WLCG Workshop

Okinawa, Japan

CMS Report

Christoph Wissing (DESY) for CMS Computing & Offline

April 11th, 2015

HELMHOLTZ ASSOCIATION

Some Pre-Remarks

- There will be a complementing presentation during CHEP by Ian Fisk -Improvements in the CMS Computing System for Run2
- > Many subjects will only briefly be touched in this talk
 - Here are some advertisements for more detailed CHEP presentations:

CHEP talk: D.Lange -Simulation and Reconstruction Upgrades for the CMS experiment

CHEP talk: C.Jones - Using the CMS Threaded Framework In A Production Environment

CHEP talk: A.Perez-Calero Yzquierdo -Evolution of CMS workload management towards multicore job support

CHEP talk: J.Letts - Using the glideinWMS System as a Common Resource Provisioning Layer in CMS

CHEP talk: D. Hufnagel - The CMS Tier-0 goes Cloud and Grid for LHC Run 2

CHEP Poster: J.Letts -

Using HTCondor and glideinWMS to 200K+ Jobs in a Global Pool for CMSbefore LHC Run 2

CHEP talk: D.Colling - The diverse use of clouds by CMS

CHEP talk: D.Hufnagel - Enabling opportunistic resources for CMS Computing Operations

CHEP Poster: M.Zvada - MS Experience with a World-Wide Data Federation

CHEP talk: C.Paus - Dynamic Data Management for the Distributed CMS Computing System

CHEP talk: Ch. Wissing - Pooling the resources of the CMS Tier-1 sites

CHEP talk: C. Vuosalo -A new analysis data format for CMS

CHEP talk: M. Mascheroni- CMS Distributed Data Analysis with CRAB3

Computing Challenges during Run2 Conditions

- New beam conditions
 - Increased center of mass energy: 8TeV → ~13TeV
 - Increased luminosity: \sim 0.7*1034cm-2s-1 \rightarrow \sim 1.5*1034cm-2s-1
 - Higher pile-up rate
- Increased data logging rate from ~400Hz to 1kHz
 - Keep trigger thresholds close to Run1
- Increased event complexity
 - Higher Memory requirements
 - More CPU demanding
- Big effort to improve software performance

Computing during Run2 will be resource constrained

CHEP talk: D.Lange -Simulation and Reconstruction Upgrades for the CMS experiment CHEP talk: C.Jones - Using the CMS Threaded Framework In A Production Environment

Multi-core Processing

- Need for multi-core Jobs
 - With Run2 conditions RECO for one "Lumi Section" will not fit into usual 48-hour batch queue
 - Cannot split easily beyond Lumi section boundaries
 - Large potential to save memory pro CPU core
 - Less pilots to be sent –
 should increase scaling capability of infrastructure
- Efficiency of multi-core applications
 - Big fraction of code needs to be thread-safe [Amdahl's law]
 - Achieved good CPU efficiency in recent software releases
- Mixture of multi-core & single-core jobs
 - Partitionable pilots
 - > 8 core pilot can execute e.g. 1x4+1x2+2x1 core-jobs

Lowering Site Boundaries

- Gaining flexibility where to run which kind of workflow
- Data federation
 - Allows remote access of data
 - Paradigm "jobs go to the data" becomes less strict
- Resource allocation
 - All through GlideinWMS
 - One global HTCondor pool
- In progress of including "non-Grid" resources
 - High Level Trigger Farm (HLT)
 - Other opportunistic resources
 - HPC farm
 - (Academic) Clouds

Resource Provisioning

- All resource allocation through GlideinWMS
- > In production
 - Grid sites with various CE flavours
 - OpenStack Cloud interface
- > Expanding to opportunistic resources

CHEP talk: J.Letts: Using the glideinWMS System as a Common Resource Provisioning Layer in CMS

Tier-0 Application: Resource View

PromptRECO will use (up to) 50% of the Tier-1 CPU resources

Tier-0/PromptRECO Testing

- PromptRECO will be multi-threaded
 - 8-core pilots
 - 4-thread application
- CERN Agile Infrastructure
 - Reached ~6000 cores in Nov./Dec. 2014
 - Want/need to double the scale
 - Working on remaining Meyrin vs Wigner issues
 - File merging badly affected by long latency when input is not local
- > Tier-1 resources
 - Overall pledge ~18k cores
 - Reached peak of ~8k utilized cores

Maximum: 7,504 , Minimum: 0.00 , Average: 2,067 , Current: 64.00

Global Pool

Global Pool

- One single pool for production and analysis
- All priorities handled inside the pool (not at the sites)

> Status

- Migration done "on the fly"
- Reached 100k concurrent jobs!

> Pilots at Sites

- Tier-2 only VOMS role "pilot"
- Tier-1 for the time being still mixture of roles "pilot" (for analysis) and "production"

CHEP Poster: J.Letts Pushing HTCondor and glideinWMS to 200K+ Jobs in
a Global Pool for CMSbefore LHC Run 2

Christoph Wissing | April 2015 | Page 9

Reminder: Local Fair Share Configuration

Addresses only pledged CPU resources

Tier-1:

Priority oder	Share in %	VOMS role FQAN	Comment	
highest priority	"small"	/cms/Role=lcgadmin	role for SAM tests, a few short jobs only, needs (almost) no fair share	
default priority	95	/cms/Role=production	role for production workflows	
default priority	o romortoro pilot		pilot role used for analysis jobs sent by Glidein	
lower priority	0	any other role and no role	Should get resources only when the above roles are not active	

Tier-2:

Resource Percentage	VOMS role FQAN	Comment
80%	/cms/Role=pilot	pilot role currently used by the Global Pool for Analyis and Production jobs
10%	/cms/Role=production	role for some legacy stuff still using that role
9%	any other role and no role	analyzers through gLite WMS
about 1%	/cms/Role=lcgadmin	Almost no share but highest priority to execute SAM tests

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CompOpsPoliciesVOMSRoles

Using the HLT for Processing & Production

- Data RECO ~50kB/s in/out per core [Can scale to full HLT]
- MC DIGI-RECO with high PU adds ~50kB/s per unit of PU 💢

CHEP talk: D.Colling - The diverse use of clouds by CMS

Opportunistic Resources

- > Resources are tight for Run2
 - Have to restrict physics program to the 'necessary'
 - Resources beyond WLCG pledges (=opportunistic) offer some opportunities
- Various kinds of resources and access possibilities
 - Grid resources beyond WLCG pledges we used to have Tier-3s also in the past
 - CMS sites and non-CMS sites
 - Access is straight forward and supported
 - Access to academic clouds
 - > Base experiences from HLT cloud
 - Likely to find other places
 - GlideinWMS provides EC2 connection
 - Temporary access to High Performance Clusters
 - Usually do no have Grid interfaces like Compute Elements
 - BOSCO interface GlideinWMS can start pilots through SSH connection
 - Won't have root access to install e.g. CVMFS for software distribution
 - > Parrot allows "installation" of CVMFS as non-root user at run-time
 - Can be complex, e.g. Linux different flavour different from SL
 - Commercial clouds (might be cheap when weakly utilized)

Data Management in Run2

- > AAA Any data, anytime, anywhere
 - Built on xrootd federation technology
 - Breaks "job always goes to the data" paradigm
 - Allows a more flexible job scheduling
- > Dynamic data placement and cache release
 - Create and remove replicas of datasets based on popularity
 - Achieve more efficient usage of disks
 - Finally spend less effort in data management
- Disk Tape separation at Tier-1 sites
 - CMS computing operations controls what's on disk vs. what's on tape
 - Enhance flexibility where to process
 - Open Tier-1 sites for end user jobs no risk of accidental tape re-calls

AAA - Status

> Fallback file open

- Attempt to access file locally
- Ask regional re-director, if local open fails
- Activated at all CMS Tier-1 and (almost) all Tier-2 sites

> Joining the data federation

- Requires xrootd infrastructure with proper configuration at the sites
 - > Detailed monitoring needed in addition
- All CMS Tier-1 sites are part of the federation now
- Most of the CMS Tier-2 sites are in the federation
 - Missing sites are in general smaller (and/or less robust)
 - > ~96% of all datasets are available

CHEP Poster: M.Zvada - MS Experience with a World-Wide Data Federation

Transition Data Federation

- Improve stability
 - Avoid file opening at "bad" sites
 - Still allow access to as many files as possible
 - Attempt open via "Production" redirector, fallback to "Transitional" redirector
- > Employ most recent features of XROOTD4.1
- Metric for "Production" based on
 - Dedicated performances measurements
 - SAM tests
 - Special HammerCloud enforcing remote file opening

Dynamic Data Management

- All spaces formally managed by groups transferred into centrally managed space
- Central space is ~60% of pledged disk space
- Least popular data gets cleared when site reaches a quota value
- Create replicas for often accessed data
- Overall system is deployed including all Tier-1 sites

Space Monitoring at Sites

- > CMS data transfer systems only knows about "official" datasets
 - Files registered and can be moved
- User or group produced files/datasets only partly registered
 - Registering of user/group files is optional
 - Cannot be moved around with CMS transfer system
- > Dynamic Data Management depends on ~60% of pledges available
 - Presently no easy way to verify and monitor
 - Relaying on local site staff
- > Space monitoring to be deployed at sites

In contact with sites to deploy it

Disk Tape Separation

Run1: Disk-Tape coupling at Tier-1

- Uncontrolled access to files on tape forbids user analysis at Tier-1
- Produced files go to tape "immediately"
 - Cannot use site without writing to tape
 - → inefficient and inflexible

Run2: Separate disk and tape

- Large disk pool and small tape read/write pool
- Staging and flushing from/to tape is a <u>subscription</u> in CMS data management tool
- Files on disk can be read via WAN xrootd (never trigger tape operations)
- Tier-1s can be open for 'chaotic' analysis jobs
- Production and (tape) archiving location now independent
- Completed at all Tier-1 sites

Tape Staging Tests

- Tape archiving plans
 - RAW data will be archived with 2 copies (as before)
 - Plan to archive AOD/AODSIM, GEN-SIM
 - RECO will not be archived by default plan to archive ~10%
- > Tape staging rates assumed to be proportional to pledged capacity
- Recent exercise tested reading assumes similar write performance

Site	Expected Rate (MB/s)	Achieved Rate (MB/s)
FNAL	650	~900
CNAF	210	~630
JINR*	150	*
KIT	150	~200
RAL	135	~700
IN2P3	135	~650
PIC	75	~500

Some testing at CERN soon

All tape rates well above needs

A new Data-Tier: miniAOD

- > Replace the dozens of "Group ntuples/trees"
- Size ~50kB/events
 - High level physics objects (Leptons, Jets...)
 - Particle Flow candidates in packed format (to allow for re-clustering, jet-structures etc)
- Should satisfy ~80% of all analysis cases
- Large exercises during CSA14
 - Good experiences by analysis users
- MiniAOD production
 - Additional output of PromptRECO
 - Can be re-done a few times per year

User Analysis Job Submission: CRAB3

Submission Use Case

- Client sends a submit request to the server
- The server frontend checks auth/authz and store the request. The backend "prepares the jobs" and send them to the submission infrastructure
- The jobs are sent to the Grid. They contact the AsyncStageOut (ASO) server to start the transfer
- ASO transfers the files (using FTS) and it publishes them
- Default tool for user analysis in Run2
- > ~30k parallel jobs reached
- Processed up to 150k jobs per day

Christoph Wissing | April 2015 | Page 21

CHEP talk: M. Mascheroni- CMS Distributed Data Analysis with CRAB3

Summary

- Coming Run2 will be resource constrained
 - Improve CPU performance of applications
 - Increase the flexibility of resource usage
- A number of efforts to finish for Run2
 - Completely Cloud/Openstack based Tier-0
 - Expanding PromptRECO to Tier-1 sites
 - Commissioning of the HLT for Production and Processing
 - Data federation to ease remote data access
 - Dynamic data management to improve usage of disk space
 - A new tool for user analysis
- Experiments want to discover new physics in Run2
 - Computing relies on good planning
 - Difficult to plan for the unknown

Will have an exiting to time to deal with this "conflict"

Appendix

WLCG Resources 2015 & 2016 Request

	2014	Increase from 2013	2015	Increase from 2014	2016 (C-RSG Oct 14)	Increase from 2015
Tier-0 CPU (kHS06)	121	0%	256	111%	302	18%
Tier-0 Disk (TB)	7000	0%	3000	Reallocated to CAF	3250	0%
Tier-0 Tape (TB)	26000	0%	31000	31%	38000	23%
CAF CPU (kUS06)	0	0%	15	-	15	17%
CAF Disk (TB)	0	0%	12000	ı	13100	9%
CAF Tape (TB)	0	0%	4000	ı	6000	50%
T1 CPU (kHS06)	175	0%	300	71%	400	33%
T1 Disk (TB)	26000	0%	26000	4%	35000 (33000)	30%
T1 Tape (TB)	55000	11%	74000	34%	100000	35%
T2 CPU (kHS06)	390	14%	500	25%	700	40%
T2 Disk (TB)	27000	4%	29000	16%	40000 (38000)	37%

