

I.) A Bit of History

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

Rutherford Scattering, 1906
Using radioactive particle sources: α-particles of some MeV energy

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

$\left.\begin{array}{l}\text { Particle source: Hydrogen discharge tube } \\ \text { on } 400 \mathrm{kV} \text { level }\end{array}\right\} \begin{aligned} & \text { Accelerator: evacuated glas tube } \\ & \text { Target: Li-Foil on earth potential }\end{aligned}$
Technically: rectifier circuit, built of capacitors and diodes (Greinacher)
robust, simple, on-knob machines largely used in history as pre-accelerators for proton and ion beams
recently replaced by modern structures (RFQ)
2.) Electrostatic Machines:

(Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12$... 28 MV using high pressure gas to suppress discharge (SF_{6})

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The ,,Tandem principle": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the

Example for such a „steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times

 to the particle beamschematic Layout:

Energy gained after n acceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

\boldsymbol{n} number of gaps between the drift tubes \boldsymbol{q} charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
$\boldsymbol{\Psi}_{S}$ synchronous phase of the particle

[^0]
Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF
U_{0}

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions

$$
\begin{aligned}
& E_{\text {total }}=988 \mathrm{MeV} \\
& m_{0} c^{2}=938 \mathrm{MeV} \\
& p=310 \mathrm{MeV} / \mathrm{c} \\
& E_{\text {kin }}=50 \mathrm{MeV}
\end{aligned}
$$

Beam energies

Energy Gain per „Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} \boldsymbol{F}} \boldsymbol{t}
$$

1.) reminder of some relativistic formula

$$
\begin{array}{ll}
\text { rest energy } & E_{0}=m_{0} c^{2} \\
\text { total energy } & E=\gamma^{*} E_{0}=\gamma^{*} m_{0} c^{2} \quad \text { momentum } \quad E^{2}=c^{2} p^{2}+m_{0}{ }^{2} c^{4} \\
\text { kinetic energy } & E_{k i n}=E_{\text {total }}-m_{0} c^{2}
\end{array}
$$

4.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: Bend a Linac on a Spiral Application of a constant magnetic field keep $B=$ const, $R F=$ const
\rightarrow Lorentzforce

$$
\vec{F}=q *(\vec{v} \times \vec{B})=q * v * B
$$

increasing momentum \rightarrow Spiral Trajectory
revolution frequency

$$
\omega_{z}=\frac{q}{m} * B_{z}
$$

the cyclotron (rf-) frequency
is independent of the momentum

Cyclotron:

! ω is constant for a given $q \& B$
$!!B^{*} R=p / q$ large momentum \rightarrow huge magnet
!!!! $\omega \sim 1 / m \neq$ const works properly only for non relativistic particles

Application:
Work horses for medium energy protons
Proton / Ion Acceleration up to $\approx 60 \mathrm{MeV}$ (proton energy) nuclear physics
radio isotope production, proton / ion therapy

II.) A Bit of Theory

die grossen Speicherringe: „Synchrotrons"

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q^{*}(*+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:

$$
\begin{gathered}
B=1 T \rightarrow \quad F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{V s}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{M V}{m}} \\
\begin{array}{l}
\text { equivalent } E \\
\text { electrical field: }
\end{array}
\end{gathered}
$$

technical limit for el. field: $>$

$$
E \leq 1 \frac{M V}{m}
$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

$$
\begin{array}{ll}
\text { Lorentz force } & \boldsymbol{F}_{L}=\boldsymbol{e} v \boldsymbol{B} \\
\text { centrifugal force } & \boldsymbol{F}_{\text {centr }}=\frac{\gamma \boldsymbol{m}_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{2}}{\rho}=\boldsymbol{e}\right\rangle \boldsymbol{B}
\end{array}
$$

$$
\begin{aligned}
& \frac{\boldsymbol{p}}{\boldsymbol{e}}=\boldsymbol{B} \rho \\
& \boldsymbol{B} \rho=\text { "beam rigidity" }
\end{aligned}
$$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit
homogeneous field created by two flat pole shoes

$$
B=\frac{\mu_{0} n I}{h}
$$

Normalise magnetic field to momentum:
convenient units:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\}
$$

$$
\begin{aligned}
\frac{1}{\rho} & =\boldsymbol{e} \frac{8.3 \mathrm{~V} / \boldsymbol{m}^{2}}{7000 * 10^{9} \boldsymbol{e V} / \mathrm{c}}=\frac{8.3 \mathrm{~s} * 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \mathrm{~m}^{2}} \\
\frac{1}{\rho} & =0.333 \frac{8.3}{7000} 1 / \boldsymbol{m}
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.53 \mathrm{~km} \quad \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx 66 \%
\end{aligned}
$$

rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$
2.) Focusing Properties - Transverse Beam Optics

$$
\overline{F(t)}=\underbrace{q(\overline{E(t)}}_{\mathrm{F}_{\mathrm{E}}}+\overline{v(t)} \underbrace{\otimes \overline{B(t)}}_{\mathrm{F}_{\mathrm{B}}})
$$

Linear Accelerator

Circular Accelerator

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional
to the elongation x :

$$
m * \frac{d^{2} x}{d t^{2}}=-c * x
$$

general solution: free harmonic oszillation

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad
\qquad the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=g \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(\boldsymbol{T} / \boldsymbol{m})}{p(\boldsymbol{G e} V / c)}
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \boldsymbol{T} / \boldsymbol{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{X}}+\frac{\partial \overrightarrow{\mathrm{E}} / \mathrm{t}}{\partial \mathrm{t}}=0 \quad \Rightarrow \quad \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}=g
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!}\right) / x^{3}+\ldots
$$

only terms linear in x, y taken into account
dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR

The Equation of Motion:

*

Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)
$*$
Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
\boldsymbol{k} \leftrightarrow-\boldsymbol{k} \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|}) & \frac{1}{\sqrt{\mid \boldsymbol{K}} \mid} \sin (\sqrt{|\boldsymbol{K}|} l \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|}) & \cos (\sqrt{|\boldsymbol{K}|})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
\boldsymbol{x}^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {def oc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
x(s)=x_{0}^{\prime} * s
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices
$M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} \ldots . .}$.

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator, ,
typical values in a strong foc. machine:

LHC Operation: Beam Commissioning

First turn steering "by sector:"
aOne beam at the time \square Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

... or a third one or ... 10^{10} turns

The Beta Function: Lattice Design \& Beam Optics

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!!

Emittance of the Particle Ensemble:

$$
\text { Particle Distribution: } \quad \rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}}
$$

particle at distance 1σ from centre
$\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

$$
\begin{array}{ll}
L H C: & \beta=180 \mathrm{~m} \\
& \varepsilon=5 * 10^{-10} \mathrm{mrad}
\end{array}
$$

$$
\sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5^{*} 10^{-10} \mathrm{~m}^{*} 180 \mathrm{~m}}=0.3 \mathrm{~mm}
$$

aperture requirements: $r_{0}=17 * \sigma$

10.) Luminosity

$R=L^{*} \Sigma_{\text {react }}$

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\beta_{x, y}=0.55 \mathrm{~m} & \boldsymbol{f}_{0}=11.245 \mathrm{kHz} \\
\varepsilon_{x, y}=5 * 10^{-10} \mathrm{rad} \boldsymbol{m} & n_{b}=2808 \\
\sigma_{x, y}=17 \mu \mathrm{~m}
\end{array} \quad \boldsymbol{L}=\frac{1}{4 \pi \boldsymbol{e}^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{\boldsymbol{p} 2}}{\sigma_{\boldsymbol{x}} \sigma_{y}}
$$

$$
I_{p}=584 m A
$$

$$
L=1.0 * 10^{34} 1 / \mathrm{cm}^{2} s
$$

Luminosity optimization

$$
L=\frac{N_{1} N_{2} f_{r e v} N_{b}}{2 \pi \sqrt{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \sqrt{\sigma_{1 y}^{2}+\sigma_{2 y}^{2}}} F \cdot W
$$

$N_{i}=$ number of protons/bunch $\mathrm{Nb}=$ number of bunches
$f_{r e v}=$ revolution frequency
$\sigma \mathrm{ix}=$ beam size along x for beam i
oiy = beam size along y for beam i
F is a pure crossing angle (Φ) contribution:

$$
F=\frac{1}{\sqrt{1+2 \frac{\sigma_{s}^{2}}{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \tan ^{2} \frac{\phi}{2}}} \quad F \mathrm{LHC}=0.836 \quad \text {... cannot be avoided }
$$

$25 n s$

W is a pure beam offset contribution.

... can be avoided by careful tuning

$$
\boldsymbol{W}=\boldsymbol{e}^{-\frac{\left(d_{2}-d_{1}\right)^{2}}{2\left(\sigma_{x 1}^{2}+\sigma_{x 2}^{2}\right)}}
$$

13.) The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring:

B. Salvant
N. Biancacci

14.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" below transition

ideal particle •
particle with $\Delta p / p>0$
particle with $\Delta p / p<0$ • slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a"bunch"
oscillation frequency: $f_{s}=f_{\text {ree }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \approx$ some Hz
... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

... some when the particles do not get faster anymore
.... but heavier !
kinetic energy of a proton

15.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" above transition

ideal particle
particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter

Focussing effect in the longitudinal direction
keeping the particles close together ... forming a "bunch"
... and how do we accelerate now ??? with the dipole magnets!

The RF system: IR4

Nb on Cu cavities@4.5K (=LEP2)
Beam pipe diam. $=300 \mathrm{~mm}$

Bunch length (4б)	ns	1.06
Energy spread (2б)	10^{-3}	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron frequency	Hz	23.0

LHC Operation: Collisions at 3.5 TeV per beam

[^0]: * acceleration of the proton in the first gap
 * voltage has to be "flipped" to get the right sign in the second gap \rightarrow RF voltage
 \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

