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Abstract Abstract for BOOST2013 report
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1 Introduction

Jet substructure has been around a while now, and it’s

time to study the correlations between the plethora of

observables that have been developed and used. Previ-

ous BOOST reports [?,?,?] studied some of these things.

2 Monte Carlo Samples

2.1 Quark/gluon and W tagging

Samples were generated at
√
s = 8 TeV for QCD dijets

and W+W− pairs decaying hadronically off a (pseudo)

scalar resonance. The QCD events were split into sub-

samples of gg and qq̄ events, allowing for tests of both

W and quark-gluon discrimination.

Individual quark and gluon samples were produced

at leading order (LO) using MadGraph5, whileW+W−

samples were generated using the JHU Generator to

allow for separation of longitudinal and transverse po-

larizations. Both were produced in exclusive pT bins of

100 GeV and generated using CTEQ6L1 PDFs. The

slicing parameter was chosen to be the pT of any fi-

nal state parton or W . At the parton-level the pT bins

investigated were 300-400 GeV, 500-600 GeV and 1.0-

1.1 TeV. Since no matching was performed, a cut on

any parton was equivalent. These were then showered

through Pythia8 (version 8.176) using the default tune

4C.

The showered events were clustered with FastJet

3.03 using the anti-kt algorithm with jet radii of R =

0.4, 0.8, 1.2. In both signal and background an upper

and lower cut on the leading jet pT is applied after

showering/clustering, to ensure similar pT spectra for

signal and background in each bin. The bins in leading

jet pT that are investigated in the W-tagging and q/g

tagging studies are 300-450 GeV, 500-650 GeV, 1.0-1.2

TeV.

2.2 Top tagging

Samples were generated at
√
s = 14 TeV. Standard

Model dijet and top pair samples were produced with

Sherpa 2.0.0, with matrix elements with up to two ex-

tra partons matched to the shower. The top samples

included only hadronic decays and were generated in

exclusive pT bins of width 100 GeV, taking as slicing

parameter the maximum of the top/anti-top pT . The

QCD samples were generated with a cut on the leading

parton-level jet pT , where parton-level jets are clustered

with the anti-kt algorithm with jet radius R = 1.2. The

matching scale is selected to be Qcut = 40, 60, 80 GeV

for the pT min = 600, 1000, and 1500 GeV bins, respec-

tively.

The analysis again relies on FastJet 3.0.3 for jet

clustering and calculation of jet substructure observ-

ables, with the same cuts applied after showering and

clustering as for
√
s = 8 TeV data.

3 Jet Algorithms and Grooming Approaches

Describe the jet algorithms and grooming approaches

that we will use in the report. Give the nomenclature

that we will use to refer to e.g. the groomed mass in

the rest of the report.

4 Substructure Variables/Taggers

In this section, we describe the observables that we con-

sider in this study. Originally we considered a larger set

of observables but in the final analysis we reduced re-

dundant observables in the final set for presentation

purposes.

The list of observables for quark vs. gluon discrimina-

tion is as follows:

– mass: this is the plain jet mass

– 1-subjettiness, τβ1 : the N-subjettiness uses one-pass

kT axis optimization where we consider β = 1, 2

– 1-point energy correlation functions, Cβ1 : the energy

correlation functions consider β = 0, 1, 2

– Qjet volatility, ΓQjet: the number of trees consid-

ered is Ntrees = 25, the rigidity factor is α = 0.1,

the truncation factor is 0.01, and the pruning pa-

rameters are Dcut = 0.5 and zcut = 0.1

– number of constituents (Nconstits)

The list of observables for W vs. gluon discrimination

is as follows:

– mass: same as in the q vs. g case

– trimmed mass, mtrimmed: the parameter values are

fcut = 0.03 and rfilt = 0.2

– pruned mass,mpruned: the parameter values areDcut =

0.5 and zcut = 0.1
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– soft drop mass, mβ
softdrop: zcut is set always to 0.1,

we consider β = 0, 2 where β = 0 is a generalization

of the modified mass drop tagger

– 2-point energy correlation functions, Cβ=1
2 : we also

considered β = 2 but it showed poor discrimination

power

– N-subjettiness ratio, τ2/τ1(β = 2): the N-subjettiness

uses one-pass kT axis optimization, we also consid-

ered β = 2 but it showed poor discrimination power

– Qjet volatility: same as in the q vs. g case

We now describe the list of observables/taggers con-

sidered for top tagging. Note that for trimming, the sub-

jet identification is optimized for identifying soft radia-

tion, not for reconstructing the hard decay products of

the top. Pruning does not even contain an inherent sub-

ject identification step. For both trimming and pruning,

we introduce an arbitrary method for reconstructing

the subjets corresponding to the b and W decay prod-

ucts for a fair comparison with other top taggers, but

the W reconstruction is consequently poorer than for

algorithms that are optimized for W identification in-

side the top.

Johns Hopkins Tagger: Re-cluster the jet using the

Cambridge-Aachen algorithm. The jet is iteratively de-

clustered, and at each step the softer prong is discarded

if its pT is less than δp pT jet. This continues until both

prongs are harder than the pT threshold, both prongs

are softer than the pT threshold, or if they are too close

(|∆ηij |+ |∆φij | < δR); the jet is rejected if either of the

latter conditions apply. If both are harder than the pT

threshold, the same procedure is applied to each: this

results in 2, 3, or 4 subjets. If there exist 3 or 4 subjets,

then the jet is accepted: the top candidate is the sum

of the subjets, and W candidate is the pair of subjets

closest to the W mass. The output of the tagger is mt,

mW , and θh, a helicity angle defined as the angle, mea-

sured in the rest frame of the W candidate, between

the top direction and one of the W decay products.

HEPTopTagger: Re-cluster the jet using the Cambridge-

Aachen algorithm. The jet is iteratively de-clustered,

and at each step the softer prong is discarded ifm1/m12 >

µ (there is not a significant mass drop). Otherwise, both

prongs are kept. This continues until a prong has a mass

mi < m, at which point it is added to the list of subjets.

Filter the jet using Rfilt = min(0.3, ∆Rij) (where ∆Rij
is the distance between the two hardest subjets). Select

the three subjets whose invariant mass is closest to mt.

The output of the tagger is mt, mW , and θh, a helicity

angle defined as the angle, measured in the rest frame

of the W candidate, between the top direction and one

of the W decay products.

Trimming: Re-cluster the jet using the kT algorithm

and radius Rtrim. Discard all subjets with pT sj/pT jet <

fcut. A W candidate is reconstructed as follows: if there

are two subjets, the highest-mass subjet is the W can-

didate; if there are three subjets, the two subjets with

the smallest invariant mass comprise the W candidate.

In the case of only one subjet, no W is reconstructed.

Pruning: Re-cluster the jet using the Cambridge-Aachen

algorithm. At each step, discard the softer branch if

min(pT1, pT2)/pT12 < zcut and∆R12 > 2Rcutmjet/pT, jet.

Subjets are found by de-clustering the pruned jet by up

to three splittings. A W candidate is reconstructed as

follows: if there are two subjets, the highest-mass sub-

jet is the W candidate; if there are three subjets, the

two subjets with the smallest invariant mass comprise

the W candidate. In the case of only one subjet, no W

is reconstructed.

5 Quark-Gluon Discrimination

In this section we examine the differences between quark

and gluon initiated jets in terms of the substructure

variables, and to what extent these variables are corre-

lated. Along the way, we attempt to provide some the-

oretical understanding of these observations. The moti-

vation for these studies comes not only from the desire

to “tag” a jet as being quark or gluon initiated, but also

from the point of view of understanding the quark and

gluon components to the QCD background to boosted

boson and boosted top tagging.

5.1 Methodology

These studies use the qq and gg samples, described pre-

viously in Section 2.

Jets are reconstructed using the anti-kT algorithm,

and have various jet grooming approaches applied, as

described in Section 3. The following event selection is

then applied to these samples....(presumably this will

vary depending on which kinematic bin is used, as will

the actual samples used - maybe summarize in a table).

Go on to explain how we produce the ROC curves,

how the BDT training is done etc.

Figure 1 shows a comparison of the quark and gluon

samples in some basic kinematic distributions.

5.2 Single Variable Discrimination

Figure 2 the compares the quark and gluon samples in

the mass distributions for the different groomers, and

Figure 3 in the different substructure variables.
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(a) Leading jet pT (b) Sub-leading jet pT

(c) Leading jet η (d) Sub-leading jet η

Fig. 1 Comparisons of quark and gluon distributions in the pT 500 GeV bin using the anti-kT R=0.8 algorithm: basic kinematic
distributons.

Figure 4 shows the single variable ROC curves in

the pT 500 GeV bin for the anti-kT R=0.8 algorithm,

compared to the ROC curve for a BDT combination of

all the variables. Only the ungroomed mass is shown.

One can see that the single most discriminant variables

are nconstits and Cβ=0
1 .

We want to look also at:

– Dependence on R.

– Dependence on pT.

5.3 Correlations

Put in 2-D plots of correlations between variables (see

theory discussions below)

5.4 Combined Performance of Quark-Gluon Tagging

Put in ROC curves of BDT combination of variables

5.5 QJets Volatility and pTD (C
(β=0)
1 )

Simple explanation of correlation, or why does com-

bining volatility and pTD improve quark versus gluon

discrimination. pTD (C
(β=0)
1 ) takes small (large) values

for a jet with near-democratic energy sharing between

particles and large (small) values when the energy of

the jet is contained in a few particles. Because we ex-

pect gluons to radiate more particles, we expect that

pTDg < pTDq (or C
(β=0)
1 g > C

(β=0)
1 q). Now, we expect
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass (f) Soft-drop β = −1 mass

Fig. 2 Comparisons of quark and gluon distributions in the pT 500 GeV bin using the anti-kT R=0.8 algorithm: leading jet
mass distributions.

the volatility of gluon jets to be in general smaller than

that of quark jets because there is a greater probability

(by a factor of about CA/CF = 9/4) that there was a
relatively hard emission in a jet that is not groomed

away. By measuring both volatility and pTD, we are

sensitive to both regions of phase space: where a rela-

tively hard emission dominates the mass of the jet as

well as the region where many soft emissions set the jet

mass.

The following is Steve’s discussion of volatility dif-

ference between quarks and gluons:

Here is the (qualitative) thinking: typical QCD jet

mass distributions look as illustrated on slide 17, al-

though you should really be thinking in terms of plot

versus m/pT , since pT is what sets the scale in the plot.

Qualitatively there is a (very) large peak for m/pT .
0.1 and you should think of these jets as having masses

that arise from multiple soft emissions, some of which

are at substantial angles. It is these components of the

jet that are operated on by pruning (reducing the mass

dramatically) and that yield the large volatility tail for

QCD jets. For larger m/pT values there is typically a

shoulder (my description is clearest on a semi-log plot)

that runs out to about m/pT ∼ 0.40.5 (where the dis-

tribution decreases rapidly). These are the QCD jets (a

small fraction of the total in a given pT bin) that contain

a hard, relatively large angle emission, which supplies

the bulk of the jet mass. Such jets are effected only

slightly by pruning and should exhibit much smaller

volatility than the jets in the (smaller mass) peak re-

gion.

With that picture in mind and recalling that the

size of the shoulder is given by low order perturbation

theory (the probability of the one hard emission), we

expect that the shoulder will be higher for gluons than

for quarks (essentially by the usual CA/CF color charge

factor), as suggested by the lower right plot on slide 17.

Since the shoulder presumably plays a more important

role for gluons (since it is larger), one would expect that

the volatility distribution for gluons is narrower than

quarks, as suggested in the upper left plot on slide 17.

Am I making sense?

On the other hand, the volatility distribution plot

indicates that the Q vs G distributions for your cuts are
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(a) Cβ=0
1 (b) Cβ=1

1 (c) Cβ=2
1

(d) ΓQjet (e) nconstits (f) τβ=1
1

(g) τβ=2
1

Fig. 3 Comparisons of the quark and gluon distributions in the pT 500 GeV bin using the anti-kT R=0.8 algorithm: substruc-
ture variables.

not really very different, which is presumably why it is

not a very good discriminant by itself. But I expect this

to depend it detail on where we are operating on the

m/pT distributions. This leads to my request above.

Your pT bin is pretty broad and I dont expect the q

and g samples to have the same shape within the bin.

Of course, this may not be an issue, but I would like to

check.

5.6 Comparison of Groomed Jet Masses
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Fig. 4 The ROC curve for all single variables considered for quark-gluon discrimination in the pT 500 GeV bin using the
anti-kT R=0.8 algorithm.

6 Boosted W -Tagging

In this section we study the performance of various

groomed jet masses, substructure variables, and BDT

combinations of groomed mass and substructure, in terms

of the identification of a boosted hadronically decaying

W signal aginst a gluon-gluon background. We produce

Receiver Operating Characteristic (ROC) curves that

elucidate the performance of the various groomed mass

and substructure variables that are capable of providing

discrimination between signal and background. A range

of different distance parameter settings for the anti-

kT jet algorithm are explored, in a variety of kinematic

regimes (lead jet pT 300-450 GeV, 500-650 GeV, 1.0-1.2

TeV), to explore the performance as a function of jet

radius and jet boost, and to see where substructure ap-

proaches may break down. The groomed mass and sub-

structure variables are then combined in a Boosted De-

cision Tree (BDT), and the performance of the result-

ing BDT discriminant explored through ROC curves

to understand the degree to which variables are cor-

related and exploiting the same information, and how

this changes with jet boost and jet radius.

6.1 Methodology

These studies use the X → WW samples as signal

and the gg samples to model the QCD background,

described previously in Section 2. Whilst only gluonic

backgrounds are explored here, the conclusions as to

the dependence of the performance and correlations on

the jet boost and radius have been verified to hold also

for qq backgrounds. To be checked!

Jets are reconstructed using the anti-kT algorithm,

and have various jet grooming approaches applied, as

described in Section 3. The following event selection is

then applied to these samples....(presumably this will

vary depending on which kinematic bin is used, as will

the actual samples used - maybe summarize in a table).

Figure 5 shows a comparison of the leading jet pT
for the signal and background in the pT 300-450 GeV

bin, for the two different anti-kT jet algorithm distance

parameters explored in this bin (R=0.8 and R=1.2).

Figures 6 and 7 show the same for the pT 500-650 GeV

bin and pT 1.0-1.2 TeV bin respectively, where for the

pT 1.0-1.2 TeV bin the distance parameter R=0.4 is

also explored.

Go on to explain how we produce the ROC curves,

how the BDT training is done etc.

6.2 Single Variable Performance

In this section we will explore the performance of the

various groomed jet mass and substructure variables in

terms of discriminating signal and background, and how
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(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 5 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 300-450 GeV bin using
the different anti-kT jet distance parameters explored.

(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 6 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 500-650 GeV bin using
the different anti-kT jet distance parameters explored.

(a) anti-kT R=0.4 (b) anti-kT R=0.8 (c) anti-kT R=1.2

Fig. 7 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 1.0-1.2 TeV bin using
the different anti-kT jet distance parameters explored.
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this performance changes depending on the kinematic

bin and jet radius considered.

Figure 8 the compares the signal and background in

terms of the different groomed masses explored for the

anti-kT R=0.8 algorithm in the pT 500-650 bin. One

can clearly see that in terms of separating signal and

background the groomed masses will be significantly

more performant than the ungroomed anti-kT R=0.8

mass. Figure 9 compares signal and background in the

different substructure variables explored for the same

jet radius and kinematic bin.

Figures 10,11 and 12 show the single variable ROC

curves compared to the ROC curve for a BDT combi-

nation of all the variables (labelled “allvars”), for each

of the anti-kT distance parameters considered in each

of the kinematic bins. One can see that, in all cases,

the “allvars” option is considerably more performant

than any of the individual single variables considered,

indicating that there is considerable complementarity

between the variables, that will be explored further in

the next section.

Although the ROC curves give all the relevant in-

formation, it is hard to compare performance quanti-

tatively. In Figures 13, 14 and 15 are shown matrices

which give the background rejection for a signal effi-

ciency of 50% when two variables (that on the x-axis

and that on the y-axis) are combined in a BDT. These

are shown separately for each pT bin and jet radius

considered. The diagonal of these plots correspond to

the background rejections for a single variable BDT,

and can thus be examined to get a quantitative mea-

sure of the individual single variable performance, and

to study how this changes with jet radius and momenta.

One can see that in general the most performant

single variables are the groomed masses. However, in

certain kinematic bins and for certain jet radii, Cβ=1
2

has a background rejection that is comparable to or

better than the groomed masses.

By comparing Figures 13(a), 14(a) and 15(b), we

can see how the background rejection performance evolves

as we increase momenta whilst keeping the jet radius

fixed to R=0.8. Similarly, by comparing Figures 13(b), 14(b)

and 15(c) we can see how performance evolves with

pT for R=1.2. The background rejection power of the

groomed masses increases slowly with increasing pT ,

with at most a factor two increase in rejection in going

from the 300-450 GeV to 1.0-1.2 TeV bins. However, for

a jet radius of R=0.8, the rejection power of Cβ=1
2 in-

creases dramatically with pT , by a factor of 7 in going

from the 300-450 GeV to 1.0-1.2 TeV bins. Can we ex-

plain this? Conversely, the background rejection of the

other substructure variables (ΓQjet and τβ=1
21 ) slowly

reduces with increasing pT , at most decreasing by a

factor of two.

By comparing the individual sub-figures of Figures 13, 14

and 15 we can see how the background rejection perfor-

mance depends on jet radius within the same pT bin.

To within 40%, the background rejection power of the

groomed masses remains constant with respect to the

jet radius. However, we again see rather different be-

haviour for the substructure variables. In all pT bins

considered the most performant substructure variable,

Cβ=1
2 , performs best for an anti-kT distance parameter

of R=0.8. The performance of this variable is dramat-

ically worse for the larger jet radius of R=1.2 (more

than an order of magnitude worse background rejec-

tion in the 1.0-1.2 TeV bin), and substantially worse for

R=0.4. For the other jet substructure variables consid-

ered, their background rejection power also reduces for

larger jet radius. Insert some nice discussion/explanation

of why jet substructure power generally gets worse as we

go to large jet radius, but groomed mass performance

does not.

6.3 Combined Performance

The off-diagonal entries in Figures 13, 14 and 15 can

be used to compare the performance of different BDT

two-variable combinations, and see how this varies as

a function of pT and R. By comparing the background

rejection achieved for the two-variable combinations to

the background rejection of the “all variables” BDT,

one can understand how much more discrimination is

possible by adding further variables to the two-variable

BDTs.

One can see that in general the most powerful two-

variable combinations involve a groomed mass and a

non-mass substructure variable (Cβ=1
2 , ΓQjet or τβ=1

21 ).

Two-variable combinations of the substructure variables

are not powerful in comparison. The background rejec-

tion of the most powerful mass + substructure combi-

nation comes very close to that achieved in the “all vari-

ables” case, indicating that there is little to be gained

by making a BDT that is more complex, and that there

is little more complementary information available, at

least in terms of that which is offered by the variables

considered here.

One can also see that there is a modest improvement

in the background rejection when different groomed

masses are combined, compared to the single variable

groomed mass performance, indicating that there is com-

plementary information between the different groomed

masses. There is also an improvement in the background

rejection when the groomed masses are combined with



10 BOOST2013 participants

(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass

Fig. 8 Comparisons of the QCD background to the WW signal in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm:
leading jet mass distributions.

the ungroomed mass, indicating that grooming removes

some useful discriminatory information from the jet.

6.3.1 Dependence on pT

6.3.2 Dependence on R
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(a) Cβ=1
2 (b) Cβ=2

2 (c) ΓQjet

(d) τβ=1
21 (e) τβ=2

21

Fig. 9 Comparisons of the QCD background to the WW signal in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm:
substructure variables.

(a) anti-kT R=0.8, pT 300-450 GeV bin (b) anti-kT R=1.2, pT 300-450 GeV bin

Fig. 10 The ROC curve for all single variables considered for W tagging in the pT 300-450 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.
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(a) anti-kT R=0.8, pT 500-650 GeV bin (b) anti-kT R=1.2, pT 500-650 GeV bin

Fig. 11 The ROC curve for all single variables considered for W tagging in the pT 500-650 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.

(a) anti-kT R=0.4, pT 1.0-1.2 TeV bin (b) anti-kT R=0.8, pT 1.0-1.2 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.2 TeV bin

Fig. 12 The ROC curve for all single variables considered for W tagging in the pT 1.0-1.2 TeV bin using the anti-kT R=0.4
algorithm, anti-kT R=0.8 algorithm and R=1.2 algorithm.
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(a) anti-kT R=0.8, pT 300-450 GeV bin (b) anti-kT R=1.2, pT 300-450 GeV bin

Fig. 13 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 300-450 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

(a) anti-kT R=0.8, pT 500-650 GeV bin (b) anti-kT R=1.2, pT 500-650 GeV bin

Fig. 14 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 500-650 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.



14 BOOST2013 participants

(a) anti-kT R=0.4, pT 1.0-1.2 TeV bin (b) anti-kT R=0.8, pT 1.0-1.2 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.2 TeV bin

Fig. 15 The background rejection for a fixed signal efficiency (50%) of each BDT combination of each pair of variables
considered, in the pT 1.0-1.2 TeV bin using the anti-kT R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.
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7 Top Tagging

In this section, we study the identification of boosted

top quarks at Run II of the LHC. Boosted top quarks

result in large-radius jets with complex substructure,

containing a b-subjet and a boosted W . The additional

kinematic handles coming from the reconstruction of

the W mass and b-tagging allows a very high degree

of discrimination of top quark jets from QCD back-

grounds.

We consider top quarks with moderate boost (600-

1000 GeV), and perhaps most interestingly, at high

boost (& 1500 GeV). Top tagging faces several chal-

lenges in the high-pT regime. For such high-pT jets,

the b-tagging efficiencies are no longer reliably known.

Also, the top jet can also accompanied by additional

radiation with pT ∼ mt, leading to combinatoric ambi-

guities of reconstructing the top and W , and the pos-

sibility that existing taggers or observables shape the

background by looking for subjet combinations that re-

construct mt/mW . To study this, we examine the per-

formance of both mass-reconstruction variables, as well

as shape observables that probe the three-pronged na-

ture of the top jet and the accompanying radiation pat-

tern.

7.1 Methodology

We study a number of top-tagging strategies, in partic-

ular:

1. HEPTopTagger

2. Johns Hopkins Tagger (JH)

3. Trimming

4. Pruning

The top taggers have criteria for reconstructing a top

and W candidate, while the grooming algorithms (trim-

ming and pruning) do not incorporate aW -identification

step. For a level playing field, we construct a W candi-

date from the three leading subjets by taking the pair

of subjets with the smallest invariant mass; in the case

that only two subjets are reconstructed, we take the

mass of the leading subjet. All of the above taggers

and groomers incorporate a step to remove pile-up and

other soft radiation.

We also consider the performance of jet shape ob-

servables. In particular, we consider the N -subjettiness

ratios τβ=1
32 and τβ=1

21 , energy correlation function ra-

tios Cβ=1
3 and Cβ=1

2 , and the Qjet mass volatility Γ . In

addition to the jet shape performance, we combine the

jet shapes with the mass-reconstruction methods listed

above to determine the optimal combined performance.

To quantify the performance of each set of vari-

ables, we combine the relevant tagger output observ-

ables and/or jet shapes into a boosted decision tree

(BDT), which determines the optimal multivariable cut.

Additionally, because each tagger has two inputs (list,

or maybe refer back to Section 3), we scan over rea-

sonable values of the inputs to determine the optimal

value for each top tagging signal efficiency. This allows

a direct comparison of the optimized version of each

tagger. The input values scanned for the various algo-

rithms are:
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– HEPTopTagger: m ∈ [30, 100] GeV, µ ∈ [0.5, 1]

– JH Tagger: δp ∈ [0.02, 0.15], δR ∈ [0.07, 0.2]

– Trimming: fcut ∈ [0.02, 0.14], Rtrim ∈ [0.1, 0.5]

– Pruning: zcut ∈ [0.02, 0.14], Rcut ∈ [0.1, 0.6]

7.2 Single-observable performance

We start by investigating the behavior of individual

jet substructure observables. Because of the rich, three-

pronged structure of the top decay, it is expected that

combinations of masses and jet shapes will far out-

perform single observables in identifying boosted tops.

However, a study of the top-tagging performance of sin-

gle variables facilitates a direct comparison with the W

tagging results in Section 6, and also allows a straight-

forward examination of the performance of each observ-

able for different pT and jet radius.

Fig. 16 shows the ROC curves for each of the top-

tagging observables, with the bare jet mass also plot-

ted for comparison. Unlike W tagging, the jet shape

observables perform more poorly than jet mass. (Check

reasoning: this argument due to Andrew Larkoski). As

an example illustrating why this is the case, consider

N -subjettiness. The W is two-pronged and the top is

three-pronged; therefore, we expect τ21 and τ32 to be

the best-performant N -subjettiness ratio, respectively.

However, τ21 also contains an implicit cut on the de-

nominator, τ1, which is strongly correlated with jet

mass. Therefore, τ21 combines both mass and shape in-

formation to some extent. By contrast, and as is clear

in Fig.16(a), the best shape for top tagging is τ32, which

contains no information on the mass. Therefore, it is un-

surprising that the shapes most useful for top tagging

are less sensitive to the jet mass, and under-perform rel-

ative to the corresponding observables for W tagging.

Of the two top tagging algorithms, the Johns Hop-

kins (JH) tagger out-performs the HEPTopTagger in its

signal-to-background separation of both the top and W

candidate masses, with larger discrepancy at higher pT
and larger jet radius. In Fig. 17, we show the histograms

for the top mass output from the JH and HEPTopTag-

ger for different pT and R, optimized at a signal ef-

ficiency of 30%. The likely reason for this behavior is

that, in the HEPTopTagger algorithm, the jet is filtered

to select the five hardest subjets, and then three sub-

jets are chosen which reconstruct the top mass. This

requirement tends to shape a peak in the QCD back-

ground around mt for the HEPTopTagger, while the JH

tagger has no such requirement. It has been suggested

by Anders et al. [?] that performance in the HEPTop-

Tagger may be improved by selecting the three sub-

jets reconstructing the top only among those that pass

the W mass constraints, which somewhat reduces the

shaping of the background. Note that both the JH tag-

ger and the HEPTopTagger are superior at using the

W candidate inside of the top for signal discrimination;

this is because the the pruning and trimming algorithms

do not have inherent W -identification steps and are not

optimized for this purpose.

We also directly compare the performance of top

mass and jet shape observables for different jet pT and

radius. The results are shown in Figs. 19-20 for differ-

ent pT bins and Figs. 21-22 for different R values. The

input parameters of the taggers, groomers, and shape

variables are separately optimized for each pT and ra-

dius.

pT comparison: We compare various top tagging ob-

servables for jets in different pT bins and R = 0.8. The

tagging performance of jet shapes do not change sub-

stantially with pT . τ
(β=1)
32 and the Qjet volatility Γ have

the most variation and tend to degrade with higher pT .

This makes sense, as higher-pT QCD jets have more,

harder emissions within the jet, giving rise to substruc-

ture that fakes the signal. By contrast, most of the top

mass observables have superior performance at higher

pT due to the radiation from the top quark becoming

more collimated. The notable exception is the HEP-

TopTagger, which degrades at higher pT , likely in part

due to the background-shaping effects discussed earlier.

R comparison: We compare various top tagging ob-

servables for jets of different R and pT = 1.5−1.6 TeV.

Most of the top-tagging parameters perform best for

smaller radius; this is because, at such high pT , most

of the radiation from the top quark is confined within

R = 0.4, and having a larger jet radius makes the ob-

servable more susceptible to contamination from the

underlying event and other uncorrelated radiation. The

main exception is C
(β=1)
3 , which performs optimally at

R = 0.8. why?

7.3 Performance of multivariable combinations
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Fig. 16 Comparison of single-variable top-tagging performance in the pT 1000-1100 GeV bin using the anti-kT, R=0.8 algo-
rithm.
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(a) Johns Hopkins Tagger, R = 0.4
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(b) HEPTopTagger, R = 0.4
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(c) Johns Hopkins Tagger, R = 0.8
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(d) HEPTopTagger, R = 0.8
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(e) Johns Hopkins Tagger, R = 1.2
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(f) HEPTopTagger, R = 1.2

Fig. 17 Comparison of top mass reconstruction with the JH and HEPTopTaggers at different R using the anti-kT algorithm,
pT = 1.5−1.6 TeV. Each histogram is shown for the working point optimized for best performance with mt at signal efficiency
0.3 and is normalized to the fraction of events passing the tagger.
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(a) Johns Hopkins Tagger, R = 0.4
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(b) HEPTopTagger, R = 0.4
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(c) Johns Hopkins Tagger, R = 0.8
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(d) HEPTopTagger, R = 0.8
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(e) Johns Hopkins Tagger, R = 1.2
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(f) HEPTopTagger, R = 1.2

Fig. 18 Comparison of top mass reconstruction with the JH and HEPTopTaggers at different R using the anti-kT algorithm,
pT = 1.5 − 1.6 TeV. Each histogram is shown for the working point optimized for best performance of the tagger at signal
efficiency 0.3 and is normalized to the fraction of events passing the tagger.
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(e) Qjet mass volatility

Fig. 19 Comparison of individual jet shape performance at different pT using the anti-kT R=0.8 algorithm.
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(a) HEPTopTagger mt
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(d) Trimming mt

Fig. 20 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm.
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Fig. 21 Comparison of individual jet shape performance at different R in the pT = 1500 − 1600 GeV bin.
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(d) Trimming mt

Fig. 22 Comparison of top mass performance of different taggers at different R in the pT = 1500 − 1600 GeV bin.

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1 m

 (prune)W + mtm

 (trim)W + mtm

JH

HEP

JH + HEP

BOOST13WG

Fig. 23 Comparison of BDT combinations of each tagger output in the pT 1000-1100 GeV bin using the anti-kT R=0.8
algorithm.
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(f) Grooming comparison
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(g) Comparison of Tagger+Shape

Fig. 24 The BDT combinations in the pT 1000-1100 GeV bin using the anti-kT R=0.8 algorithm.



Boosted objects at the LHC 25

7.3.1 pT comparison
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Fig. 25 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm.
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Fig. 26 Comparison of BDT combination of JH tagger + shape at different pT using the anti-kT R=0.8 algorithm.
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Fig. 27 Comparison of BDT combination of HEP tagger + shape at different pT using the anti-kT R=0.8 algorithm.
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Fig. 28 Comparison of BDT combination of trimming + shape at different pT using the anti-kT R=0.8 algorithm.
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Fig. 29 Comparison of BDT combination of pruning + shape at different pT using the anti-kT R=0.8 algorithm.
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7.3.2 R comparison
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Fig. 30 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV.
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Fig. 31 Comparison of BDT combination of JH tagger + shape at different radius at pT = 1.5-1.6 TeV.
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Fig. 32 Comparison of BDT combination of HEP tagger + shape at different radius at pT = 1.5-1.6 TeV.
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Fig. 33 Comparison of BDT combination of trimming + shape at different radius at pT = 1.5-1.6 TeV.
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Fig. 34 Comparison of BDT combination of pruning + shape at different radius at pT = 1.5-1.6 TeV.
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7.4 Performance at Sub-Optimal Working Points

7.4.1 pT dependence (single variable)
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Fig. 35 Comparison of individual jet shape performance at different pT using the anti-kT R=0.8 algorithm; the tagger inputs
are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 36 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 37 Comparison of W mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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7.4.2 R dependence (single variable)
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Fig. 38 Comparison of individual jet shape performance at different R in the pT = 1500 − 1600 GeV bin; the tagger inputs
are set to the optimum value for R = 1.2 TeV.
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Fig. 39 Comparison of top mass performance of different taggers at different R in the pT = 1500 − 1600 GeV bin; the tagger
inputs are set to the optimum value for R = 1.2 TeV.
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Fig. 40 Comparison of W mass performance of different taggers at different R in the pT = 1500 − 1600 GeV bin; the tagger
inputs are set to the optimum value for R = 1.2 TeV.
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7.4.3 pT dependence
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Fig. 41 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 42 Comparison of BDT combination of JH tagger + shape at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 43 Comparison of BDT combination of HEP tagger + shape at different pT using the anti-kT R=0.8 algorithm; the
tagger inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 44 Comparison of BDT combination of trimming + shape at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 45 Comparison of BDT combination of pruning + shape at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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7.4.4 R dependence
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Fig. 46 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV; the tagger inputs are set to
the optimum value for R = 1.2 TeV.
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Fig. 47 Comparison of BDT combination of JH tagger + shape at different radius at pT = 1.5-1.6 TeV; the tagger inputs are
set to the optimum value for R = 1.2 TeV.
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Fig. 48 Comparison of BDT combination of HEP tagger + shape at different radius at pT = 1.5-1.6 TeV; the tagger inputs
are set to the optimum value for R = 1.2 TeV.
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Fig. 49 Comparison of BDT combination of trimming + shape at different radius at pT = 1.5-1.6 TeV; the tagger inputs are
set to the optimum value for R = 1.2 TeV.
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Fig. 50 Comparison of BDT combination of pruning + shape at different radius at pT = 1.5-1.6 TeV; the tagger inputs are
set to the optimum value for R = 1.2 TeV.
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8 Summary & Conclusions

This report discussed the correlations between observ-

ables and looked forward to jet substructure at Run II

of the LHC at 14 TeV center-of-mass collisions eneer-

gies.
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