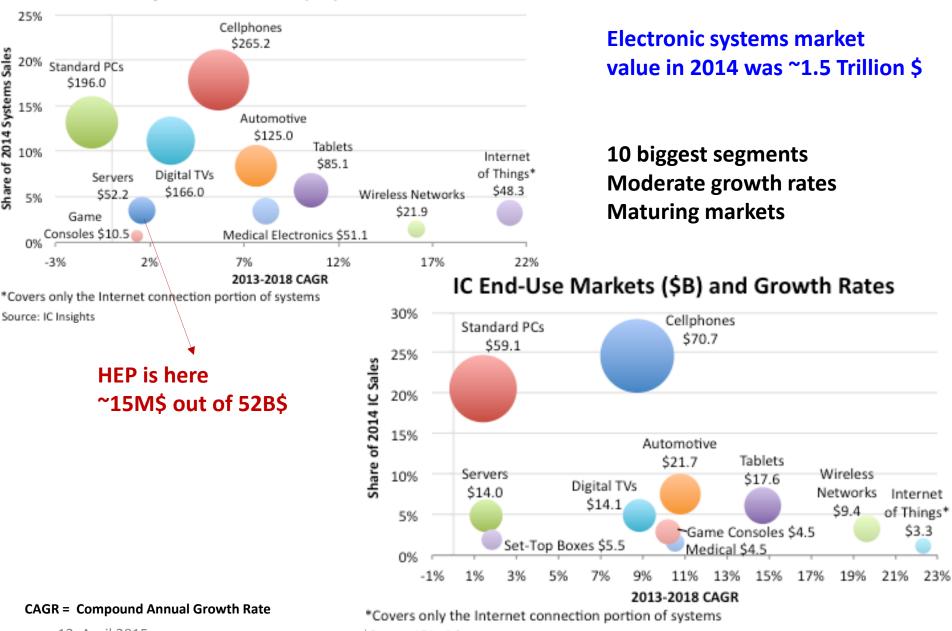

Technology, Market and Cost Trends

SEMICONDUCTOR MARKET MATURING

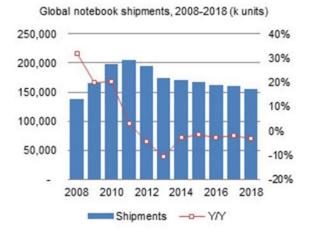
IC Markets



Chip market made 333 B\$ revenues in 2014

Moderate growth Stabilized market

Expect 1 Trillion ICs (integrated Circuit) to be produced per year in 2017

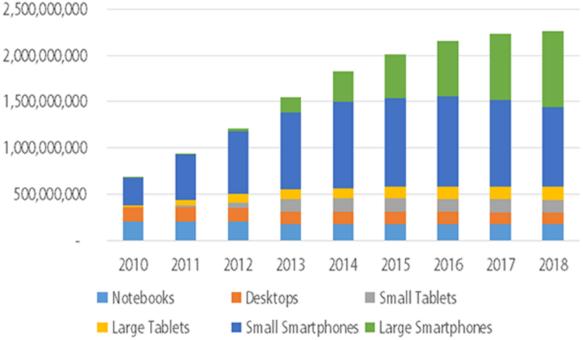

End-Use Markets

End-Use Systems Markets (\$B) and Growth Rates

12. April 2015

Source: IC Insights

Notebook and Desktop Markets



Important End-User sectors:

- Smartphones
- Tablets
- Notebooks
- Desktops
- Server
- HPC

Stable markets , decreasing growth rates

technalysis

WW Unit Forecast by Type

Bernd Panzer-Steindel, CERN IT CTO

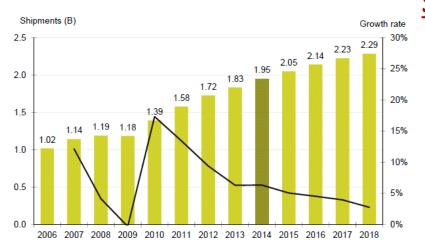
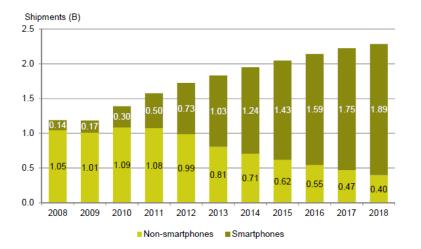
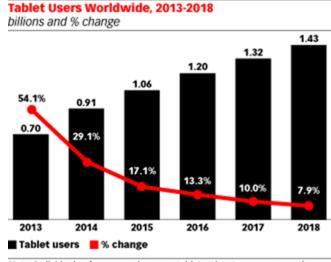


Figure 6-1. Global mobile phone shipments and growth rate, 2006-2018 Source: CCS Insight



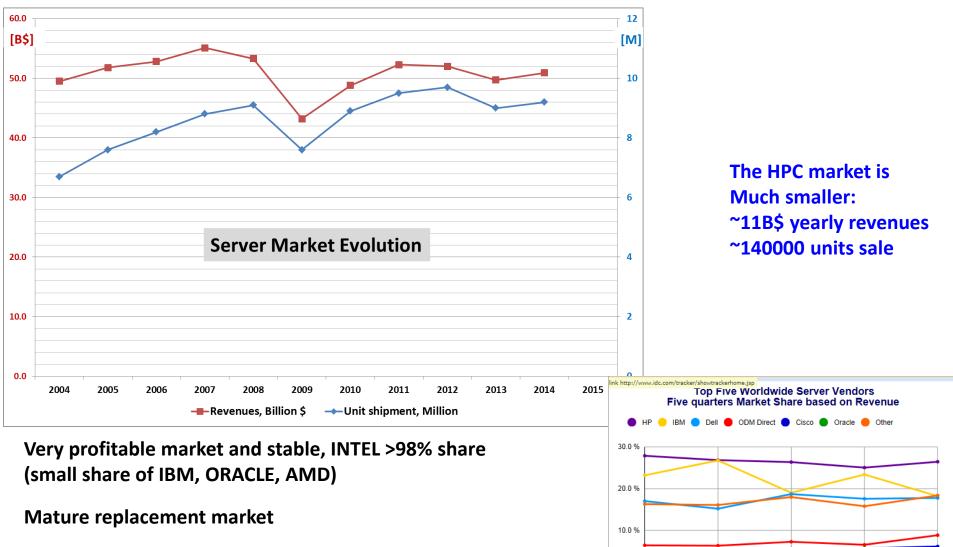

Figure 6-2. Global mobile phone shipments by type, 2008-2018 Source: CCS Insight

Smartphone and Tablet Markets

Smartphone install base in 2014: ~2B

Total cell phone install base 2014 : ~4.6BCell phone contracts2014 : ~7BPC and notebook install base 2014: ~3B

Replacement market Stabilized market



Note: individuals of any age who use a tablet at least once per month Source: eMarketer, Dec 2014

183305

www.eMarketer.com

Compute Server Market Evolution

ODM original design manufactures with increasing market share Special for hyperscale centers (Google, Facebook, etc.)

0.0 % _____ 2013Q3

INFO | Chart by IDC

4.00

2013Q4

2014Q1

2014Q3

Charts

2014Q2

Leading Players

Si technology is becoming rare

2014F Top 20 Semiconductor Sales Leaders (\$M)

2014F Rank	2013 Rank	Company	Headquarters	2013 Total	2014 Total	2014/2013 % Change			
1	1	Intel	U.S.	48,321	51,368	6%			
2	2	Samsung	South Korea	34,378	37,259	8%			
3	3	TSMC*	Taiwan	19,935	25,088	26%			
4	4	Qualcomm**	U.S.	17,211	19,100	11%			
5	5	Micron + Elpida	U.S.	14,294	16,614	16%			
6	6	SK Hynix	South Korea	12,970	15,838	22%			
7	8	ті	U.S.	11,474	12,179	6%			
8	7	Toshiba	Japan	11,958	11,216	-6%			
9	9	Broadcom**	U.S.	8,219	8,360	2%			
10	10	ST	Europe	8,014	7,374	-8%			
11	11	Renesas	Japan	7,975	7,372	-8%			
12	12	MediaTek + MStar**	Taiwan	5,723	7,142	25%			
13	14	Infineon	Europe	5,260	6,151	17%			
14	16	NXP	Europe	4,815	5,625	17%			
15	13	AMD**	U.S.	5,299	5,512	4%			
16	17	Sony	Japan	4,739	5,192	10%			
17	15	Avago + LSI**	Singapore	4,979	5,087	2%			
18	19	Freescale	U.S.	3,977	4,548	14%			
19	20	UMC*	Taiwan	3,940	4,300	9%			
20	21	Nvidia**	U.S.	3,898	4,237	9%			
		Top 20 Suppliers		237,379	259,562	9%			
	Top 20 Si	uppliers Excluding Fou	ndries	213,504	230,174	8%			
	*Foundry **Fabless								
Source: IC	Source: IC Insights' Strategic Reviews Database								

2014 Top Semiconductor R&D Spenders

Very few companies can effort large R&D spending and the investments for IC fabrication units

TSMC and Samsung have started to build new fabs at a cost of ~16 B\$ per unit Takes 2 years to build

			2013						2014/2013					
	2013 Rank	Company	Region	MOI	FABLESS	FOUNDRY	Semi Sales (\$M) (\$M)		R&D/Sales (%)	Semi Sales (\$M) (\$M)		R&D/Sales (%)		
1	1	Intel	Americas	ŀ			48,321	10,611	22.0%	51,400	11,537	22.4%	9%	
2	2	Qualcomm	Americas		٠		17,211	3,395	19.7%	19,291	5,501	28.5%	62%	
3	3	Samsung	Asia-Pac	•			34,378	2,820	8.2%	37,810	2,965	7.8%	5%	
4	4	Broadcom	Americas		٠		8,219	2,486	30.2%	8,428	2,373	28.2%	-5%	
5	7	TSMC	Asia-Pac			٠	19,935	1,623	8.1%	24,976	1,874	7.5%	15%	
6	5	Toshiba	Japan	•			11,958	2,040	17.1%	11,040	1,820	16.5%	-11%	
7	6	ST	Europe	•			8,014	1,816	22.7%	7,384	1,520	20.6%	-16%	
8	9	Micron	Americas	•			14,294	1,487	10.4%	16,814	1,430	8.5%	-4%	
9	14	MediaTek + MStar	Asia-Pac		٠		5,723	1,110	19.4%	7,032	1,430	20.3%	29%	
10	10	Nvidia	Americas		٠		3,898	1,323	33.9%	4,348	1,362	31.3%	3%	
		Top 10 Total					171,951	28,711	16.7%	188,523	31,812	16.9%	11%	

Source: Company reports, IC Insights' Strategic Reviews database

Note: IBM Fabs are currently getting acquired by Global Foundries Source: Analyst reports; company information

Market Dominance

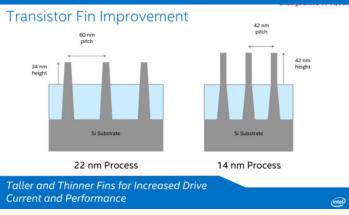
Only a few large companies are dominating the various components markets

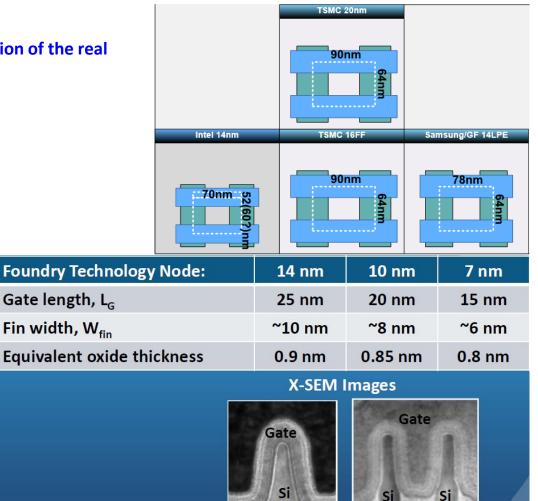
Processors	INTEL, Qualcomm, Samsung, AMD							
Graphics	INTEL, Nvidia, AMD							
Hard Disk Drives	Western Digital, Seagate, Toshiba							
DRAM memory	Samsung, SK Hynix, Micron							
NAND Flash memory	Samsung, Toshiba, SanDisk, Micron, Hynix, INTEL							
Solid State Disks	Samsung, INTEL, SanDisk, Toshiba, Micron							
FPGA	Xilinx, Altera (currently being bought by INTEL)							
Tape Storage	HP, Fuji, IBM, SpectraLogic ORACLE, IBM							

Rol Return-on-Investment is the keyword Few companies capable of large scale investments, majority fabless companies Favour evolutionary (adiabatic) changes of technology Clear bias against 'disruptive' new technologies (memristor, holographic storage, DNA storage, quantum computing, non-volatile memory, etc.)

e.g. Yearly revenues: Samsung 209 B\$ INTEL 56 B\$

Processor Technology I


Shrinking by a factor 2 every 2 years. 65nm node in 2006 --> 14nm node in 2014


The '14nm node' is a process name, not a description of the real feature sizes. On a 14nm chip there are NO 14nm structures There is no standard or a detailed definition Still very, very small feature sizes

Minimum Feature Size

	22 nm Node	14 nm Node	Scale
Transistor Fin Pitch	60	42	.70x
Transistor Gate Pitch	90	70	.78x
Interconnect Pitch	80	52	.65x
	nm	nm	

SiO,

SiO,

VLSI Symp. 2012

C. Auth et al. (Intel Corp.)

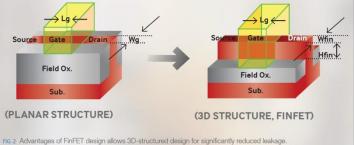

Bernd Panzer-Steindel, CERN IT CTO

SiO,

IEDM 2014

S. Natarajan et al. (Intel Corp.)

Processor Technology II



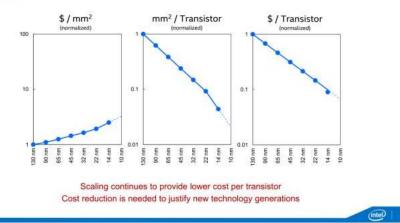
Very sophisticated lithography techniques, double patterning

Still using 193 nm light source EUV Extreme Ultraviolet not yet in production

3D-FinFET transistor

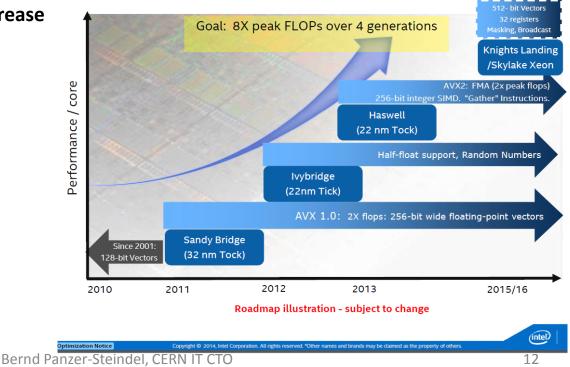
Leakage current reduction

Source: Samsung


Processor Technology, Moore's Law

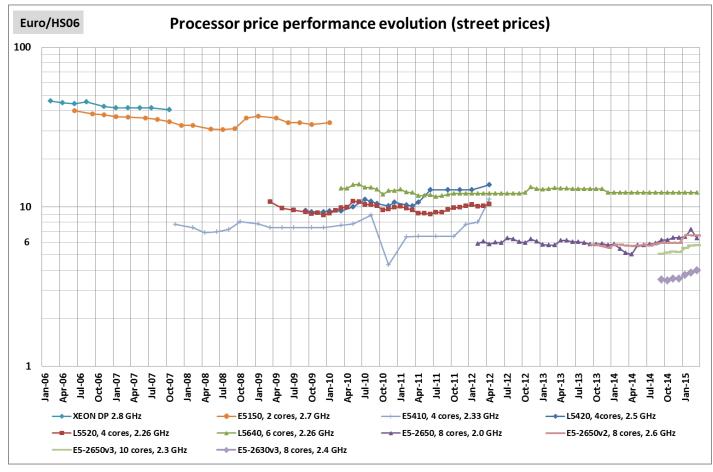
Traditionally, Cost-per-Wafer Increases 15-20% at Each New Technology Node

(EP1) Moore's Law Challenges Below 10nm: Technology, Design and Economic Implications


Quite some discussion in 2014 about the end of Moore's Law

Moore's Law is about the production cost of transistors not about the sales cost of processors

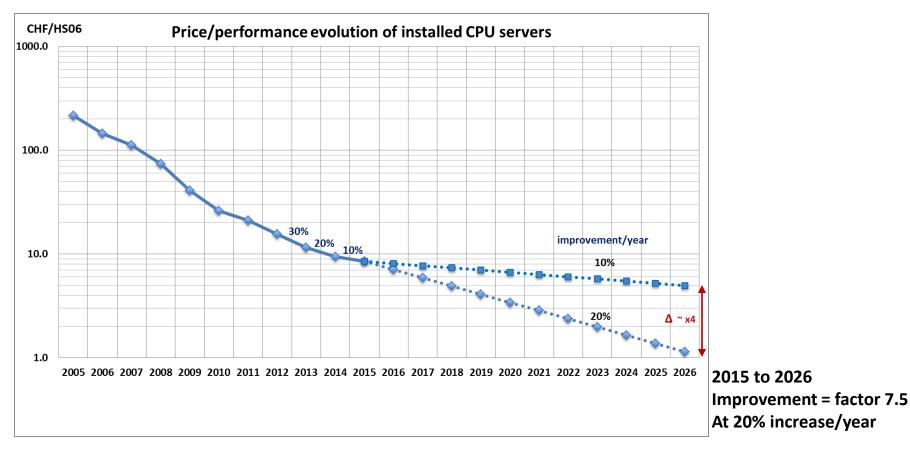
INTEL claims to overcome this up to the 10nm node scale


Processor Technology, architecture

- Kept the pipeline stages at 14 for the last few generations
- Stable frequencies around 3+- 0.5 GHz
- Number of cores per processor is increasing in a linear fashion, 1-2 per year market volumes, best price/performance → 2/4-cores in smartphones, 4-cores in notebook+desktops, 8-cores in servers
 high end, smaller volumes → octo-core in smartphones (actually this is 2 x 4, big-little concept), 6-cores in desktops, 18-cores in Xeon servers, 32-cores Oracle SPARC M7
- Increase vector length and sophistication of SIMD operations, steady IPC increase
- Haswell running with up to 32 Instructions per Cycle (IPC)

Intel® Advanced Vector Extensions

Processor Technology, prices


Processors from CERN purchases

Flat prices per processor generation

Server processor prices are more defined by the market then the technology

INTEL data centre group results for Q4 2014 : Revenue = 4.1 B\$ Profit= 2.2B\$ (~5 M server processors) highly profitable market

CPU Server Cost Evolution

CERN purchases, server nodes, latest version e.g. dual Haswell E5-2630v3, 64 GB memory, 1 Gbit NIC , 2 x 2TB disks Network costs are not included, 10% effect

Purchase cycles are not directly overlapping with technology cycles

Possible Architecture changes: move to 10 Gbit, SSD disks, SMT on or off

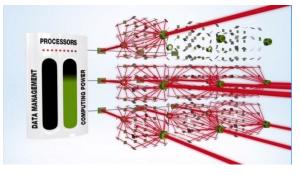
Micro Server Developments

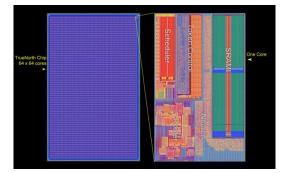
- Cavium, 48-core server chips based on ARM (ThunderX SoCs)
- Gigabyte server motherboard released using X-Gene 1 (Applied Micro), 8-core ARMv8 45 W 2.4 Ghz
- HP Moonshot, AppliedMicro X-Gene ARM processors
- Calxeda went bust in early 2014
- AMD is very late with their ARM product
- Many INTEL product releases

Facebook just dropped ARM plans in favour the new INTEL XEON D server chips (ARM power advantage diminishing, software porting is the issue)

New generation of Windows Surface Tablet has dropped ARM

INTEL 'supported' 40 million tables with x86 processors in 2014 (4.2 B\$ contra-revenue !) (comparison: AMD stock market value is about 4 B\$)


Game changer most likely only if and when Samsung buys AMD → R&D investments


New Processing Architectures I

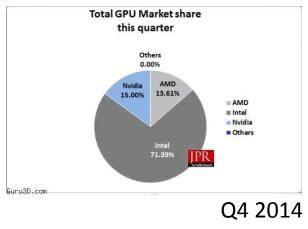
Micron's Automata Processor reconfigurable, massive parallelism; for bioinformatics, pattern recognition, data analytics and image processing

- Optalysys, Laser plus liquid crystal spatial light modulators UK technology company
- IBM research, neuromorphic chips
 4096 cores, 1 million neuron, 5.4 B transistors, 72 mW

- Qualcomm cognitive compute Platform (Zeroth), along the Snapdragon 820 ARM architecture deep learning for smartphones
- > D-Wave Quantum Computing (Maybe !, still controversial)

New Processing Architectures II

The Machine based on silicon photonics interconnects and memristors as active components (HP) Completely different programming model: Linux++ Started in 2012, prototype in 2016 Memristor concept from 1971, implemented in HP Labs (2008)



DARPA initiative Petaflops On Desktops: Ideas Wanted For Processing Paradigms That Accelerate Computer Simulations Includes the use of analogue circuits

<u>DIGITS DevBox</u> from NVIDIA, GPU based, special libraries \rightarrow deep learning applications

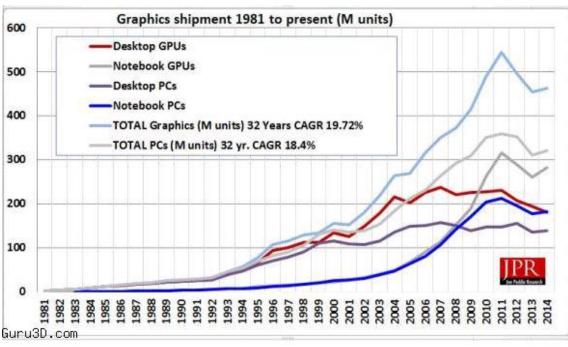
<u>Soft Machines</u>, Variable Instruction Set Computing (VISC) virtual cores implemented in hardware

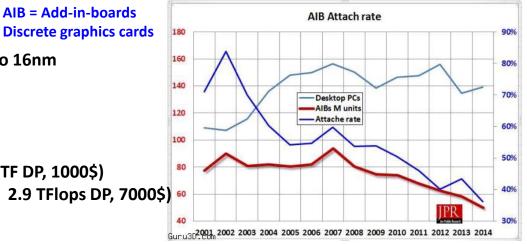
GPU processing and Markets

450 M GPUs sold per year, compared to ~10000 very high end GPUs (HPC)

GPU technology still at the 28nm level

Most likely skip the 20nm step and move directly into 16nm

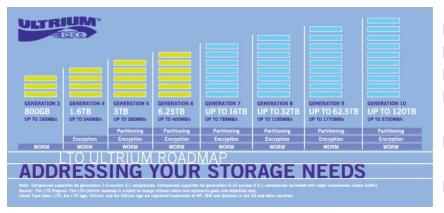

16 B\$ fab investment from TSMC


Latest 28nm cards from Nvidia:

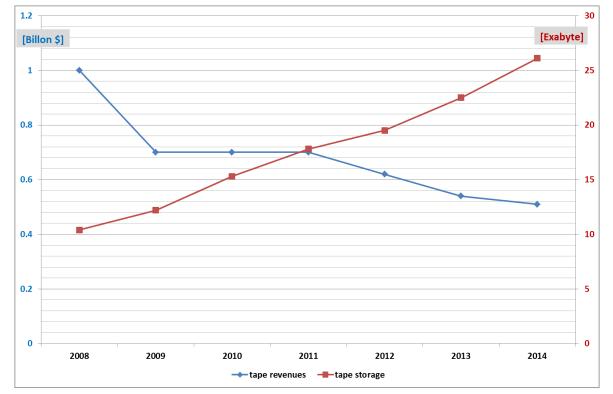
Titan X (8B transistors, 3000 cuda cores, 8 TF SP, 0.2 TF DP, 1000\$)

K80 (14B transistors, 5000 cuda cores, 8.7 TFlops SP, 2.9 TFlops DP, 7000\$) ••

Constant decrease of discrete graphic card sales CPU+GPU integrated from INTEL increasing

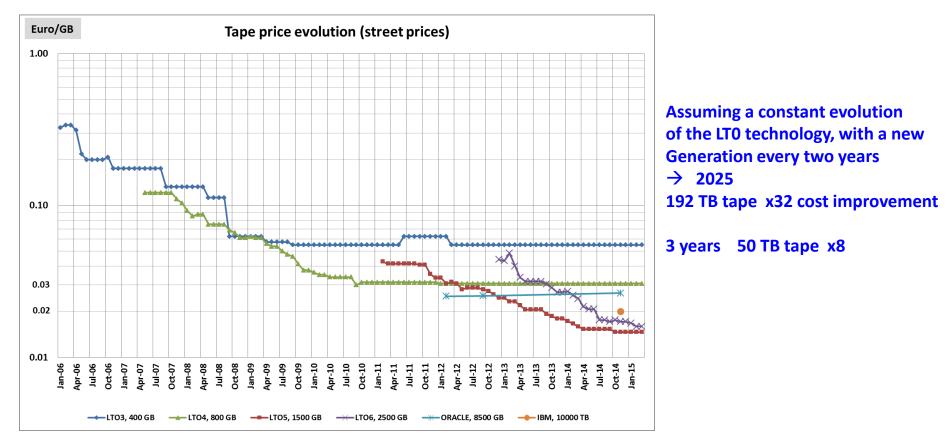


Split between gaming and HPC market


12. April 2015

AIB = Add-in-boards

Tape Storage I

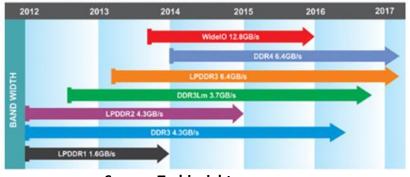


- □ LTO has > 96% of the market , (LTO-6, 2.5TB Cartridges)
- **C** Enterprise tapes (ORACLE- 8.5TB, IBM 10TB) niche products
- **D** TDK&Maxwell stopped producing tapes
- R&D looks okay, 220 TB (IBM/Fuji) and 185 TB (Sony) tape in the labs
- □ LTO roadmap lately extended to 10 generations, but steady decrease of revenues
- □ LTO 6 capacity was reduced (3.2 \rightarrow 2.5 TB)

Source: Santa Clara Group

Tape Storage II

LTO approaching 1 cent/GB, steady cost decrease Enterprise more expensive, but can be re-used with next generation


Size difference (LTO6 2.5 TB, IBM/Oracle 8.5-10 TB) == infrastructure cost difference (silos, drives, maintenance)

Storage Components: DRAM Memory I

Memory production has moved from 25/28nm to 20nm in 2014


The same companies produce NAND and DRAM Shifting capacities Weak PC market, stable server market Reduced capacity → Volatile DRAM prices

Focus on speed improvement especially in the low-power memory formobile devices

Source: Techinsights

DATA TRANSFER TRENDS

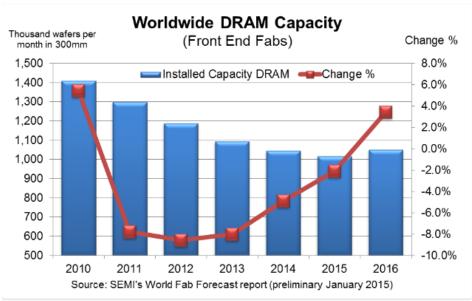


Figure 3: Worldwide DRAM capacity for Front End facilities in 300mm equivalent wafers per month and change rate in percent (Source: SEMI, 2015)

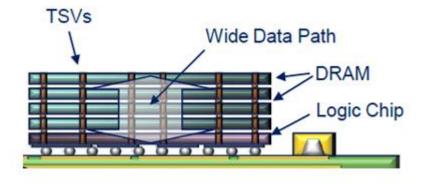
DRAM Process Roadmaps (for Volume Production)

	2011 , 2012	2013	2014 , 2015	2016 2	017					
Micron	<	30nm	<20nm							
Samsung	<30nm		<20nm							
SK Hynix	<30nm		<20nm							

Note: What defines a process "generation" and the start of "volume" production varies from company to company, and may be influenced by marketing embelishments, so these points of transition should be used only as very general guidelines.

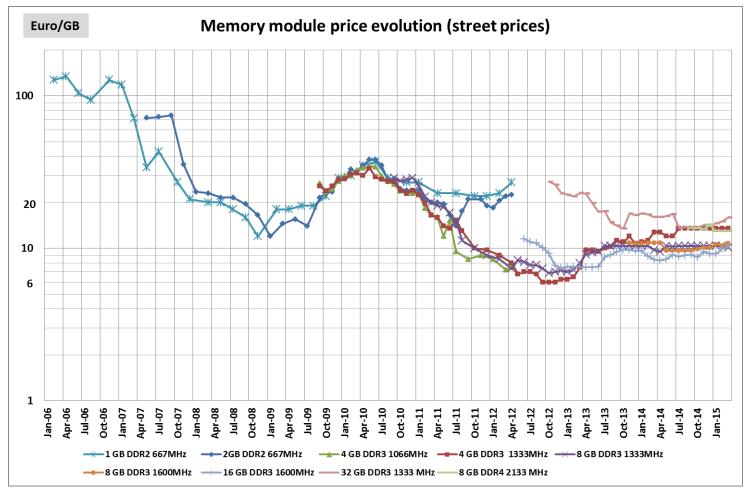
Sources: Companies, conference reports, IC Insights

12. April 2015


Storage Components: DRAM Memory II

3D memory delayed, coming this year, solves data transfer issues, density

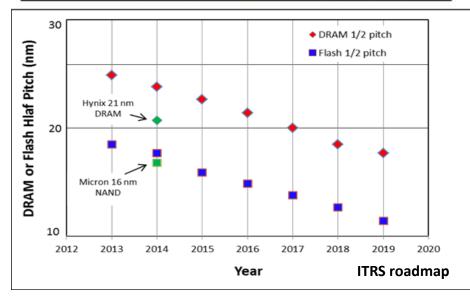
Microns Hybrid Memory Cube concept factor 15 memory speed improvements


Focused on the server and HPC area. Memory wall problem

Nvidia new Pascal GPU technology in 2016 will use memory stacks

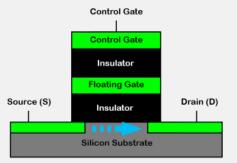
Memory stack TSV Through Silicon Via

Storage Components: DRAM Memory III

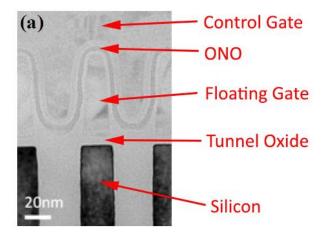


Volatile memory DRAM market

Side effects: Apple will consume 25% of the worldwide DRAM production in 2015 → Shift to mobile DRAM, some shortage in PC RAM and server RAM expected


Storage Components: NAND Flash Memory I

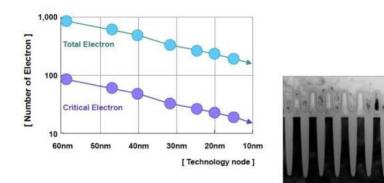
	2011	1	2012	1	2013	$\tilde{\mathbf{r}}$	2014	, 2015	1	2016	1	201	7
IM Flash			20nm			16nm			0-12	Inm			20
IN Flash		ZUNM			annin	<u> </u>	Gen 1	Gen 2			30		
Co	-					16nm	10-12nm					20	
Samsung	21nm				24	E.	32L	Gen 3 (48L)				18L)	30
SK Humin	20nm		16nm			10-12nm					20		
SK Hynix		ZUNM			Toum			Gen 1	Gen 2			30	
Tashiha /FanDisk	19nm		15nm			10-12nm				20			
Toshiba/SanDisk				ISUM			Gen 1			G	en 2 30		



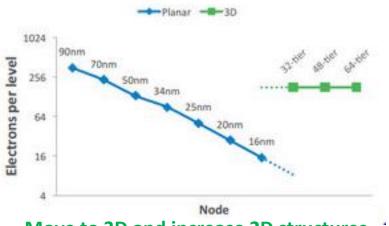
Micron has moved to 15nm technology 3D-NAND flash 128 Gbit chips

Commercially the limit for 2D flash is 15nm

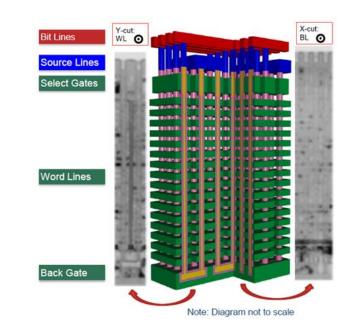
Current Flows - Floating Gate Erased



Storage Components: NAND Flash Memory II

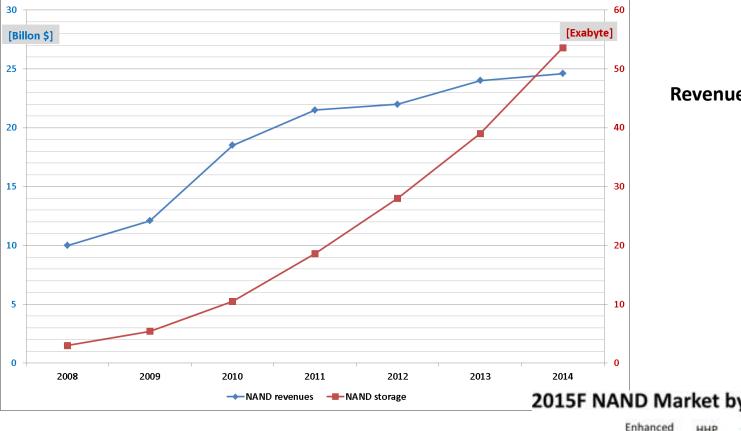

SLC 1bit/cell 100000 cycles

MLC 2 bit/cell 5000 cycles TCL 3 bit/cell 1000 cycles


FG Limitation : Number of Electrons

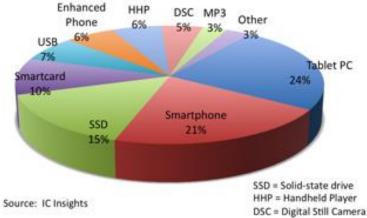
How to Manage 10 electrons in sub-1xnm design rule?

Sandisk BiCS 3D-NAND


INTEL/Micron have produced 32 layer 3D-NAND

Samsung already shipping products V-NAND 32 levels 32nm production node

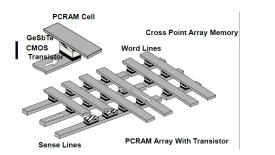
Toshiba is moving to 48 layers


Move to 3D and increase 2D structures

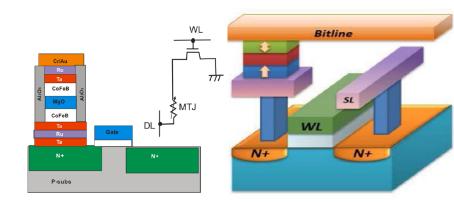
NAND Flash Market

Revenues are becoming flat

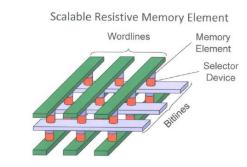
2015F NAND Market by Application (\$27.2B)


Only 15% of the yearly NAND capacity is for SSDs

Bernd Panzer-Steindel, CE


Storage Components: Non-Volatile Memory I

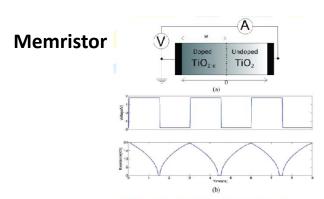
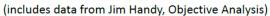
Contenders :

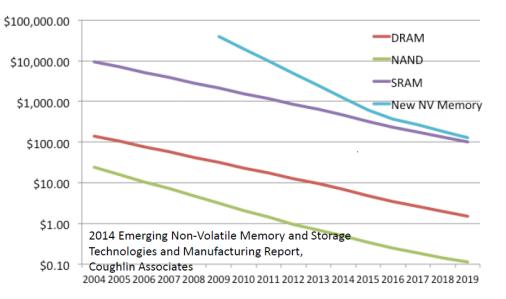

PCRAM (Phase-Change RAM)

3 types of MRAM (Magnetoresistive RAM) Spin-Transfer-Torque, field driven, magneto thermal

ReRAM/RRAM (Resistive RAM) CBRAM (Conductive Bridge RAM)

Cross Point Array in Backend Layers ~4λ² Cell Source: Flash Memory Summit 2013

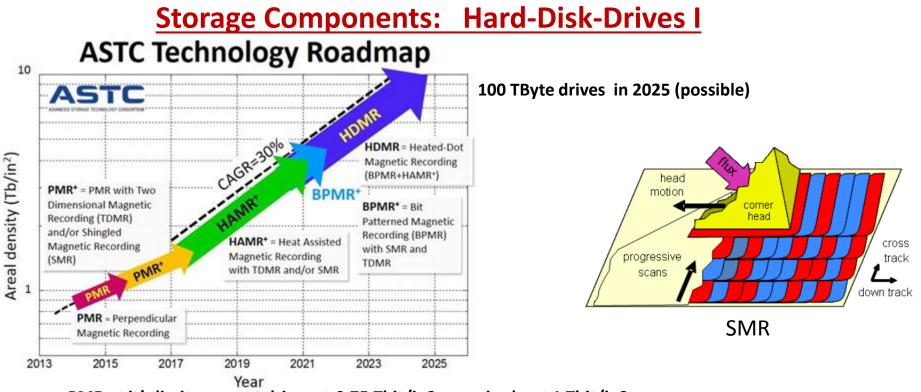




FIGURE 1. (a) Characterizing the memristor and (b) change of resistance when a 3.6 V p-p square wave is applied.

\$/GB for Memory Technologies

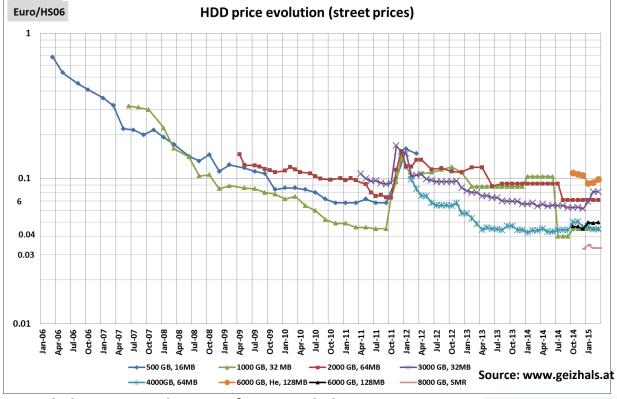
NVM market in 2014 is 65M\$ Comparison: DRAM 42 B\$, NAND 25B\$ Expected to rise to 7 B\$ in 2020

Everspin is producing MRAM since 2008 64 Mb chips in 90nm technology



Micron/Sony have just shown 27nm 16 Gbit CBRAM

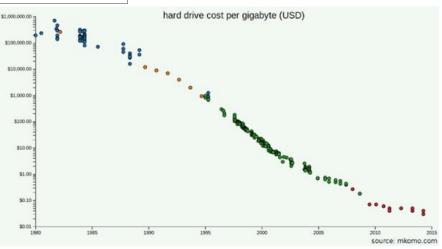
Micron, the main PCM memory promoter dropped this activity in 2014 focused on 3D-NAND


Complicated and 'disruptive' fabrication process

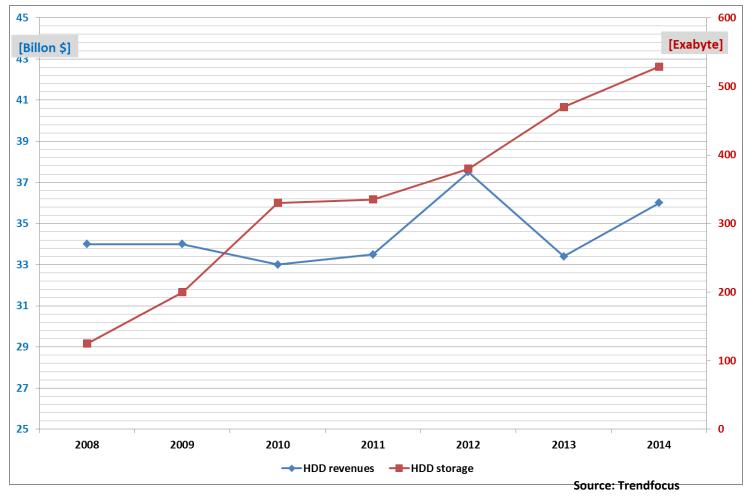
- PMR at it's limit, current drives at 0.75 Tbit/in2, max is about 1 Tbit/in2
- The density increase rate has slowed down considerably over the last years
- Shingled Magnetic Recording (1D, 2D) now in the market (e.g. 8 TB Seagate drives) extends the limit to 1.5 2 Tbit/in2 → increased surface density Good read, but restricted write performance. Sophisticated controller
- More platters per disk, Helium filled (e.g. 6 TB HGST) drives) → increased volume density
- HAMR prototypes already shown 3 years ago (Seagate 1 Tbit/in2), but very sparse information about the current roadmaps. Introduction in 2017 !?

^{12. April 2015} no principle technology problems, HAMR and BPMR are sophisticated and very expensive

Storage Components: Hard-Disk-Drives II

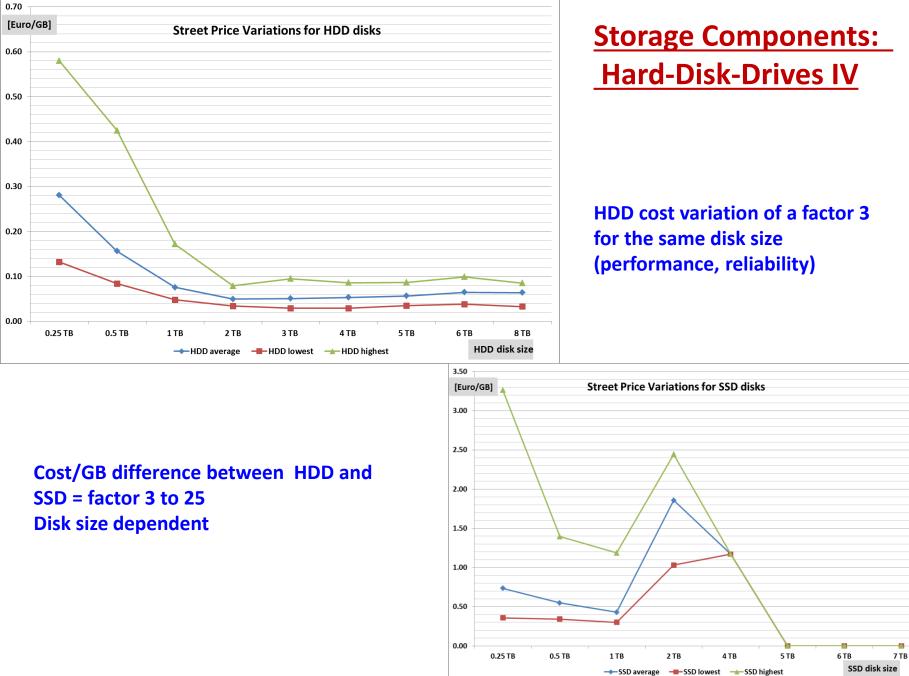


'Thailand' crisis end of 2011 Price recovery period was very long (artificial !?)



Raw disk price evolution of server disks (CERN purchase)

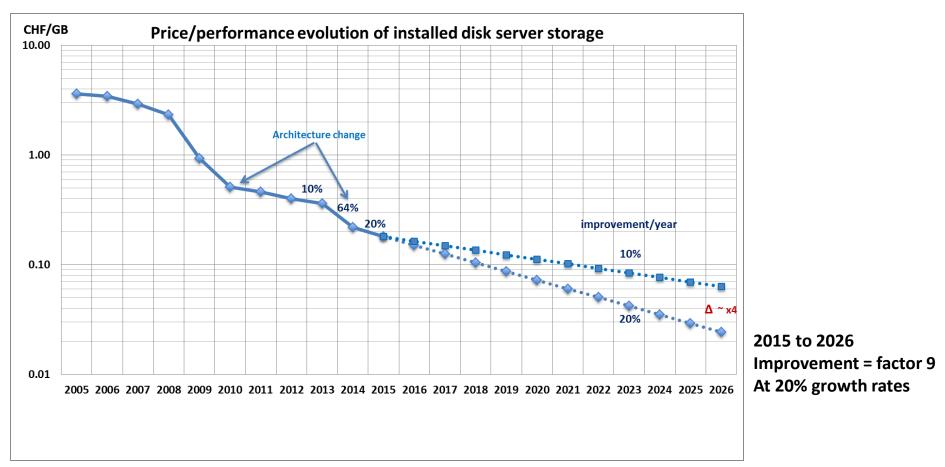
Decreasing price/space improvement rate


Storage Components: Hard-Disk-Drives III

564 million HDDs sold in 2014

The market for server level disks is only 13% of the total

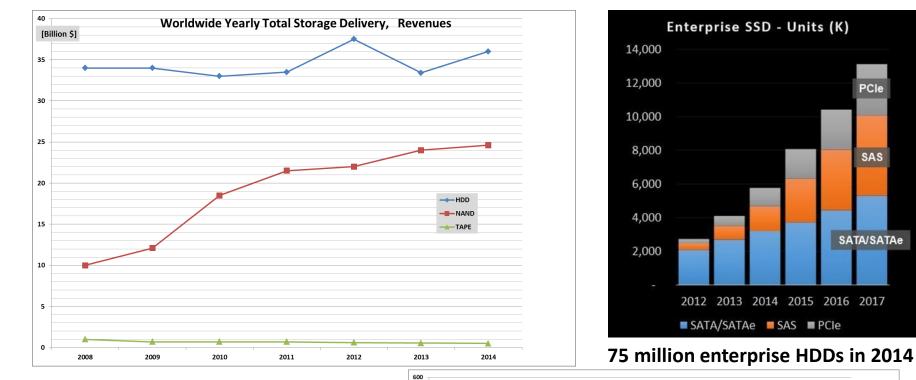
Revenue increase in 2012 due to the 'Thailand' crisis in 2011 Steady, but slower yearly increase in total space shipped



Bernd Panzel-stemaer, centre cro

Source: www.geizhals.at

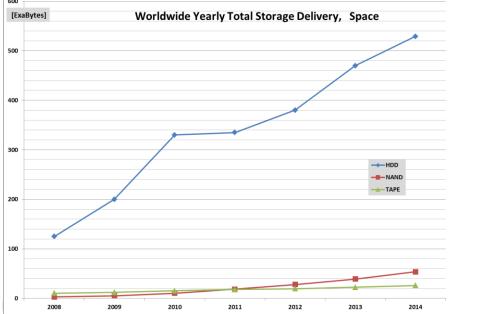
⁵²


Storage Server Cost Evolution

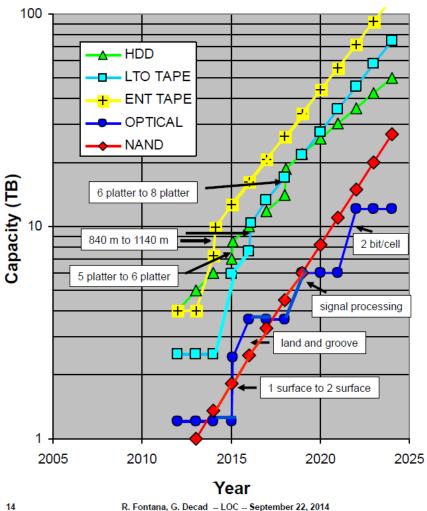
CERN purchases of disk servers: costs defined by component costs, economy of scale (homogeneity !) and the Architecture (also software dependent)

Architecture changes during the last years:

- RAID5 \rightarrow RAID1
- Integrated disk server \rightarrow CPU frontend with SAS attached JBOD array
- RAID1 → software data replication
- One array per server \rightarrow two arrays per server



Bernd


15% of the NAND storage is used for SSDs

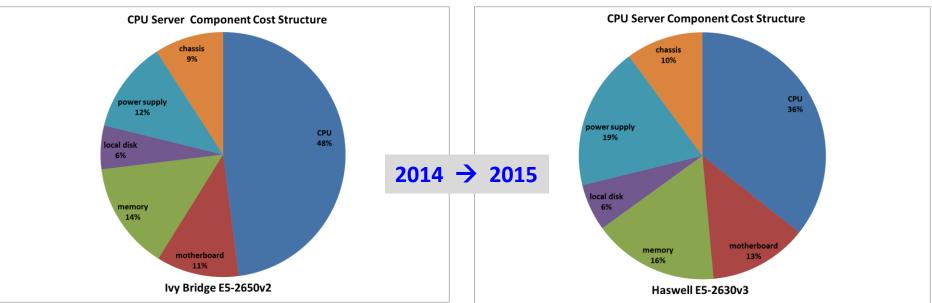
To yearly deliver the 530 Exabytes of HDD storage with SSDs would require an investment of ~0.5 T\$ in NAND fabrication

The replacement of HDDs by SSDs will take quite some time

Component Capacity vs Time (best case)

- Component capacity scaled from 2013 data using best case areal density growths from 6 year history
- 5X spread in capacity
- HDD convergence with TAPE
- OPTICAL significant capacity lag relative to TAPE and HDD

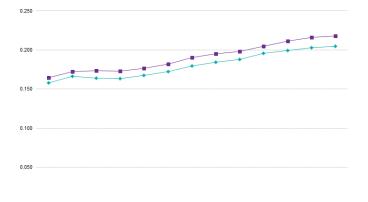
2025


200 TB enterprise tape 100 TB LTO tape 60 TB HDD **25 TB SSD**

Not a direct relationship to costs

© 2014 IBM Corporation

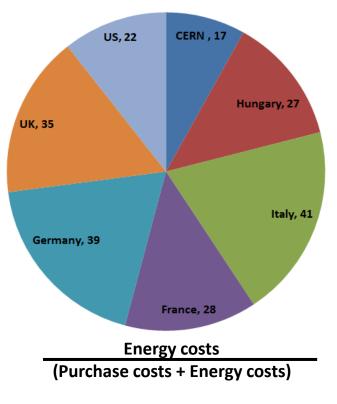
14


Back-of-an-Envelope Calculations, component savings

- Dominant part is the CPU, still getting best price/performance processors including infrastructure costs
- Sweet spot is still dual processors with medium frequencies ~(~2.5 GHz)
- The usual question about the relation of HepSpec and real HEP code.....
- Reducing memory by a factor 2 could create costs savings of 7-8%
- SMT increases performance by 20-25% while increasing memory costs by 7-8%, still a gain
 → local disk performance issues cost increase with SSDs
- Lower 'quality' of memory, ECC?, MHz ? → HepSpec is sensitive to memory features at the 10% level , HEP code ?
- Quad server packaging better than Blade server (also operational issues)
- Open Compute Project architecture (racks, power, server); pilot on the way; savings seem to be small
- Desktop, processor+GPU, lower price/performance but single proc, no ECC, operational aspects
 --> gain 30% ?
- Maybe new microservers later --> gain 30%?

Not much to gain here, 10% level

Back-of-an-Envelope Calculations, power savings


0.000													
0.000	2008s1	2008s2	2009s1	2009s2	2010s1	2010s2	2011s1	2011s2	2012s1	2012s2	2013s1	2013s2	2014s1
	0.158	0.166	0.164	0.164	0.167	0.173	0.180	0.184	0.188	0.195	0.199	0.203	0.205
EA*	0.165	0.172	0.174	0.173	0.177	0.182	0.190	0.195	0.198	0.205	0.211	0.216	0.218

Average electricity price development in Europe, 2008-2014, Euro/kWh Increase is ~4.5% per year

Electricity cost varies by more than a factor 2 within Europe. US costs are up to a factor 3 cheaper

→ Cutting the energy consumption by a factor 2 saves between 10 and 20% of the total cost

Relative energy costs of a CPU server: Dual processor, 64 GB memory, 2 local disks → 3500,- Euro 4 years lifetime 300 W under full load, 80% efficiency, PUE of 1.7,

e.g. the cost for energy of a CPU server is 39% of the total costs in Germany

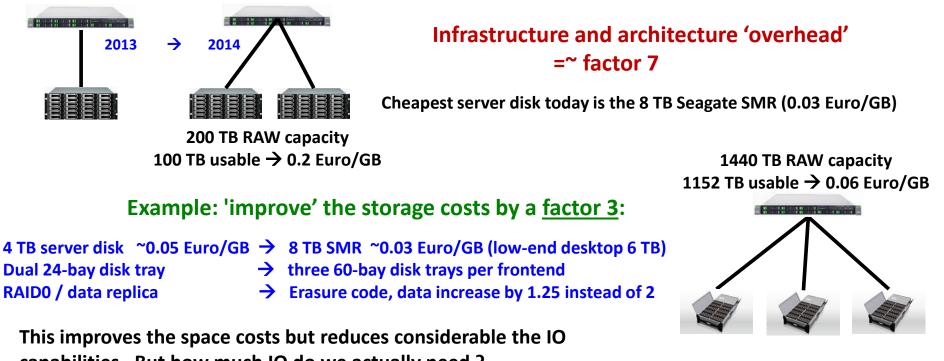
Back-of-an-Envelope Calculations, processor architecture savings

Cost and performance of various processor and accelerators

	Gflops SP	Gflops DP	cost	power	Gflops DP/ Gflops DP/
			[Euro]	[W]	Euro Watt
Intel E5-2630v3 8x2.4 GHz	600	300	720	85	0.42 3.53 ← Reference
Intel E5-2650v3 10x2.3 GHz	740	370	1250	105	0.30 3.52
Intel E5-2690v3 12x2.6 GHz	1000	500	2150	135	0.23 3.70
Xeon Phi, knights corner, 16GB	2416	1208	3500	270	0.35 4.47
Xeon Phi, knights landing, 16GB	7000	3000	3500	300	0.86 10.00 ← Price unknown,
Nvidia GeForce Titan X	7000	200	1000	250	0.20 0.80 assumption
Nvidia Tesla K40	4290	1430	5500	235	0.26 6.09
Nvidia Tesla K80	8740	2910	7000	300	0.42 9.70
Radeon firepro S9150	5070	2530	3500	235	0.72 10.77
Altera Arria [®] 10 FPGAs 16 GB		1500	3000	50	0.50 30.00

Assuming the code can use 100% of the Instructions per Cycle (IPC)

- Price/performance gain of maybe a factor 2 for the new Xeon Phi
- Power/performance gain of a factor 9 for the Altera FPGA == costs saving of up to 35% (see previous slide)
- Savings are reduced due to fact that the processors/accelerators are only 30-40% of the total system (cost and power)


Microsoft and Baidu bought Altera FPGA PCIe boards for their search servers, Microsoft also uses Xeon Phi. HPC GPUs, Xeon Phi, HPC FPGAs are niche products with sales of ~10000 units per year.

Detailed investigations of the new ARM (HP Moonshot) and power8 servers have shown that they are not yet a real competition <u>http://lvalsan.web.cern.ch/lvalsan/processor_benchmarking/presentation/#/future_work</u> → At least a factor 5 worse in terms of price/performance and a factor 2 worse in power/performance

A Haswell processor can do up to 32 instruction per cycle, HEP code uses about 1

Back-of-an-Envelope Calculations, storage component savings

CERN disk server: CPU server with SAS attached JBOD array

capabilities. But how much IO do we actually need ? (Application, data management, data distribution dependent) Much more tuning between application and hardware needed.....

Redefine our notion of storage space

→ Storage space plus performance

Split MC+processing facilities -- analysis facilities different IO architecture based on Seagate Kinetic object drive model or the HGST Open Ethernet drive

FLAPE Flash+Tape

Summary

Semiconductor Component and end-user markets are stabilizing. Saturation effects seen nearly everywhere, moving to 'replacement' markets

Very few companies dominating the market: technology evolution , not revolution

Moore's Law validity being debated. 3D technology helps. Expect still continuous price/performance improvements, but lower levels

Server market is small compared to the consumer market, stable and highly profitable Market --> high prices. Microservers show in principle potential, but currently overrated

Way to improve price/performance beyond the technology --> architecture

Should not talk about disk, SSD or tape but rather storage units (space+performance)

There will be processing and storage technologies in 2025 and most likely not too different from today, but estimating the cost is pretty difficult. So.. You will get what you get (equal or rather lower budget than today).....