

Introduction to Particle Physics I

Sinéad Farrington

18th February 2015

The Large Hadron Collider

Collisions of

Superconduct

•2808 bunche

•99.99999

Interactio

hergy

ions per second

econds

The Large Hadron Collider

Particle Collisions

Two particles collide at very high energy tect and study

Why?

Understanding the Universe

Older larger ... colderless energetic

How do we do it?

 To probe the conditions of the early universe we smash particles together

The Energy Frontier

 Size of structure we can probe with a collider like LHC

$$= h/p$$
 (de Broglie, 1924)

 $h = Planck's constant = 6.63 \times 10^{-34} Js$

p = momentum of protons

 The larger the momentum (energy), the smaller the size probed

Standard Model of Particle Physics

- Strong, weak and Electromagnetic forces
- •Describes interaction of matter particles by the means of force carrier particles

Matter Particles

•First generation: these are the only particles needed to make all the matter we see; all chemical elements

Particle	symbol	charge	type	
Electron	e-	-1	lepton	
Neutrino	Ve	0	lepton	
Up-quark	u	+2/3	quark	
Down-quark	d	-1/3	quark	

Matter Particles

- But we see three generations
 - Undergoing similar interactions
 - Mass hierarchy
 - Each has an antiparticle

First Generation 2 nd Generation			3 rd Generation		Charge e	
Electron Neutrino	Ve	Muon neutrino	ν_{μ}	Tau neutrino	$\nu_{ au}$	0
Electron	e-	Muon	μ-	Tau	τ-	-1
Up quark	u	Charm quark	С	Top quark	†	+2/3
Down quark	d	Strange quark	S	Bottom quark	Ф	-1/3

Forces

•In the Standard Model, we depict (and calculate) forces as the exchange of a force-carrier boson, between

particles charm top gluon strange bottom down Z boson tau W boson

Electromagnetic Force

- Mediated by the photon
- Acts on particles carrying electric charge

Strong Force

- Mediated by the gluon
- Acts on particles carrying colour charge

Weak Force

- Mediated by the W, Z bosons
- Acts on all matter particles

Gravitational Force

- Mediated by the Graviton?
- Acts on all massive particles

Relative Strengths of Forces

Each force has an intrinsic strength Electromagnetism:

$$F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$

$$\alpha = \frac{q_1 q_2}{4\pi \varepsilon_0 \hbar c} = \frac{g^2}{4\pi}$$

$$F = \frac{\alpha}{r^2}$$

Relative Strengths of Forces

Each force has an intrinsic strength

```
Strong: \alpha_{\rm s} \sim 1 Electromagnetic: \alpha_{\rm em} \sim 1/137 Weak: \alpha_{\rm W} \sim 10^{-6} Gravity: \alpha_{\rm g} \sim 10^{-40}
```

Running Couplings

- When is a constant not a constant?
- The forces' intrinsic strengths change with distance (or momentum) scale
- Electromagnetic screening process: the bare particle charge is screened by e⁺e⁻ pairs

Running Couplings

- When is a constant not a constant?
- The forces' intrinsic strengths change with distance (or momentum) scale
- Strong force screening process: same as EM but has an additional effect

Running Couplings

- When is a constant not a constant?
- The forces' intrinsic strengths change with distance (or momentum) scale

Strong force screening process: same as EM but has

an additional effect

Unification?

Compare the Forces

EM force

Electric charge (1)

Massless photon

Coupling g

Weak force

Weak charge (2)

Massive W[±],Z

Coupling g_W

Strong force

Colour charge (3)

8 massless gluons

Coupling g_s

Allows quark flavour to change so that matter can change into antimatter

Higgs Boson

Introduced to give mass to W and Z bosons

- Requires a new potential to be added to the Standard Model
- Introduction of "complex doublet" implies 4 new degrees of freedom, 3 of which are the W+, W- Z boson mass
- Fourth is the Higgs boson itself

Summary

- The Standard Model describes the fundamental particles and the forces that act among them
 - Forces are mediated by force-carrier bosons
 - While the forces are mediated in a common way, they display different phenomena
- Tomorrow's lecture: Experimental measurements
 - How do we know what we know?
 - What does a data analysis look like?
 (Example: The Higgs Search)
- Question... Relative merits of pp, pp, e+e-