

21st International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

Evolution of the ALICE computing model in Run 3

Tatsuya Chujo (for the ALICE collaboration)

WLCG workshop April 12, 2015, OIST, Japan

ALICE data collection (current)

Nominal LHC beam crossing at 40 MHz

ALICE:

Multi-level trigger system needed: 40 MHz \rightarrow a few kHz

Single Pb-Pb collision events ($\sqrt{s_{NN}} = 2.76 \text{ TeV}$)

Online: 1) Reject background 2) Select most interesting interactions 3) Custom computer to reduce the total data volume

Computing model (Run1 and Run2, -2018)

ALICE upgrade (2018-)

ALICE upgrade; high rate capability

GEM-TPC continuos high rate readout ITS Silicon high rate readout DAQ (RCU etc.)

For LHC high luminosity upgrade, Pb-Pb @50kHz

Record all MB events, x100 statistics (Unique capability in ALICE)

→ Access to high precision measurements and rare probes

Physics Goals:

Measure

- heavy quarks, photons, lepton pairs azimuthal anisotropy

- Jet w/ PID hadron simultaneously

Standard GEM Pitch=140μm Hole φ=70μm

ALICE Upgrade Plans: (2018-)

ALICE

- Current: reducing the event rate from 40 MHz to ~ 1 kHz
 - Select the most interesting particle interactions
 - Reduce the data volume to a manageable size
- After 2018:
 - Much more data (X 100) because:
 - Higher interaction rate
 - More violent collisions \rightarrow More particles \rightarrow More data (1 TB/s)
 - Physics topics require measurements characterized by;
 - Very small signal/background ratio \rightarrow large statistics
 - Large background → traditional triggering or filtering techniques very inefficient for most physics channels
 - Read out all particle interactions (PbPb) at the anticipated interaction rate of 50 kHz
 - <u>No more data selection</u>
 - Continuous detector read-out
 - Read-out and process all interactions with a standard computer farm.
 - ~1,500 nodes with the computing power expected by then
 - Total data throughput out of the detectors: 1 TB/s

Expected data bandwidth (after 2018-)

Detector	Input to Online System (GB/s)	Peak Output to Local Data Storage (GB/s)	Average Output to Computing Center (GB/s)
TPC	1,000	50	8
TRD	81.5	10	1.6
ITS	40	10	1.6
Others	25	12.5	2
TOTAL	1,146.5	82.5	13.2

Note: LHC luminosity variation during fill and efficiency taken into account for average output to computing center

The ALICE Online-Offline (O2) Project

- From Detector Readout to Analysis:
- What is the "optimal" computing architecture?
 - Handle >1 T Byte /s detector input
 - Support for continuous readout
 - Online reconstruction to reduce data volume
 - Common hardware and software system developed by the DAQ, HLT, Offline teams

Functional Requirements of the O2 system

- ✓ Data fully compressed before data storage.
- ✓ Reconstruction with calibrations of better quality.
- ✓ Grid capacity will evolve much slower than the ALICE data volume.
- ✓ Data archival of reconstructed events of the current year to keep Grid networking and data storage within ALICE quota.
- ✓ Needs for local data storage higher than originally anticipated

Basic idea of the O2 system

The ALICE O2 Hardware Architecture

Computing model (Data flow)

The ALICE O2: Data Reduction (I)

by Pierre Vande Vyvre (modified)

	Dataflow Stage	Data Reduction Factor	Event Size (MByte)
	Raw Data	1	700
FEE —	Zero Suppression	35	20
High Level Trigger	Clustering & Compression	5 – 7	~ 3
	Remove clusters not associated to relevant tracks	2	1.5
	Data Format Optimization	2 – 3	< 1

	Event Size (MByte)		
Detector	After Zero Suppression	After Data Compression	
ТРС	20.0	1.0	
TRD	1.6	0.2	
ITS	0.8	0.2	
Others	0.5	0.25	
TOTAL	22.9	1.65	

- Data compression factors ranging from 2 to 20 according to the detector
- TPC still accounts for 60% of the total event size

slide by A. Uras (IC3INA 2013)

The ALICE O2: Data Storage

•Data in "intermediate" formats (not directly usable for physics analysis):

- 80 GByte/s peaks to be handled, distributed over ~1,250 nodes
- Average load of 15 GByte/s
- Local storage in O2 system
- Permanent storage in computing center

•Data in "final" formats (usable for physics analysis):

- GRID storage, accessible by experiment's users

Computing model (O2 processing flow)

by Pierre Vande Vyvre

• <u>2015-2017:</u>

- LHC Run2 data taking, x2 more heavy ion data.
- Data analysis on Run-2 (+Run-1)
- Almost no change from Run-1 scheme. Due to data larger data volume, network traffic will increase, at least x2.

• <u>2018- beyond:</u>

- LHC Run-3 data taking, x100 more data.
- Architecture change (O2) applied.
 - O2, AF, and T0/T1/T2 scheme.
- Significant data reductions, reconstruction in O2 mainly, and analysis \rightarrow reduce data volume.
- 1. Can keep the similar network traffic as Run-2?
- 2. Or if we have AF (using HPC), then it will need more network traffic than that in Run-2 \rightarrow Accelerate local physics analysis.

• ALICE computing upgrades on online-offline for the data taking after 2018 is ongoing.

• Continuous minimum bias event readout at 50 kHz in Pb-Pb collisions.

• **1 TB/s raw data** from detector, need a significant data reduction down to 80 GB/s to storage, and make a physics outputs timely.

- O2 Scheme: Online reconstruction and calibration by O2 (near ALICE) & T0/T1, organized analysis at Analysis Farm (AF), and simulation at T2.
- Designing based on physics requirements is completed.
- Intensive works on modeling, technologies (processing platform & network), O2 prototyping.
- Technical Design Report (TDR) is progressing. It will be submitted to LHCC in April 2015.