

Baryogenesis

Mikhail Shaposhnikov

1 December - p.

The problem to solve

On qualitative level:

Why there is no antimatter in the Universe?

On quantitative level:

Why

$$\frac{n_B}{s} \simeq +(8.8-9.8) \times 10^{-11}$$

The solution

On qualitative level:

Sakharov

Since Universe is expanding (arrow of time), baryon number is not conserved and CP is broken

On quantitative level:

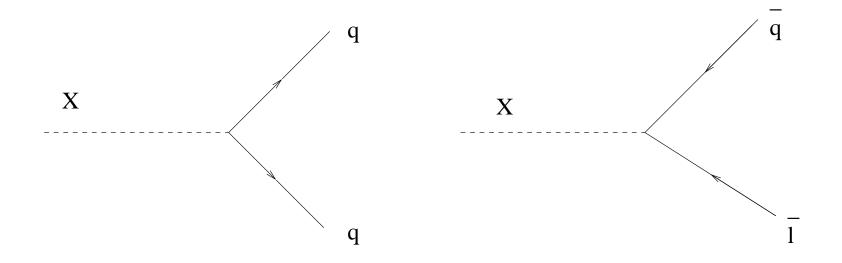
- How baryon and lepton numbers are broken: GUTs, Majorana masses, electroweak anomaly
- How arrow of time is realized: particle decoupling, inflation and/or preheating, phase transitions
- CP-violation: leptons versus quarks, low energy versus high energy

About 30 years ago

Back in 1977-1979 we thought we knew the origin of the baryon asymmetry of the Universe:

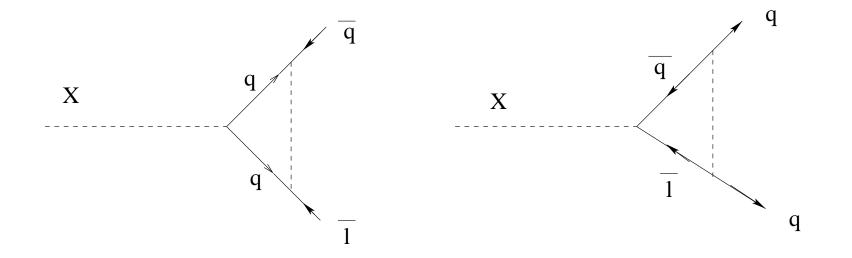
Back in 1977-1979 we thought we knew the origin of the baryon asymmetry of the Universe: Ignatiev, Krasnikov, Kuzmin and Tavkhelidze, 1977, 1978; Yoshimura, 1979; Weinberg,

1979;....


Grand Unification \Rightarrow baryon and lepton number non-conservation

Scale of GUTS is close to the Planck scale \Rightarrow rapid Universe expansion

Grand unified baryogenesis


Step No 1: Consider B-violating leptoquark decays

$$X
ightarrow q \ell, \; ar{m{q}} ar{m{q}} \; and \; ar{m{X}}
ightarrow ar{m{q}} ar{m{\ell}}, q q$$

Grand unified baryogenesis

Step No 2: To account for CP-violation, compute radiative corrections

Step No 3: Find baryon asymmetry from

$$rac{n_B}{n_\gamma} = \Delta \sim rac{1}{N_{ ext{eff}}} \delta_{CP} \cdot S_{ ext{macro}},$$

 δ_{CP} is the asymmetry in leptoquark decays,

$$\delta_{CP} = rac{\Gamma(X
ightarrow qq) - \Gamma(ar{X}
ightarrow ar{q}ar{q})}{\Gamma_{ ext{tot}}},$$

 Γ_{tot} is the total width, S_{macro} is a factor taking into account the kinetics of the leptoquark decays

Progress over last 30 years

Progress over last 30 years

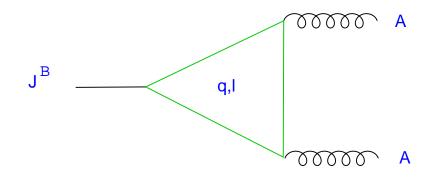
44 different ways to create baryons in the Universe!

- 1. GUT baryogenesis
- 2. GUT baryogenesis after preheating
- 3. Baryogenesis from primordial black holes
- 4. String scale baryogenesis
- 5. Affleck-Dine (AD) baryogenesis
- 6. Hybridized AD baryogenesis
- 7. No-scale AD baryogenesis
- 8. Single field baryogenesis
- 9. Electroweak (EW) baryogenesis
- 10. Local EW baryogenesis
- 11. Non-local EW baryogenesis
- 12. EW baryogenesis at preheating

- 13. SUSY EW baryogenesis
- 14. String mediated EW baryogenesis
- 15. Baryogenesis via leptogenesis
- 16. Inflationary baryogenesis
- 17. Resonant leptogenesis
- 18. Spontaneous baryogenesis
- 19. Coherent baryogenesis
- 20. Gravitational baryogenesis
- 21. Defect mediated baryogenesis
- 22. Baryogenesis from long cosmic strings
- 23. Baryogenesis from short cosmic strings
- 24. Baryogenesis from collapsing loops

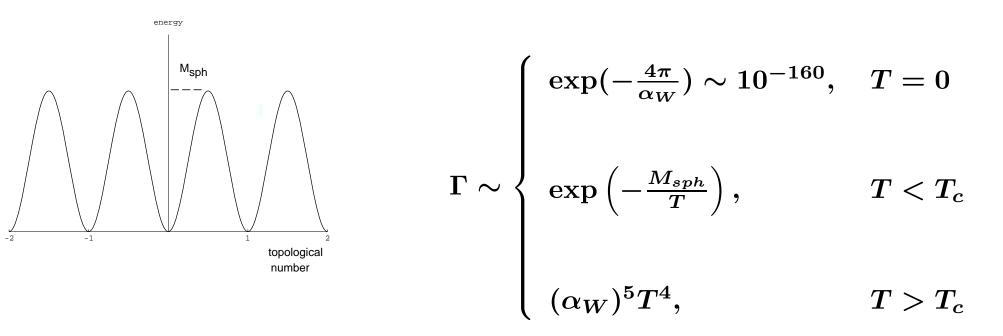
- 25. Baryogenesis through collapse of vortons
- 26. Baryogenesis through axion domain walls
- 27. Baryogenesis through QCD domain walls
- 28. Baryogenesis through unstable domain walls
- 29. Baryogenesis from classical force
- 30. Baryogenesis from electrogenesis
- 31. B-ball baryogenesis
- 32. Baryogenesis from CPT breaking
- 33. Baryogenesis through quantum gravity
- 34. Baryogenesis via neutrino oscillations
- 35. Monopole baryogenesis
- 36. Axino induced baryogenesis

- 37. Gravitino induced baryogenesis
- 38. Radion induced baryogenesis
- 39. Baryogenesis in large extra dimensions
- 40. Baryogenesis by brane collision
- 41. Baryogenesis via density fluctuations
- 42. Baryogenesis from hadronic jets
- 43. Thermal leptogenesis
- 44. Nonthermal leptogenesis


- 37. Gravitino induced baryogenesis
- 38. Radion induced baryogenesis
- 39. Baryogenesis in large extra dimensions
- 40. Baryogenesis by brane collision
- 41. Baryogenesis via density fluctuations
- 42. Baryogenesis from hadronic jets
- 43. Thermal leptogenesis
- 44. Nonthermal leptogenesis

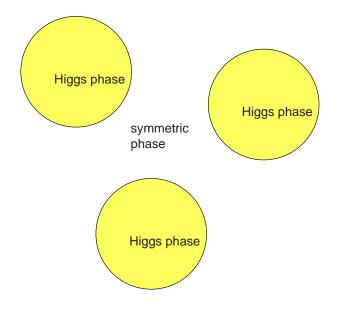
What else?

- Electroweak baryogenesis
- Resonant leptogenesis
- Baryogenesis via neutrino oscillations


Common feature

The source of baryon number non-conservation: rapid anomalous EW baryon number violating processes at high temperatures

$$\partial_{\mu}J^B_{\mu}=\partial_{\mu}J^L_{\mu}=rac{n_f}{32\pi^2}{
m Tr}\left(F_{\mu
u} ilde{F}_{\mu
u}
ight)$$


These reactions are in thermal equilibrium for

$$100 \text{ GeV} \sim T_c < T < (\alpha_W)^5 M_{Pl} \sim 10^{12} \text{ GeV}$$

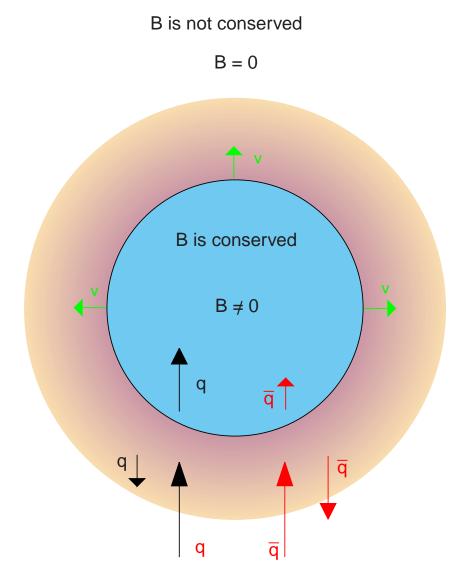
- Non-equilibrium: first order phase transition
- B-nonconservation: EW anomaly
- CP-violation: complex phases in Higgs-fermion couplings

First order phase transition: a mechanism to go out of thermal equilibrium.

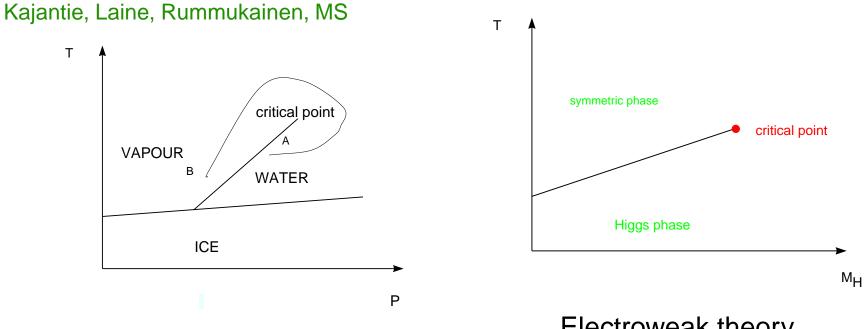
The universe is supercooled in the symmetric phase \rightarrow bubbles of new (Higgs) phase are nucleated.

Size of the critical bubble: $R \sim (\alpha_W T_c)^{-1}$ $T_c \sim 100 \text{ GeV}$ Bubble size at percolation: $\sim 10^{-6} \text{ cm}.$

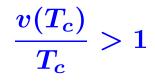
Cohen, Kaplan, Nelson


1. Symmetric phase: $\langle \phi^{\dagger} \phi \rangle \simeq$ $0 \rightarrow$ fermions are almost massless and B-nonconservation is rapid. 2. Higgs phase: $\langle \phi^{\dagger} \phi \rangle \neq 0$ \rightarrow fermions are massive and B-nonconservation is exponentially suppressed.

 \Downarrow


Fermions interact in a CP-violating way (reflected and transmitted) with the surface of the bubble

Baryon asymmetry of the Universe after EW phase transition.


Mechanism

Standard Model

Typical condensed matter phase diagram (pressure versus temperature) Electroweak theory $\langle \phi^{\dagger} \phi \rangle \ll (250 \text{GeV})^2$ $T = 109.2 \pm 0.8 \text{GeV},$ $M_H = 72.3 \pm 0.7 \text{GeV}$ $\langle \phi^{\dagger} \phi \rangle_{T=0} \sim (250 \text{ GeV})^2$ MS Required for successful baryogenesis: freeze out of anomalous processes in the broken phase:

- Add singlet scalar field
- Add extra Higgs doublet
- SUSY: light stop
- Higher dimensional operators such as $(H^{\dagger}H)^3$

- Add extra Higgs doublet(s)
- SUSY: sparticle interaction with bubble wall
- Higher dimensional operators with CP-breaking

Experimental predictions

Carena, Quiros, Wagner; Laine, Losada,...

MSSM

- Iight Higgs, $M_H < 120$ GeV
- light stop, 120 GeV < $M < M_t$
- Iarge CP-violation in chargino sector
- EDM of electron and neutron
- ${}^{\hspace{-.1cm}
 ho}$ $b
 ightarrow s \gamma$ decays

Simplest possibility: Minimal Standard Model + 3 (or 2) singlet right-handed fermions.

Most general renormalizable Lagrangian

$$L_{
u MSM} = L_{MSM} + ar{N}_I i \partial_\mu \gamma^\mu N_I - F_{lpha I} \, ar{L}_lpha N_I \Phi - rac{M_I}{2} \, ar{N}_I^c N_I + h.c.,$$

Extra coupling constants:

3 (2) Majorana masses of new neutral fermions N_i ,

15 (9) new Yukawa couplings in the leptonic sector

(3 (2) Dirac neutrino masses $M_D = F_{\alpha I}v$, 6 (4) mixing angles and 6 (3) CP-violating phases),

18 (11) new parameters in total.

Fukugita, Yanagida

- Non-equilibrium: freezing out
- B-nonconservation: EW anomaly; L-nonconservation: Majorana masses of singlet leptons
- CP-violation: 6 (3) CP-violating phases in the lepton sector

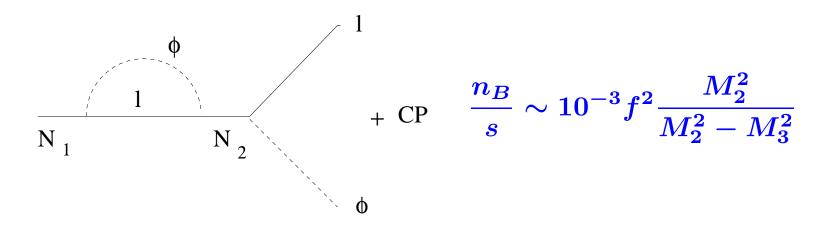
Physics: non-equilibrium decays of N produce lepton asymmetry, which is then processed into baryon asymmetry due to electroweak anomaly. Out of equilibrium and conversion to baryon asymmetry conditions:

 $M_W < T_{decay} < M_N$

Constraint on the decay Yukawa coupling $\Gamma_{tot} \simeq f^2 M_N$:

$$rac{M_W^2}{M_N M^*} < f^2 < rac{M_N}{M^*}, \ \ M^* \simeq 10^{18} {
m GeV}$$

Baryon asymmetry for non-degenerate case ($\Delta M_{ij} \sim M_k$):


$$rac{n_B}{s} \sim 10^{-3} f^2 \simeq 10^{-10}$$

for $f^2 \sim 10^{-7}$; works for $M_N > 10^{11}$ GeV.

Pilaftsis, Underwood

Is it possible to have $M_N \sim M_W$?

Yes, for degenerate case:

May work for $rac{\Delta M^2}{M^2} \sim f^2 \sim 10^{-16}$

Challenge: difficult to test directly: relatively large mass and small Yukawa couplings. Perhaps, possible in future e^+e^- and $\mu^+\mu^-$ colliders.

Indirect signatures: rare decays $\mu \rightarrow e\gamma, \ \mu \rightarrow eee$.

Consider previous model with the masses of singlet fermions – sterile neutrinos considerably smaller than M_W , say $\mathcal{O}(1)$ GeV (the ν MSM). Then these particles decay well below temperatures 100 GeV – no way for baryogenesis due to their decays. They also may only thermalize below M_W as Yukawas are small.

- Non-equilibrium: $n_N
 eq n_{eq}$ for all $T > M_W$
- B-nonconservation: EW anomaly; L-nonconservation: effectively absent as $m_N \ll M_W$.
- CP-violation: 6 CP-violating phases in the lepton sector

Akhmedov, Rubakov, Smirnov

Asaka,MS

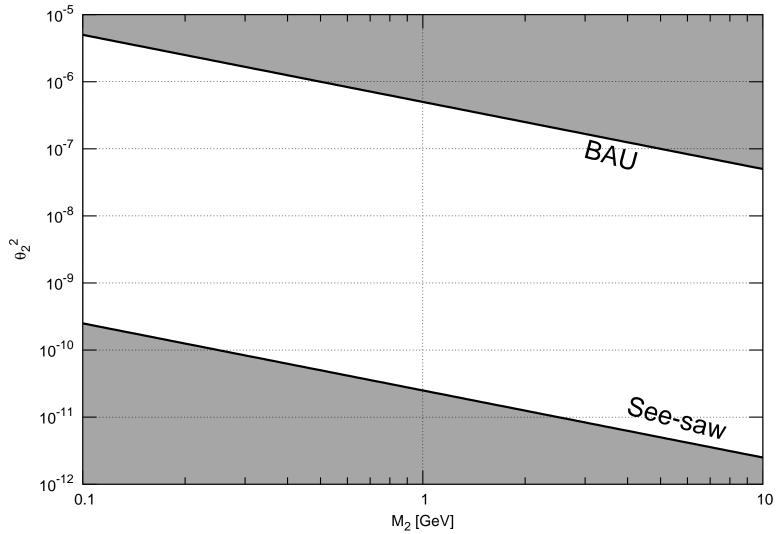
Idea - sterile neutrino oscillations as a source of baryon asymmetry. Qualitatively:

- Sterile neutrino are created in the early universe and oscillate in a coherent way with CP-breaking.
- The total lepton number gets unevenly distributed between active and sterile neutrinos.
- The lepton number of active left-handed neutrinos is transferred to baryons due to equilibrium sphaleron processes.

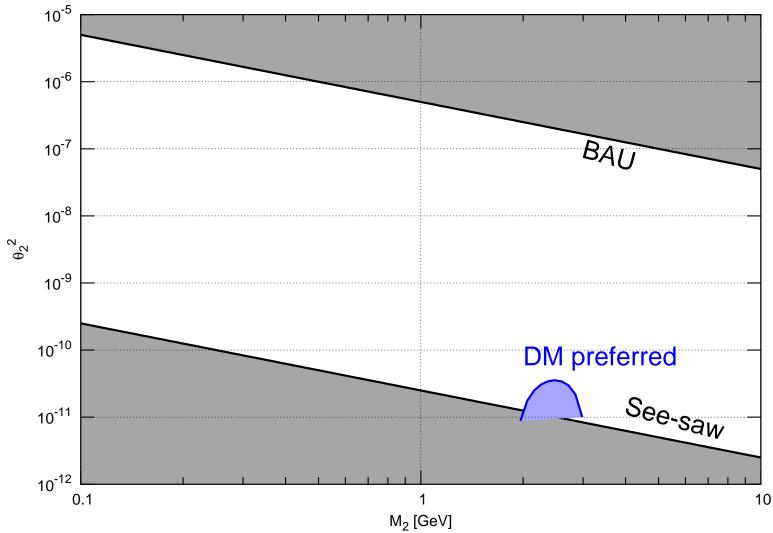
Value of BAU

$$\frac{n_B}{s} \simeq 1.7 \cdot 10^{-10} \, \delta_{\rm CP} \left(\frac{10^{-5}}{\Delta M_{32}^2/M_3^2} \right)^{\frac{2}{3}} \left(\frac{M_3}{10 {\rm GeV}} \right)^{\frac{5}{3}}$$

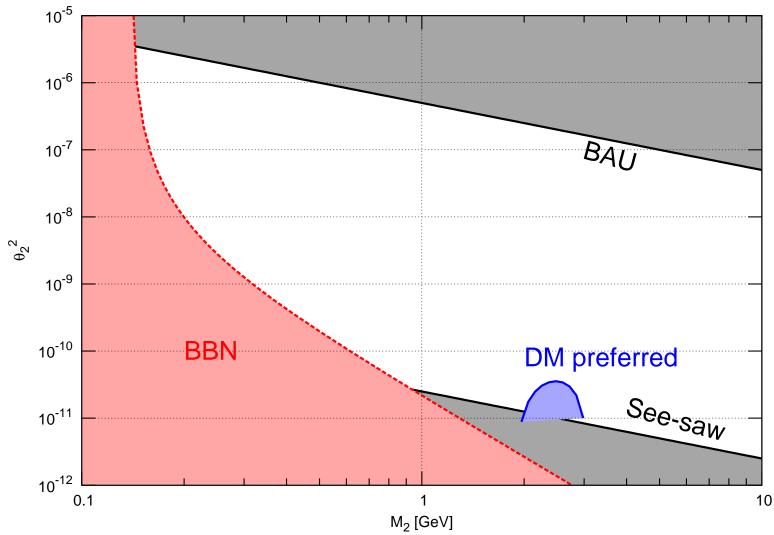
$$\begin{split} \delta_{\mathbf{CP}} &= 4 s_{R23} c_{R23} \Big[s_{L12} s_{L13} c_{L13} \big((c_{L23}^4 + s_{L23}^4) c_{L13}^2 - s_{L13}^2 \big) \cdot \sin(\delta_L + \alpha_2) \\ &+ c_{L12} c_{L13}^3 s_{L23} c_{L23} \left(c_{L23}^2 - s_{L23}^2 \right) \cdot \sin\alpha_2 \Big] \,. \end{split}$$


 $\delta_{\rm CP} \sim 1$ is consistent with observed u oscillations. Nontrivial requirement: $|M_2 - M_3| \ll M_{2,3}$, i.e. heavier neutrinos must be degenerate in mass. Works best if

 $M_2^2 - M_3^2 \sim T_W^3 / M_0 \simeq 4 \; (\text{keV})^2, \; \; |M_2^2 - M_3^2| \sim M_1^2 \; ???$

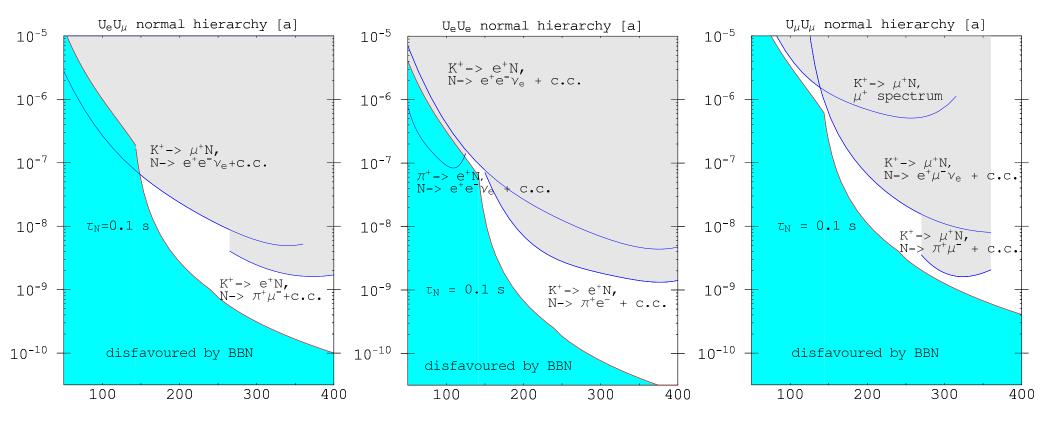

Constraints on BAU neutral leptons

- BAU generation requires out of equilibrium: mixing angle of N_{2,3} to active neutrinos cannot be too large
- Neutrino masses. Mixing angle of $N_{2,3}$ to active neutrinos cannot be too small
- Dark matter and BAU. Concentration of DM sterile neutrinos must be much larger than concentration of baryons
- **BBN**. Decays of $N_{2,3}$ must not spoil Big Bang Nucleosynthesis
- **Experiment.** $N_{2,3}$ have not been seen (yet).


N_{2,3}: **BAU**


$N_{2,3}$: BAU + DM

$N_{2,3}$: BAU + DM + BBN



$N_{2,3}$: BAU + DM + BBN + Experiment

- T. Yamazaki *et al.*, "Search for heavy neutrinos in kaon decay", 1984
- M. Daum *et al.* "The KARMEN time anomaly: Search for a neutral particle of mass 33.9-MeV in pion decay", 2000
- A. Vaitaitis *et al.* [NuTeV Collaboration], "Search for neutral heavy leptons in a high-energy neutrino beam", 1999
- P. Astier *et al.* [NOMAD Collaboration], "Search for heavy neutrinos mixing with tau neutrinos", 2001
- P. Achard *et al.* [L3 Collaboration], "Search for heavy neutral and charged leptons in e+ e- annihilation at LEP", 2001
- G. Bernardi *et al.*, "Search For Neutrino Decay", 1986; "Further Limits On Heavy Neutrino Couplings", 1988

CERN PS191 experiment, F. Vannucci (1988)

Conclusion: $M_{2,3} > 140 \text{ MeV}$

How to search for new leptons: laboratory

Missing energy signal in K, D and B decays (θ^2 effect)
Example:

$$K^+ o \mu^+ N, \ \ M_N^2 = (p_K - p_\mu)^2
eq 0$$

Similar for charm and beauty.

- $M_N < M_K$: KLOE, NA48, E787
- $M_K < M_N < 1$ GeV: charm and au factories
- $M_N < M_B$: B-factories (planned luminosity is not enough)

How to search for new leptons: laboratory

Decay processes $N \to \mu^+ \mu^- \nu$, etc ("nothing" $\to \mu^+ \mu^-$)
(θ^4 effect)

First step: proton beam dump, creation of N in decays of K, D or B mesons

Second step: search for decays of N in a near detector, to collect all Ns.

- $M_N < M_K$: Any intense source of K-mesons (e.g. from proton targets of MiniBooNE, NuMi, CNGS, T2K)
- $M_N < M_D$: NuMi or CNGS or T2K beam + near detector
- $M_N < M_B$: Project X (?) + near detector
- $M_N > M_B$: extremely difficult

MINER ν A, NuSOnG, HiResM ν

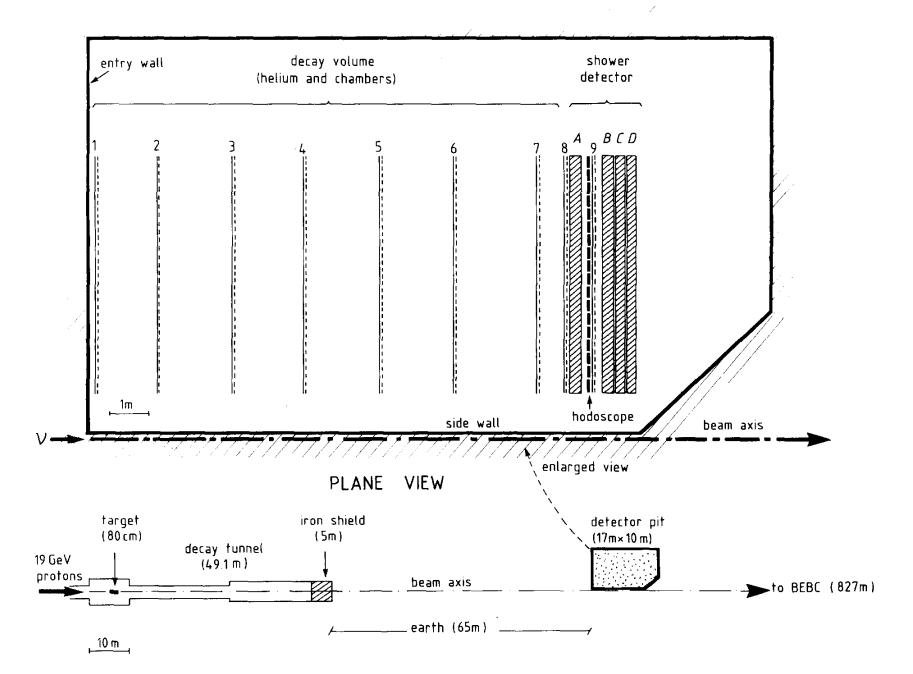
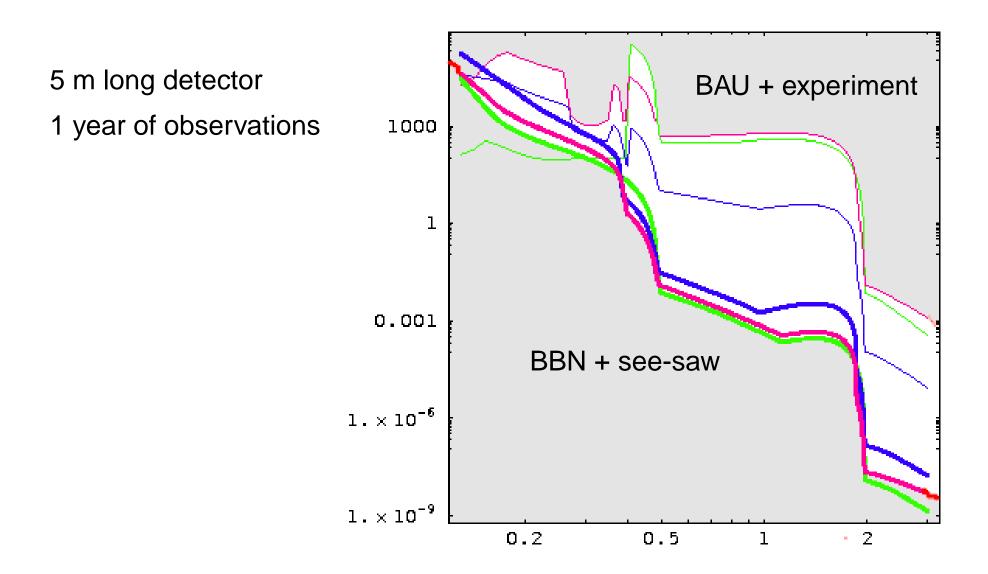
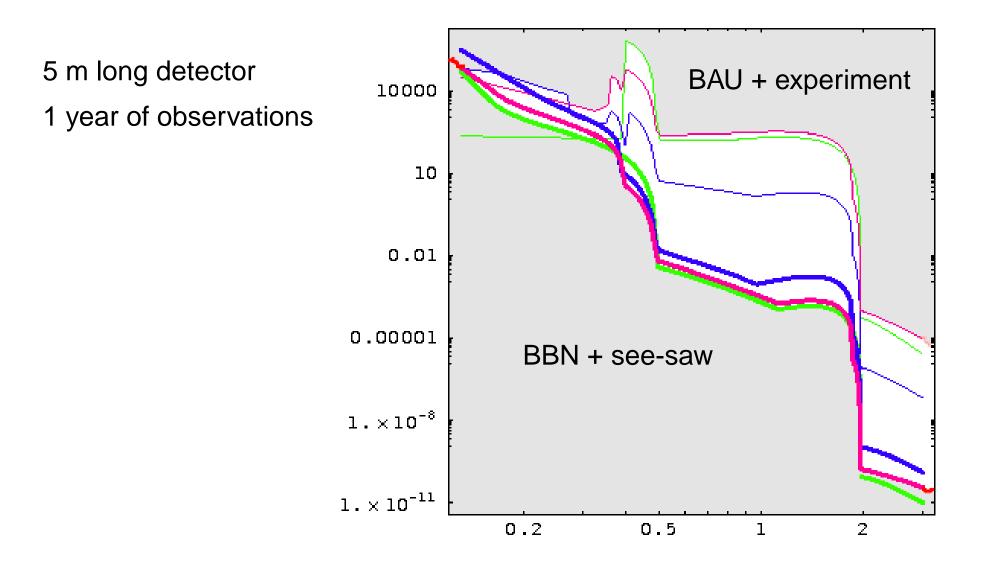
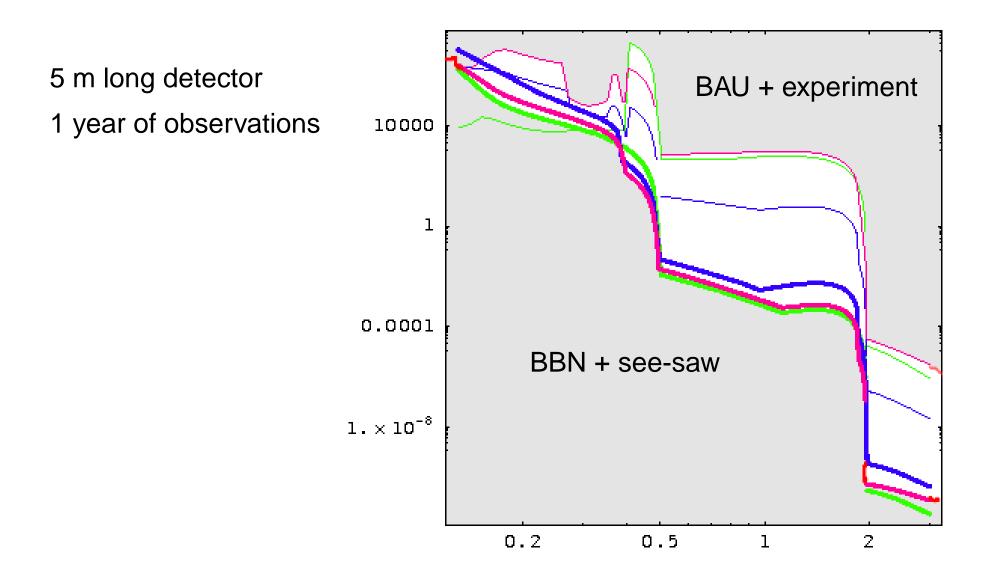




Fig. 1. Beam and layout of the detector.


Number of N-decays in near detector, CNGS

Number of N-decays in near detector, NuMi

Number of N-decays in near detector, JPARC

Crucial experiments to reveal the origin of baryon asymmetry of the Universe

- Electroweak baryogenesis
 - high energy (LHC) physics: standard Higgs plus extra scalars (or non-standard Higgs interactions), to make the EW phase transition be of the first order
 - high energy (LHC) physics: new fermions or scalars (e.g. SUSY) for extra CP violation
 - low energy physics: electric dipole moment of *e* and *n*, exotic rare decays

Resonant leptogenesis

- high energy (LHC, e^+e^-) physics: standard Higgs plus heavy neutral leptons
- low energy physics: processes like $\mu \to e\gamma, \ \mu \to eee$

- Baryogenesis via neutrino oscillations in the ν MSM:
 - high energy (LHC) physics: nothing but the Higgs in the mass
 interval M_H ∈ [129, 189] GeV
 - low energy physics: Missing energy signal in $K, \ D$ and B decays, decay processes $N \to \mu^+ \mu^- \nu$, etc ("nothing" $\to \mu^+ \mu^-$)