Technology, Market and Cost Trends

IC Markets

Chip market made 333 B\$ revenues in 2014

Moderate growth
Stabilized market

Expect 1 Trillion ICs (integrated Circuit) to be produced per year in 2017

Tracking Semiconductor Unit Growth

End-Use Systems Markets (\$B) and Growth Rates

Notebook and Desktop Markets

Global notebook shipments, 2008-2018 (k units)

Stable markets, decreasing growth rates
technalysis

Figure 6-1. Global mobile phone shipments and growth rate, 2006-2018 Source: CCS Insight

Figure 6-2. Global mobile phone shipments by type, 2008-2018 Source: CCS Insight

Smartphone and Tablet Markets

Smartphone install base in 2014: ~2B

Total cell phone install base 2014 : ~4.6B Cell phone contracts 2014 : ~ 7B PC and notebook install base 2014: ~ 3B

Replacement market Stabilized market

Note: individuals of ary ase who use a tablet at least once per month Source: eMarketer, Dec 2014

Compute Server Market Evolution

Leading Players

Si technology is becoming rare

Number of players with a leading edge fab

2014F Top 20 Semiconductor Sales Leaders (\$M)

$\begin{gathered} \hline 2014 \mathrm{~F} \\ \text { Rank } \end{gathered}$	$\begin{aligned} & \hline 2013 \\ & \text { Rank } \end{aligned}$	Company	Headquarters	2013 Total	2014 Total	$\begin{gathered} \text { 2014/2013 \% } \\ \text { Change } \end{gathered}$
1	1	Intel	U.S.	48,321	51,368	6\%
2	2	Samsung	South Korea	34,378	37,259	8\%
3	3	TSMC*	Taiwan	19,935	25,088	26\%
4	4	Qualcomm**	U.S.	17,211	19,100	11\%
5	5	Micron + Elpida	U.S.	14,294	16,614	16\%
6	6	SK Hynix	South Korea	12,970	15,838	22\%
7	8	TI	U.S.	11,474	12,179	6\%
8	7	Toshiba	Japan	11,958	11,216	-6\%
9	9	Broadcom**	U.S.	8,219	8,360	2\%
10	10	ST	Europe	8,014	7,374	-8\%
11	11	Renesas	Japan	7,975	7,372	-8\%
12	12	MediaTek + MStar**	Taiwan	5,723	7,142	25\%
13	14	Infineon	Europe	5,260	6,151	17\%
14	16	NXP	Europe	4,815	5,625	17\%
15	13	AMD**	U.S.	5,299	5,512	4\%
16	17	Sony	Japan	4,739	5,192	10\%
17	15	Avago + LSI**	Singapore	4,979	5,087	2\%
18	19	Freescale	U.S.	3,977	4,548	14\%
19	20	UMC*	Taiwan	3,940	4,300	9\%
20	21	Nvidia**	U.S.	3,898	4,237	9\%
Top 20 Suppliers				237,379	259,562	9\%
Top 20 Suppliers Excluding Foundries				213,504	230,174	8\%

*Foundry

Very few companies can effort large R\&D spending and the investments for IC fabrication units

TSMC and Samsung have started to build new fabs at a cost of ~ 16 B\$ per unit Takes 2 years to build

2014 Top Semiconductor R\&D Spenders

					2013			2014			$\begin{aligned} & \text { 2014/2013 } \\ & \text { \% Change } \\ & \text { in R\&D } \end{aligned}$
2014 Rank	$\begin{aligned} & 2013 \\ & \text { Rank } \end{aligned}$	Company	Region		Semi Sales (\$M)	$\begin{gathered} \text { R\&D Exp } \\ (\$ \mathrm{M}) \end{gathered}$	R\&D/Sales (\%)	Semi Sales (\$M)	$\begin{gathered} \text { R\&D Exp } \\ \text { (\$M) } \end{gathered}$	R\&D/Sales (\%)	
1	1	Intel	Americas	-	48,321	10,611	22.0\%	51,400	11,537	22.4\%	9\%
2	2	Qualcomm	Americas	*	17,211	3,395	19.7\%	19,291	5,501	28.5\%	62\%
3	3	Samsung	Asia-Pac	-	34,378	2,820	8.2\%	37,810	2,965	7.8\%	5\%
4	4	Broadcom	Americas	*	8,219	2,486	30.2\%	8,428	2,373	28.2\%	-5\%
5	7	TSMC	Asia-Pac	*	19,935	1,623	8.1\%	24,976	1,874	7.5\%	15\%
6	5	Toshiba	Japan	-	11,958	2,040	17.1\%	11,040	1,820	16.5\%	-11\%
7	6	ST	Europe	-	8,014	1,816	22.7\%	7,384	1,520	20.6\%	-16\%
8	9	Micron	Americas	-	14,294	1,487	10.4\%	16,814	1,430	8.5\%	-4\%
9	14	MediaTek + MStar	Asia-Pac	*	5,723	1,110	19.4\%	7,032	1,430	20.3\%	29\%
10	10	Nvidia	Americas	*	3,898	1,323	33.9\%	4,348	1,362	31.3\%	3\%
Top 10 Total					171,951	28,711	16.7\%	188,523	31,812	16.9\%	11\%

Source: Company reports, IC Insights' Strategic Reviews database

Market Dominance

Only a few large companies are dominating the various components markets

Processors
Graphics
Hard Disk Drives
DRAM memory
NAND Flash memory
Solid State Disks
FPGA
Tape Storage

INTEL, Qualcomm, Samsung, AMD
INTEL, Nvidia, AMD
Western Digital, Seagate, Toshiba
Samsung, SK Hynix, Micron
Samsung, Toshiba, SanDisk, Micron, Hynix, INTEL
Samsung, INTEL, SanDisk, Toshiba, Micron
Xilinx, Altera (currently being bought by INTEL)
HP, Fuji, IBM, SpectraLogic ORACLE, IBM

Rol Return-on-Investment is the keyword
Few companies capable of large scale investments, majority fabless companies
Favour evolutionary (adiabatic) changes of technology
Clear bias against 'disruptive’ new technologies
(memristor, holographic storage, DNA storage, quantum computing, non-volatile memory, etc.)
e.g. Yearly revenues: Samsung 209 B\$ INTEL 56 B\$

Processor Technology I

Shrinking by a factor 2 every 2 years. 65nm

 node in 2006 --> 14nm node in 2014The ' 14 nm node' is a process name, not a description of the real feature sizes.
On a 14 nm chip there are NO 14 nm structures There is no standard or a detailed definition Still very, very small feature sizes

Minimum Feature Size

	22 nm Node	14 nm Node	Scale
Transistor Fin Pitch	60	42	.70 x
Transistor Gate Pitch	90	70	.78 x
Interconnect Pitch	80	52	.65 x
	nm	nm	

Intel Has Developed a True 14 nm Technology with Good Dimensional Scaling

14 nm Process

Foundry Technology Node:	14 nm	10 nm	7 nm
Gate length, L_{G}	25 nm	20 nm	15 nm
Fin width, $\mathrm{W}_{\text {fin }}$	$\sim 10 \mathrm{~nm}$	$\sim 8 \mathrm{~nm}$	$\sim 6 \mathrm{~nm}$
Equivalent oxide thickness	0.9 nm	0.85 nm	0.8 nm

22 nm Process

Current and Performance

Processor Technology II

Processor Technology, Moore’s Law

28 nm : Optimal Balance of Cost and Power for 2015 Devices

(EP1) Moore's Law Challenges Below 10nm: Technology, Design and Economic Implications

Scaling continues to provide lower cost per transistor
Cost reduction is needed to justify new technology generations

Traditionally, Gost-per-Water Increases 15-20\% at Each New Technology Note

Quite some discussion in 2014 about the end of Moore's Law

Moore's Law is about the production cost of transistors not about the sales cost of processors

INTEL claims to overcome this up to the 10 nm node scale

Processor Technology, architecture

- Kept the pipeline stages at 14 for the last few generations
- Stable frequencies around $3+$ - 0.5 GHz
- Number of cores per processor is increasing in a linear fashion, 1-2 per year market volumes, best price/performance \rightarrow 2/4-cores in smartphones, 4-cores in notebook+desktops, 8-cores in servers high end, smaller volumes \rightarrow octo-core in smartphones (actually this is 2×4, big-little concept), $\mathbf{6}$-cores in desktops, 18-cores in Xeon servers, 32-cores Oracle SPARC M7
- Increase vector length and sophistication of SIMD operations, steady IPC increase
- Haswell running with up to 32 Instructions per Cycle (IPC)

Processor Technology, prices

Processors from CERN purchases
Flat prices per processor generation
Server processor prices are more defined by the market then the technology
INTEL data centre group results for Q4 2014 : Revenue = 4.1 B\$ Profit= 2.2B\$ (~5 M server processors) highly profitable market

CPU Server Cost Evolution

2005200620072008200920102011201220132014201520162017201820192020202120222023202420252026
2015 to 2026
Improvement = factor 7.5 At 20\% increase/year

CERN purchases, server nodes, latest version e.g. dual Haswell E5-2630v3, 64 GB memory, 1 Gbit NIC , 2×2 TB disks Network costs are not included, 10\% effect

Purchase cycles are not directly overlapping with technology cycles

Possible Architecture changes: move to $\mathbf{1 0}$ Gbit, SSD disks, SMT on or off

Micro Server Developments

- Cavium, 48-core server chips based on ARM (ThunderX SoCs)
- Gigabyte server motherboard released using X-Gene 1 (AppliedMicro), 8-core ARMv8 45 W 2.4 Ghz
- HP Moonshot, AppliedMicro X-Gene ARM processors
- Calxeda went bust in early 2014
- AMD is very late with their ARM product
- Many INTEL product releases

Facebook just dropped ARM plans in favour the new INTEL XEON D server chips (ARM power advantage diminishing, software porting is the issue)

New generation of Windows Surface Tablet has dropped ARM

INTEL ‘supported' 40 million tables with x86 processors in 2014 (4.2 B\$ contra-revenue !) (comparison: AMD stock market value is about $4 \mathrm{~B} \$$)

Game changer most likely only if and when Samsung buys AMD
\rightarrow R\&D investments

New Processing Architectures I

> Micron's Automata Processor reconfigurable, massive parallelism; for bioinformatics, pattern recognition, data analytics and image processing

$>$ Optalysys, Laser plus liquid crystal spatial light modulators UK technology company
$>$ IBM research, neuromorphic chips 4096 cores, 1 million neuron, 5.4 B transistors, 72 mW

$>$ Qualcomm cognitive compute Platform (Zeroth), along the Snapdragon 820 ARM architecture deep learning for smartphones
> D-Wave Quantum Computing (Maybe !, still controversial)

New Processing Architectures II

The Machine
based on silicon photonics interconnects and memristors
as active components (HP)
Completely different programming model: Linux++
Started in 2012, prototype in 2016
Memristor concept from 1971, implemented in HP Labs (2008)

DARPA initiative
Petaflops On Desktops: Ideas Wanted For Processing
Paradigms That Accelerate Computer Simulations
Includes the use of analogue circuits

DIGITS DevBox from NVIDIA, GPU based, special libraries \rightarrow deep learning applications

Soft Machines, Variable Instruction Set Computing (VISC) virtual cores implemented in hardware

GPU processing and Markets

450 M GPUs sold per year, compared to ~10000 very high end GPUs (HPC)

GPU technology still at the 28 nm level

AIB = Add-in-boards Discrete graphics cards

Most likely skip the $\mathbf{2 0 n m}$ step and move directly into $\mathbf{1 6 n m}$
16 B\$ fab investment from TSMC
Latest 28 nm cards from Nvidia:
Titan X (8B transistors, 3000 cuda cores, 8 TF SP, 0.2 TF DP, 1000\$)
K80 (14B transistors, 5000 cuda cores, 8.7 TFlops SP, 2.9 TFlops DP, 7000\$)
Constant decrease of discrete graphic card sales CPU+GPU integrated from INTEL increasing

Guru3D 2.401 n 2002200320042005200620072008200920102011201220132014

Split between gaming and HPC market

Tape Storage I

ADDRESSING YOUR STORAGE NEEDS

L LTO has > 96\% of the market, (LTO-6, 2.5TB Cartridges)
\square Enterprise tapes (ORACLE- 8.5TB, IBM - 10TB) niche products
TDK\&Maxwell stopped producing tapes
\square R\&D looks okay, 220 TB (IBM/Fuji) and
185 TB (Sony) tape in the labs
\square LTO roadmap lately extended to 10 generations, but steady decrease of revenues
\square LTO 6 capacity was reduced $(3.2 \boldsymbol{\rightarrow} 2.5 \mathrm{~TB}$)

Source: Santa Clara Group

Tape Storage II

Assuming a constant evolution of the LTO technology, with a new Generation every two years
$\rightarrow 2025$
192 TB tape x32 cost improvement
3 years 50 TB tape $x 8$

LTO approaching 1 cent/GB, steady cost decrease
Enterprise more expensive, but can be re-used with next generation
Size difference (LTO6 2.5 TB, IBM/Oracle 8.5-10 TB) $==$ infrastructure cost difference (silos, drives, maintenance)

Storage Components: DRAM Memory I

Memory production has moved from 25/28nm to 20 nm in 2014

The same companies produce NAND and DRAM Shifting capacities
Weak PC market, stable server market
Reduced capacity
\rightarrow Volatile DRAM prices

Focus on speed improvement especially in the low-power memory formobile devices

DRAM market size ~42 B\$ in 2014

Figure 3: Worldwide DRAM capacity for Front End facilities in 300 mm equivalent wafers per month and change rate in percent (Source: SEMI, 2015)

DRAM Process Roadmaps (for Volume Production)

Note: What defines a process "generation" and the start of "volume" production varies from compary to company, and may be infuenced by marketing embelishments, so these points of transition should be used only as very general guidelines.

Sources: Companies, conference reports, IC Insights

Storage Components: DRAM Memory II

3D memory delayed, coming this year, solves data transfer issues, density

Microns Hybrid Memory Cube concept factor 15 memory speed improvements

Focused on the server and HPC area. Memory wall problem

Nvidia new Pascal GPU technology in 2016 will use memory stacks

Memory stack
TSV Through Silicon Via

Storage Components: DRAM Memory III

Volatile memory DRAM market
Side effects: Apple will consume 25\% of the worldwide DRAM production in 2015 \rightarrow Shift to mobile DRAM, some shortage in PC RAM and server RAM expected

Storage Components: NAND Flash Memory I

Micron has moved to 15 nm technology
3D-NAND flash 128 Gbit chips

Commercially the limit for 2D flash is 15 nm

Current Flows - Floating Gate Erased

Storage Components: NAND Flash Memory II

SLC 1bit/cell 100000 cycles
MLC 2 bit/cell 5000 cycles
TCL 3 bit/cell 1000 cycles
FG Limitation : Number of Electrons

How to Manage 10 electrons in sub- $1 \times \mathrm{xnm}$ design rule?

Move to 3D and increase 2D structures

NAND Flash Market

Revenues are becoming flat

Only 15\% of the yearly NAND capacity is for SSDs

Storage Components: Non-Volatile Memory I

Contenders :

PCRAM (Phase-Change RAM)

3 types of MRAM (Magnetoresistive RAM)
Spin-Transfer-Torque, field driven, magneto thermal

ReRAM/RRAM (Resistive RAM) CBRAM (Conductive Bridge RAM)

Memristor

FIGURE 1. (a) Characterizing the memristor and (b) change of resistance when a $3.6 \mathrm{~V} p-\mathrm{p}$ square wave is applied.

Scalable Resistive Memory Element

Cross Point Array in Backend Layers $\sim 4 \lambda^{2}$ Cell Source: Flash Memory Summit 2013

Storage Components: Non-Volatile Memory II

\$/GB for Memory Technologies

NVM market in 2014 is 65M\$ Comparison: DRAM 42 B\$, NAND 25B\$ Expected to rise to 7 B\$ in 2020

Everspin is producing MRAM since 2008 64 Mb chips in 90nm technology

Micron/Sony have just shown 27nm 16 Gbit CBRAM

Micron, the main PCM memory promoter dropped this activity in 2014 focused on 3D-NAND

Complicated and 'disruptive' fabrication process

Storage Components: Hard-Disk-Drives I ASTC Technology Roadmap

100 TByte drives in 2025 (possible)

- PMR at it's limit , current drives at 0.75 Tbit/in2, max is about 1 Tbit/in2
- The density increase rate has slowed down considerably over the last years
- Shingled Magnetic Recording (1D, 2D) now in the market (e.g. 8 TB Seagate drives) extends the limit to $1.5-2 \mathrm{Tbit} / \mathrm{in} 2 \rightarrow$ increased surface density Good read, but restricted write performance. Sophisticated controller
- More platters per disk, Helium filled (e.g. 6 TB HGST) drives) \rightarrow increased volume density
- HAMR prototypes already shown 3 years ago (Seagate 1 Tbit/in2), but very sparse information about the current roadmaps. Introduction in 2017 !?
${ }^{12}$ no principle technology problems, HAMR and BPFMR are sophisticated and very expensive

Raw disk price evolution of server disks (CERN purchase)

Decreasing price/space improvement rate
'Thailand' crisis end of 2011 Price recovery period was very long (artificial !?)

Consumer disk price evolution hard drive cost per gigabyte (USD)

Storage Components: Hard-Disk-Drives III

564 million HDDs sold in 2014
The market for server level disks is only 13% of the total
Revenue increase in 2012 due to the 'Thailand' crisis in 2011
Steady, but slower yearly increase in total space shipped

Storage Server Cost Evolution

2015 to 2026
Improvement = factor 9 At 20\% growth rates

CERN purchases of disk servers: costs defined by component costs, economy of scale (homogeneity !) and the Architecture (also software dependent)
Architecture changes during the last years:

- RAID5 \rightarrow RAID1
- Integrated disk server \rightarrow CPU frontend with SAS attached JBOD array
- RAID1 \rightarrow software data replication
- One array per server \rightarrow two arrays per server

15% of the NAND storage is used for SSDs

To yearly deliver the 530 Exabytes of HDD storage with SSDs would require an investment of ~ 0.5 T\$ in NAND fabrication

The replacement of HDDs by SSDs will take quite some time

14

- Component capacity scaled from 2013 data using best case areal density growths from 6 year history
- 5X spread in capacity
- HDD - convergence with TAPE
- OPTICAL - significant capacity lag relative to TAPE and HDD

2025

200 TB enterprise tape 100 TB LTO tape
60 TB HDD
25 TB SSD

Not a direct relationship to costs
(c) 2014 IBM Corporation

Back-of-an-Envelope Calculations, component savings

- Dominant part is the CPU, still getting best price/performance processors including infrastructure costs
- Sweet spot is still dual processors with medium frequencies ~(~2.5 GHz)
- The usual question about the relation of HepSpec and real HEP code.....
- Reducing memory by a factor 2 could create costs savings of 7-8\%
- SMT increases performance by $\mathbf{2 0 - 2 5 \%}$ while increasing memory costs by $\mathbf{7 - 8 \%}$, still a gain \rightarrow local disk performance issues cost increase with SSDs
- Lower 'quality' of memory, ECC?, MHz ? \rightarrow HepSpec is sensitive to memory features at the 10% level, HEP code ?
- Quad server packaging better than Blade server (also operational issues)
- Open Compute Project architecture (racks, power, server); pilot on the way; savings seem to be small
- Desktop, processor+GPU, lower price/performance but single proc, no ECC, operational aspects --> gain 30\% ?
- Maybe new microservers later --> gain 30\%?

Not much to gain here, 10\% level

Back-of-an-Envelope Calculations, power savings

Relative energy costs of a CPU server:
Dual processor, 64 GB memory, 2 local disks \rightarrow 3500,- Euro 4 years lifetime
300 W under full load, 80% efficiency, PUE of 1.7,
 $\square-E U-28^{*}+0.158$ 0.156

Average electricity price development in Europe, 2008-2014, Euro/kWh
Increase is $\sim 4.5 \%$ per year

Electricity cost varies by more than a factor 2 within Europe. US costs are up to a factor 3 cheaper
\rightarrow Cutting the energy consumption by a factor 2 saves between 10 and 20% of the total cost

Energy costs
(Purchase costs + Energy costs)
e.g. the cost for energy of a CPU server is 39% of the total costs in Germany

Back-of-an-Envelope Calculations, processor architecture savings

Cost and performance of various processor and accelerators

Assuming the code can use 100\% of the Instructions per Cycle (IPC)

- Price/performance gain of maybe a factor 2 for the new Xeon Phi
- Power/performance gain of a factor 9 for the Altera FPGA == costs saving of up to 35% (see previous slide)
- Savings are reduced due to fact that the processors/accelerators are only 30-40\% of the total system (cost and power)

Microsoft and Baidu bought Altera FPGA PCle boards for their search servers, Microsoft also uses Xeon Phi. HPC GPUs, Xeon Phi, HPC FPGAs are niche products with sales of $\boldsymbol{\sim} 10000$ units per year.

Detailed investigations of the new ARM (HP Moonshot) and power8 servers have shown that they are not yet a real competition http://Ivalsan.web.cern.ch/Ivalsan/processor_benchmarking/presentation/\#/future work
\rightarrow At least a factor 5 worse in terms of price/performance and a factor 2 worse in power/performance
A Haswell processor can do up to 32 instruction per cycle, HEP code uses about 1

Back-of-an-Envelope Calculations, storage component savings

CERN disk server: CPU server with SAS attached JBOD array

> 200 TB RAW capacity 100 TB usable $\rightarrow 0.2$ Euro/GB

Infrastructure and architecture 'overhead' $=^{\sim}$ factor 7

Cheapest server disk today is the 8 TB Seagate SMR (0.03 Euro/GB)

Example: 'improve' the storage costs by a factor 3:
4 TB server disk ~0.05 Euro/GB $\rightarrow 8$ TB SMR ~0.03 Euro/GB (low-end desktop 6 TB) Dual 24-bay disk tray $\quad \rightarrow$ three 60-bay disk trays per frontend RAIDO / data replica
\rightarrow Erasure code, data increase by 1.25 instead of 2
This improves the space costs but reduces considerable the IO

1440 TB RAW capacity 1152 TB usable $\rightarrow 0.06$ Euro/GB capabilities. But how much IO do we actually need ?
(Application, data management, data distribution dependent)
Much more tuning between application and hardware needed.....
Redefine our notion of storage space
\rightarrow Storage space plus performance

Split
MC+processing facilities -- analysis facilities
different IO architecture based on Seagate Kinetic object drive model or the HGST Open Ethernet drive

FLAPE
Flash+Tape

Summary

Semiconductor Component and end-user markets are stabilizing.
Saturation effects seen nearly everywhere, moving to 'replacement' markets

Very few companies dominating the market: technology evolution, not revolution
Moore's Law validity being debated. 3D technology helps.
Expect still continuous price/performance improvements, but lower levels

Server market is small compared to the consumer market, stable and highly profitable Market --> high prices. Microservers show in principle potential, but currently overrated

Way to improve price/performance beyond the technology --> architecture

Should not talk about disk, SSD or tape but rather storage units (space+performance)

There will be processing and storage technologies in 2025 and most likely not too different from today, but estimating the cost is pretty difficult.
So.. You will get what you get (equal or rather lower budget than today)......

