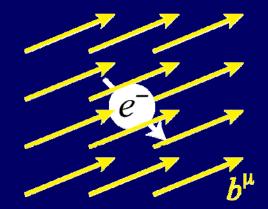
SME; contains some of the kinematical approaches; will focus on this description

Construction of the SME

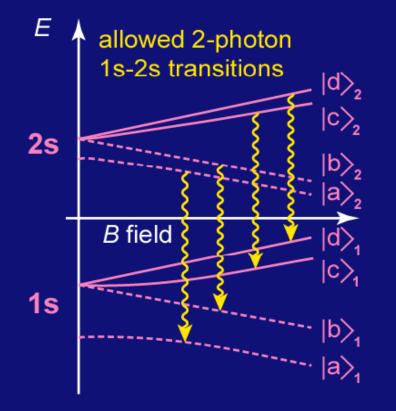
- k^{μ} , $s^{\mu\nu}$, ... coefficients for Lorentz violation
- minimal SME \rightarrow fermion 44, photon 23, ...
- amenable to ultrahigh-precision tests (Sec C)
- generated by underlying physics (Sec A)

<u>Remark:</u>

in gravitational context, various novel effects are possible (see R. Potting's talk)


C. Phenomenology and tests

What needs to be measured? Example:


- direction in vacuum
- assumed to be caused by underlying physics
- on observational grounds: extremely small
- want to bound it or measure its size and direction

$$\delta \mathcal{L}_{\text{fermion}} \supset \overline{\psi}_{\uparrow} \overset{\bullet}{b} \gamma_{5\gamma\mu\psi}$$

wave function of a fermion (e.g., electron) and usual Dirac gamma matrices (details of coupling)

Experimental tests of CPT symmetry (i) Antihydrogen spectroscopy The 1s-2s transition

only the c, d states are trapped

 $|d\rangle_n = |\frac{1}{2}, \frac{1}{2}\rangle$ Note: no spin mixing

$$|c\rangle_n = \sin \theta_n |-\frac{1}{2}, \frac{1}{2}\rangle + \cos \theta_n |\frac{1}{2}, -\frac{1}{2}\rangle$$

with $\tan 2\theta_n \simeq \frac{51mT}{n^3 B}$
Note: θ_n , and thus spin mixing, depends on level *n* and field *B*

How are $d \rightarrow d$ and $c \rightarrow c$ transitions affected by Lorentz/CPT violation?

The $d_2 \rightarrow d_1$ transition with Lorentz/CPT violation

Leading-order energy shifts (Bluhm, Kostelecký, Russell, PRL '99)

Hydrogen (electron and proton angular momenta J and I):

$$\Delta E_{LV} = \Delta E_{e+p} + \Delta E_e \frac{m_J}{|m_J|} + \Delta E_p \frac{m_I}{|m_I|}$$

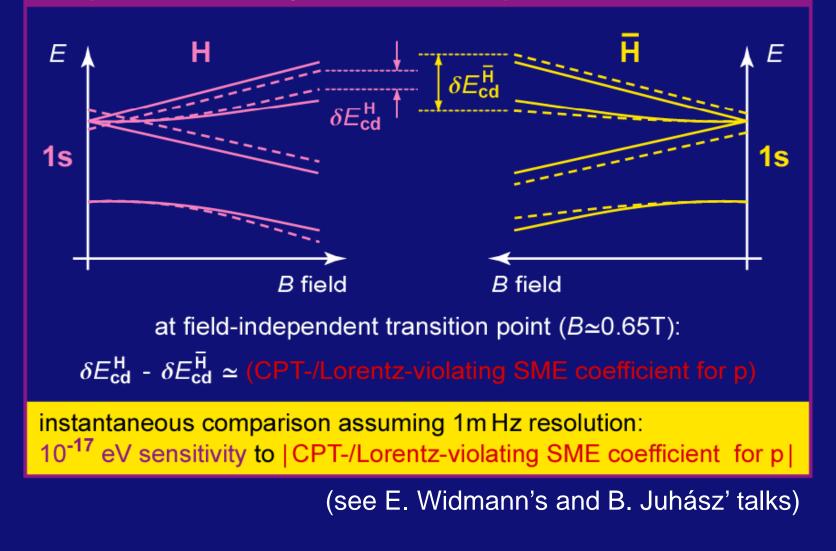
level-independent combinations of Lorentz-/CPT-violating SME coefficients

Note: both d₁ and d₂ have $m_J = 1/2$ and $m_I = 1/2$ \rightarrow shift is level independent

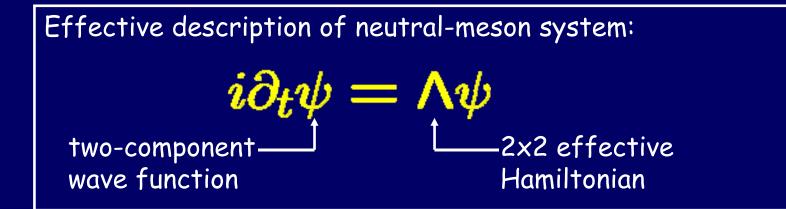
Result: no leading-order Lorentz/CPT violation in $d_2 \rightarrow d_1$ transition

The $c_2 \rightarrow c_1$ transition with Lorentz/CPT violation

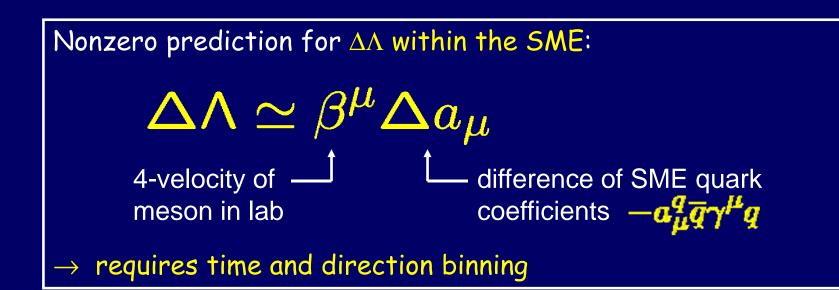
Difference between H and H transition frequencies (Bluhm, Kostelecký, Russell, PRL '99):


level-dependent spin mixing \rightarrow unsuppressed signal $\Delta E_H - \Delta E_{\overline{H}} \simeq \kappa \Delta E_{e+p}$

combination of Lorentz-/CPT-violating SME coefficients $\kappa = \cos \theta_2 - \cos \theta_1$ $\kappa_{\text{max}} \simeq 0.67$ B field


Result: - leading-order Lorentz/CPT violation in c₂ → c₁ transition - experimental issue: effect is *B*-field dependent

Hyperfine Zeeman transitions within the 1s state


Difference between H and \overline{H} d1 + c1 transition frequencies (Bluhm, Kostelecký, Russell, PRL '99):

(ii) Neutral-meson oscillations

CPT violation iff difference of diagonal pieces of Λ nonzero $\Delta\Lambda\equiv\Lambda_{11}-\Lambda_{22}\neq 0$

Sample	sensitivities	to Δa -type	coefficients	
	7			

- K: 10⁻¹⁷... 10⁻²² GeV KLOE (see A. Di Domenico's talk), KTeV
- D: 10⁻¹⁶ GeV FOCUS

B_d: 10⁻¹⁵ GeV BaBar

Summary

- (1) At present, there are no experimental indications that CPT (or Special Relativity) is violated.
- (2) Many theoretical approaches to fundamental physics lead to vacuum with a preferred direction (background), and therefore to CPT/Relativity violations.
- (3) These effects are described (largely model independent) by a general test framework called the SME.
- (4) Testing these ideas requires ultrahigh precision. Experimental studies with antimatter are excellent tools for these purposes.