

800 MHz: Cavity Design & Power Aspects

Toon Roggen CERN (BE-RF-BR)

With input from:

P. Baudrenghien

R. Calaga

L. Ficcadenti

E. Shaposhnikova

Harmonic RF System Review Meeting 3

Idea:

- Main RF system: Existing 400 MHz LHC cavities
- Add 2nd harmonic (800 MHz):
 - Bunch profile shaping
 - Synchrotron frequency spread

(Stability, Landau damping)

O. Bruning et al., 2002 F. Zimmermann et al., 2002 T. Linnecar, E. Shaposhnikova, 2007 C. Bhat at al., 2011 S. Fartoukh, 2011 T. Mertens, J. Jowett, 2011 D. Shatilov, M. Zobov, 2012

Idea:

- Main RF system: Existing 400 MHz L
- Add 2nd harmonic (800 MHz):

Approach: (R. Calaga, L. Ficcadenti, J. Tückmantel)

- Start design from 400 MHz LHC-ACS
 - Highly optimised for LHC (impedance, power)
 - Proved functionality and reliability in operation
 - Cavity

- HOM couplers

- Power coupler

- RF system

Approach: (R. Calaga, L. Ficcadenti, J. Tückmantel)

- Start design from 400 MHz LHC-ACS
 - Highly optimised for LHC (impedance, power)
 - Proved functionality and reliability in operation
 - Cavity

- HOM couplers
- Power coupler
- RF system
- Scale: $\frac{1}{2} \rightarrow$ Base line model for 800 MHz

Approach: (R. Calaga, L. Ficcadenti, J. Tückmantel)

- Start design from 400 MHz LHC-ACS
 - Highly optimised for LHC (impedance, power)
 - Proved functionality and reliability in operation
 - Cavity

- HOM couplers
- Power coupler RF system
- Scale: $\frac{1}{2} \rightarrow$ Base line model for 800 MHz
- Not that simple: Not all optimised properties scale
 - Cavity deformation (tuneability), HOM impedances
 - HOM couplers
- Re-optimize

Approach: (R. Calaga, L. Ficcadenti, J. Tückmantel)

- Start design from 400 MHz LHC-ACS
 - Highly optimised for LHC (impedance, power)
 - Proved functionality and reliability in operation

Challenges: Beam loading + RF power p⁺: 2.2x10¹¹

- Low HOM impedances
- Cavity deformation (tuneability)
- Re-optimize

Overview

- Motivation
- RF Cavity
- HOM couplers
- Power requirements
- Power coupler
- Power sources
- Cavity layout
- Heat load
- Other thoughts
- Conclusions & outlook

r_c

r_b

Parameter sensitivity study

r₂

cell

• r_{b} , r_{c} , ϕ , r_{1} , r_{2} , I_{cell}

Goals:

- Deformable / tunable cavity
- High FM / low HOM impedances
- HOM freq. >> FM freq.
- HOM freq. above cut-off

Parameter sensitivity study

r₂

Icell

• $r_{b}, r_{c}, \phi, r_{1}, r_{2}, I_{cell}$

(D

r_c

 \mathbf{r}_{b}

r_c

r_b

Parameter sensitivity study

- $\mathbf{r}_{b}, \mathbf{r}_{c}, \mathbf{\phi}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{I}_{cell}$
- Rigidity: φ : 19.5° \rightarrow 10°
- L_{cell}: 160 mm → 140 mm

cell

r₂

r

r_b

Parameter sensitivity study

- $\mathbf{r}_{b}, \, \mathbf{r}_{c}, \, \boldsymbol{\phi}, \, \mathbf{r}_{1}, \, \mathbf{r}_{2}, \, \mathbf{I}_{cell}$
- Rigidity: φ : 19.5° \rightarrow 10°
- L_{cell}: 160 mm → 140 mm

cell

r₂

(E. Haebel, V. Rödel, F. Gerigk, Z.T. Zhao)

coupler

(E. Haebel, V. Rödel, F. Gerigk, Z.T. Zhao)

HOM couplers

• Hook type:

HOM couplers Tuning procedure:

Hook type:

TM₀₁ mode: **Magnetic Coupling**

- Equivalent circuit
- Component optimisation based on S₂₁ curve
- Convert to 3D model

EM simulations: Fine tuning (3D components)

(E. Haebel, V. Rödel, F. Gerigk, Z.T. Zhao)

HOM couplers

• Probe type: Equivalent circuit

TE₁₁ mode: Electric Coupling

HOM couplers

• Probe type:

TE₁₁ mode: Electric Coupling

Power requirements

400 MHz ACS: "Half detuning scheme" (D. Boussard)

• V(t) and RF peak power constant \rightarrow = Imposed = requires power

 \rightarrow Fixed bucket distance

(zero phase modulation: $\varphi = 180^{\circ}$)

 \rightarrow (no) beam: Const. P_{peak}

 \rightarrow Limitation: Available P_{peak} < 300 kW

Solution: 400 MHz ACS: Switch to "full detuning scheme"

- Keep klystron current real (with RF feedb & 1T-feedb: define set point.) = Allow beam to modulate phase ($\phi(t)$ instead of $\phi = 180^{\circ}$)
- Result:
 - Non equally spaced bunches
 - Minimized klystron power demand if $\varphi(t)$ centred around zero.

(D. Boussard, P. Baudrenghien, T. Mastoridis)

Power requirements

800 MHz harmonic system: "Full detuning scheme" (*P. Baudrenghien*)

- Imposed: $V_{800,total} = 8 \text{ MV} = 0.5 \text{ x V}_{400, total}$
- Imposed: Follow phase modulation $\varphi(t)$ of 400 MHz
 - **BS:** Power reduction 0
 - **BL:** Power increase 0
- Take into account 300 kW power limit
- BL mode: Reduce V_{800} = 1.0 MV \rightarrow 0.8 MV

 \rightarrow more cavities: 8 \rightarrow 10

- P ≈ 290 300 kW •
- BS mode $P \approx 175$ kW (fixed coupler)
- BS mode P ≈ 57 kW
 - + 1.4 MV in cavity (variable coupler)
- More power required:
- Shorter bunches
- Shorter bunch spacing
- More p⁺

Bunch		
p+	2.2e ¹¹	
Bunch length [ns]	1	
Bunch spacing [ns]	25	
# (filled) bunch places	(2808) 3564	
β	1	
T _{gap} [µs]	3.2	

Power coupler

- Requirements:
 - \rightarrow movable (fixed)
 - $\rightarrow Q_{ext}$ range (TBD)
 - \rightarrow CW Power > 300 kW +20%
 - $(\leftrightarrow 300 \text{ kW limit})$
 - \rightarrow Size: Ø 100 mm
- Start from SPL- like design:
 - \rightarrow > 300 kW +20%
 - \rightarrow Challenge 2 ?
 - \rightarrow Challenge 3 ?

SPL power coupler design (Courtesy: E. Montesinos)

Power sources

- > 300 kW + 20%
- CW

Klystron for the 400 MHz

- 10 cells / beam (\leftrightarrow 10 m)
- 2λ spacing Cross talk : -48 dB
- 2 or 4 cavities / cryo
- Two 4-cavity cryo's + one 2-cavity cryo (8530 mm)
- Five 2-cavity cryo's (longer \leftrightarrow 10 m)
- Dimensions subject to change \rightarrow detailed engineering

(Courtesy: R. Calaga)

Heat load

Heat load @ 4.5 K / cavity	400 MHz [W]	800 MHz [W]
Static	50	10
Dynamic (cavity)	25 (@ 2 MV)	15 (@ 1 MV)
Dynamic (other)	10	10
Total	85	35
Total 4 cavities	340	140

400 MHz ACS cryomodule

\rightarrow Preliminary estimates

(Courtesy: R. Calaga)

Other thoughts

- Operational challenges
 - 800 MHz cavity voltage programmes
 - flat top: BS / BL
 - flat bottom, ramp: need for 800 MHz?

If not: $V_{800} = 0.5 x V_{400}$? Reduce V? Detune cavity...

- Sensitivity to phase errors on φ(t): What if 800 MHz system
 cannot keep up?
 - (Analytical / develop dynamic model)

(Courtesy: R. Calaga)

Other thoughts

- Cavity/RF system failures:
 - o 400 MHz cavity failure
 - Scenario's: Reduce / keep V₈₀₀? Abort beam?
 - o 800 MHz cavity failure
 - Scenario's: Reduce / keep V_{800} ? Abort beam? Compensate with the other cavities? (Available power + in BL / BS mode)

Conclusions & outlook

- Conclusions:
 - RF Cavity:
 - HOM couplers:
 - Power requirements:
 - Power coupler:
 - Power sources:
 - Cavity layout:
 - Heat load:

EM design optimised for 800 MHz HH system Tuned to 800 MHz specifications "Full detuning" scheme: $V_{800} = 0.8$ MV $P_{BI} \approx 300 \text{ kW}, (>> P_{BS})$ Movable & > 300 kW + 20% $(\leftrightarrow 300 \text{ kW limit + size})$ TBD (Klystrons) #10 cells / beam, spacing $2\lambda (\leftrightarrow 10 \text{ m})$ 35 W/cavity (4.5 K)

Conclusions & outlook

- Outlook:
 - Build prototype: 2-cavity 800MHz (Nb-Cu)
 - Power coupler design
 - Operational challenges
 - Cavity/RF system failure procedure

Appendix

• Tapers:

Scaled version: 210 mm

Special taper: 105 mm Equal transmission characteristics Engineering difficulties? Deformation \rightarrow sensitivity?