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Goal

Definition of entanglement
In a system of fermions
given the presence of superselection rules
that affect the concept of locality
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Definitions
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Indistinguishability
— Physical states restricted to totally

(anti)symmetric part of Hilbert space
— No tensor product structure

— Second guantization language
— Entanglement between modes

e Other SSR affect locality

— Physical states have even or odd number of
fermions

— Physical operators do not change the parity




e System of m=m,+mg fermionic modes

— partition A={1, 2, ... m,}
— partition B={m,+1, ... m,+mg} A={T;B={Z

e Basic objects: creation and annihilation
operators I

e canonical anticommutation relations{a,a;}=5,j Aby <a,a

0 {au a,.. Ay, s 5\1;4} and their products,

generate operators on A (B)

* products of even number commute with parity YRR
aa, in B
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* Fock representation, in terms of
occupation number of each mode

nn,..n,)=(@)*(@)*.. [&a)"o

— Isomorphic to m-qubit space
— action of fermionic operators is not local

— e.g. for m,=mg=1 01>




* Physical states and observables commute

with parity operator

1x1 modes N
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Parity SSR

* Physical states and observables commute
with parity operator

1x1 modes N= 4L db =
Fock representation \(I)} o 1, ‘:LD
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Parity SSR

* Physical states and observables commute
with parity operator
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Parity SSR

* Physical states and observables commute
with parity operator

1x1 modes

Fock representation




Parity SSR

* Physical states and observables commute
with parity operator

M Xmg modes
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* Physical states and observables commute

with parity operator

M Xmg modes

Fock representation
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 Entangled states = are not separable

o Separable states = convex combinations

of product states

e Define product states...
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BUT when restricted to
physical states (p =8 - — PZ” (- Plﬂ
commuting with parity)




Product states

1x1 modes

Example: @O O —i) (% OJ@(% O]
O—i 0

0O % O %

in P1 notin P2




...two different sets of product states

PE =2 <Pl

For pure states, they are
all the same!!

Use them to construct separable states




For physical states (p L= =S=S1

commuting with parity)




Separable states

Local measurements cannot distinguish
states that produce the same expectation
values for all physical local operators

— define equivalent states
<AfB7f>pl :<AZB7Z'>p2

— define separability as equivalence to
separable state
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For physical states (p
commuting with parity)
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Example:

1x1 modes




Example:

1x1 modes




Example:

1x1 modes




...four different sets of separable states

V=Sl (P

They correspond to four classes of states

— different capabilities for preparation and
measurement




S2 — Preparable by local operations and
classical communication, restricted by
parity

s2' — Convex combination of products In
the Fock representation

S1 — Convex combination of states s.t.
locally measurable observables
factorize

[S2] — All measurable correlations can be
produced by one of the above




Characterization

Criteria in terms of usual separability




Characterization

Criteria in terms of usual separability

p _—
convex

combination of
products




Characterization

Criteria in terms of usual separability
[S2] ) S1

p _—
convex

combination of
products




Measures of entanglement

 For S2’ and S2, the entanglement of
formation can be defined

Fo., =FoH p) = mn
= P) Ll wah

FOF, = wEOF(p,)+(1— ) EoF(p )
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— For 1x1 modes, EoF In terms of the elements

of the density matrix
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* Not all the definitions of separabillity are stable
under taking several copies of the state

P € [S2] =p<[S2]
P e[S2]= pPPT

—distillable states not in [S2]

P e Sl=pe Sl

pFeS2 < pe S2
PFeS2<=peS2

e S2 and S2’ asymptotically equivalent
e 1x1 modes: all of them equivalent in the limit of large N




Different definitions of entanglement between
fermionic modes are possible

They are related to different physical situations,
different abilities to prepare, measure the state

Different measures of entanglement

Different behaviour for several copies

More details: Phys. Rev. A 76, 022311 (2007)







Application to a particular ce

e Fermionic Hamiltonian

H= _% Z(a}” a,,+ hC.)—ﬂZa]Taj — 72(3}5‘;& T hC-)

j j
 Reduced 2-mode density matrix calculated from

— E_ﬂ_l

tr(e”)
 Regions of separability as a function of 5, A, y
 EoF for S2, S2’
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