

Future neutrino experiments

K. Long, 20 November,

Flavour

Mass

V2

Va.

 ν_{e} ν_{μ}

Sterile neutrinos

Neutrino oscillations

CERN Neutrino Platform

Epilogue and conclusions

Future neutrino experiments:

Sterile neutrinos

Global constraints [1]:

• Appearance and disappearance data sets self-consistent

Global constraints [2]:

- Appearance and disappearance data sets self-consistent
- Tension between parameter regions in measurements consistent with the null hypothesis and those which are inconsistent with it
- v_e appearance data in tension with exclusion limits from disappearance searches

What we need to measure:

- Present, inconclusive, information from $v_e \rightarrow k_{\chi}$ and $v_{\mu} \rightarrow k_{\chi}$ transitions
- Ideally, study:

<u>Flavor Transition</u>	<u>CPT Conjugate</u>
$v_e \rightarrow v_\mu$	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
$\overline{v}_e \rightarrow \overline{v}_\mu$	$v_{\mu} \rightarrow v_{e}$
$v_e \rightarrow v_{\not e}$	$\overline{v}_e \to \overline{v}_{\not\!$
$v_{\mu} \rightarrow v_{\mu}$	$\overline{v}_{\mu} woheadrightarrow \overline{v}_{\mu}$

and

- Determine neutral current rate
 - oscillation to steriles will change neutral current rate
- Study v_eN and v_µN scattering
 - including hadronic final states to eliminate background uncertainties

Near future: MicroBooNE:

- Goals:
 - Resolve short-baseline anomalies in $v_{\mu} \square v_{e}$ searches
 - Measure v_u-Ar cross sections
 - Develop LAr TPC technology
- Timetable:
 - Jan15: Fill with Lar
 - Spring/summer: commission and start data taking

Short baseline programme @ FNAL booster:

- SBN based on Booster Neutrino Beam (BNB):
 - 2015: MicroBooNE
 - 2018: Three-detector sterile neutrino programme:
 - Near detector @ 110m; LAr1ND
 - Middle detector @ 470m; MicroBooNE
 - Far detector @ 600m; ICARUS T600
 - Refurbished at CERN as part of CERN Neutrino Platform
 - Also under consideration for SBN @ BNB:
 - NESSIE (magnetic spectrometer); ANNIE (optical TPC); CAPTAIN (LAr for xSect)

Example of sensitivity:

- High-power cyclotron (MW class) illuminating Kamland;
- Baseline 16m
- Five years of running

nuSTORM [1]:

Future neutrino experiments:

Neutrino oscillations

The SvM measurement programme:

- Looking beyond MINOS, T2K, NOvA, DChooz, Daya Bay, Reno, ...
 - θ_{13} will be very well known
- Therefore future programme must:
 - Complete the "Standard Neutrino Model" (SvM):
 - Determine the mass hierarchy
 - Search for (and discover?) leptonic CP-invariance violation
 - Establish the SvM as the correct description of nature:
 - Determine precisely the degree to which θ_{23} differs from $\pi/4$
 - Determine θ₁₃ precisely
 - Determine θ₁₂ precisely
 - Search for deviations from the SvM:
 - Test the unitarity of the neutrino mixing matrix
 - Search for sterile neutrinos, non-standard interactions, ...

Appearance

$$\frac{\nu_{\alpha} \to \nu_{\beta} \quad \bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}{\text{CPT:} \quad P(\nu_{\alpha} \to \nu_{\beta}) = P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha});} \\
P(\nu_{\alpha} \to \nu_{\alpha}) = P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha})$$

CPiV:

$$\frac{P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})}{P(\nu_{\alpha} \rightarrow \nu_{\beta}) + P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})}$$

MH:
$$P(\nu_{\alpha} \to \nu_{\beta}); P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

 $[P(\nu_{\alpha} \to \nu_{\alpha})]$

$$(\theta - \frac{\pi}{4}): \qquad P(\nu_{\alpha} \to \nu_{\beta}); P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

and $P(\nu_{\alpha} \to \nu_{\alpha})$

Precision measurement: solar and reactor:

G. D. Orebi Gann; NNN'14

Solar:

Physics Beyond the SNP

- (1) Searching for new physics:
 - Ve survival probability shape
- (2) Understanding stellar formation: The metallicity of the Sun's core
- (3) Confirming MSW:

The Day / Night effect

- (4) Probing energy loss/generation mechani Neutrino luminosity (L_v)
- (5) Searching for symmetry: Precision flux & oscillation parameter measurements

Experimental Requirements

	High statistics (big detector!)	Low threshold	Low backgrounds
$v_e P_{ee}$ shape	Critical	I MeV	U,Th chains, cosmogenics
Solar metallicity	Important	0.5 MeV	cosmogenics, ²¹⁰ Bi
Day / Night effect	Dominant	> 5MeV ok	~
Neutrino Iuminosity (pp)	~	0.2 MeV	¹⁴ C, ⁸⁵ Kr
Flux & oscillation parameters	Important	<< I MeV	All

Solar neutrino experiments:

_				
Elastic scattering:				
H2O Cherenkov	Super-K, Hyper-K			
Liquid scintillator	Borexino	SNO+	LENA	JUNO
Inorganic scintillator	CLEAN (Lne)	LBNF	XMASS, LZ (L	Xe)
Charged-current detection				
Segmented detector	LENS			
Water-based liquid scintillator	ASDC (7Li loaded l	H2O C)		

M. Göger-Neff; NNN'14

Reactor:

Detector Configurations

Experiment	Daya Bay (China)	Double Chooz (France)	RENO (Korea)			
Reactor power (GW th)	17.3	8.6	16.4			
Baseline near/far (m)	470 (570) / 1650	410 / 1050	410 / 1440			
Target mass near/far (t)	2 x (2 x 20) / 4 x 20	8.3 / 8.3	16.5 / 16.5			
Start date	12/2011 (6 AD) 10/2012 (8 AD)	04/2011 (far)	08/2011 (far + near)			

M. Göger-Neff; NNN'14

Reactor:

Summary of Results on θ_{13}

Mass hierarchy and CP-invariance violation:

Mass hierarchy:

Two options:
 – Exploit L/E spectrum:

- Exploit matter effect:

CPiV:

Two options:
 – Exploit L/E spectrum:
 • DAEδALUS

- Measure asymmetry:

• Large θ₁₃ makes discovery conceivable, *but*:

- Places premium on the control of systematic uncertainties

$$\frac{P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})}{P(\nu_{\alpha} \to \nu_{\beta}) + P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})} \propto \frac{1}{\sin 2\theta_{13}}$$

MH & CPiV: reactor and decay at rest:

M. Göger-Neff; NNN'14

Reactor:

Determination of mass hierarchy

 10^{5}

Atmospheric:

The DAEδALUS Neutrino Source

π^+ decay-at-rest (DAR) beam:

 $p + C \rightarrow \pi^+ \rightarrow \nu_\mu + \mu^+$

1307.6465 1307.2949 1006.0260v1

 $\hookrightarrow e^+ \bar{\nu}_\mu \nu_e,$

Configuration	Source(s)	Average	Detector	Fiducial	Run
Name		Long Baseline		Volume	Length
		Beam Power			
DAEδALUS@LENA	$DAE\delta ALUS$ only	N/A	LENA	50 kt	10 years
$DAE \delta ALUS@Hyper-K$	$DAE\delta ALUS$ only	N/A	Hyper-K	560 kt	10 years
$DAE\delta ALUS/JPARC$	$DAE\delta ALUS$		Hyper-K	560 kt	10 years
(nu only)@Hyper-K	& JPARC	750 kW			
JPARC@Hyper-K	JPARC	750 kW	Hyper-K	$560 \ \mathrm{kt}$	3 years ν +
					7 years $\bar{\nu}$
LBNE	FNAL	850 kW	LBNE	35 kt	5 years ν
					5 years $\bar{\nu}$

• D⁺ cyclotrons:

- 1 MW (1.5 km); 2 MW (8 km); 5 MW (20 km)

MH & CPiV: super-beams:

P. Coloma

MH and CPiV at LBL experiments:

- Mass hierarchy and CPiV modulate oscillation probability:
 - Need to measure as a function of L/E [measure E spectrum]
- MH sensitivity grows with L [matter effect]
- CPiV modulation grows with L/E [but, measure E spectrum]

T2 Hyper-Kamiokande:

- Source:
 - JPARC neutrino beam: upgrade path to 1.66 MW
- Detector: water Cherenkov
 - Fiducial mass: 560 kTonne
 - Site:
 - 2.5° off axis;
 - Baseline ~290 km

T2 Hyper-Kamiokande:

- Systematic uncertainties:
 - Signal: 5%
 - $\nu\mu$ induced background: 5%
 - ve induced background: 5%
 - Relative neutrino/anti-neutrino normalisation: 5%

Long-Baseline Neutrino Experiment:

Long-Baseline Neutrino Experiment:

- Source:
 - FNAL MI: 700 kW
 - Project X: 2.3 MW [upgrade]
- Detector: LAr TPC
 - Fiducial mass: 10 kTonne
 - Upgrade to 34 kTonne
 - Site: SURF
 - On axis; upgrade u/g 4850 ft
 - Baseline 1300 km

Long-Baseline Neutrino Experiment:

- Systematic uncertainties:
 - Signal: 1%
 - Background: 5%

Systematic uncertainty	Sensitivity	Required Exposure
0 (statistical only)	3 σ , 50% δ_{cp}	100 kt.MW.yr
0 (statistical only)	5 σ , 50% δ_{cp}	400 kt.MW.yr
1%/5% (Sig/bkgd)	3 σ , 50% δ_{cp}	100 kt.MW.yr
1%/5% (Sig/bkgd)	5 σ , 50% δ_{cp}	450 kt.MW.yr
2%/5% (Sig/bkgd)	3 σ , 50% δ_{cp}	120 kt.MW.yr
2%/5% (Sig/bkgd)	5 σ , 50% δ_{cp}	500 kt.MW.yr
5%/10% (no near $ u$ det.)	3 σ , 50% δ_{cp}	200 kt.MW.yr

CERN-SPSC-2012-021; SPSC-EOI-007

Long-Baseline Neutrino Observatory:

10m

MIND

10m

30m

• Source:

- CERN SPS: 700 kW
- PS 2: 2 MW [possible upgrade]
- Detector: LAr TPC + MIND
 - LAr fiducial mass: 20 kTonne
 - MIND fiducial mass: 25 kTonne
 - Site: Phyasalmi, Finland
 - On axis
 - Baseline 2300 km

TPC catho

Ar fiducial volume

TASD

TPC charge readout

100

CERN-SPSC-2012-021; SPSC-EOI-007

LBNO:

Name	MH determination	CP determination
	Error (1σ)	Error (1σ)
Bin-to-bin correlated:		
Signal normalization (f_{sig})	$\pm 5\%$	$\pm 5\%$
Beam electron contamination normalization $(f_{\nu_e CC})$	$\pm 5\%$	$\pm 5\%$
Tau normalization $(f_{\nu_{\tau}CC})$	$\pm 50\%$	$\pm 20\%$
ν NC and ν_{μ} CC background $(f_{\nu_{NC}})$	$\pm 10\%$	$\pm 10\%$
Relative norm. of "+" and "-" horn polarity $(f_{+/-})$	$\pm 5\%$	$\pm 5\%$
Bin-to-bin uncorrelated	$\pm 5\%$	$\pm 5\%$

Limited sensitivity to second oscillation maximum

• Correlated and uncorrelated systematic uncertainties considered:

- Signal: 5%
- Background: 5% [but see table]

ESSnuSB:

- Exploit second oscillation maximum:
 - Large CPiV effect;
 - Requires very high power and large detector mass
- ESS:
 - Double power (to 10MW) by adding H- acceleration and compressor/accumulator rings;
- "MEMPHYS":
 - Can be hosted in one of the Nordic countries:
 - Various sites considered

How to add a neutrino facility to ESS?

- Increase the linac average power from 5 MW to 10 MW by increasing the linac pulse rate from 14 Hz to 70 Hz, implying that the linac duty cycle increases from 4% to 8%.
- Inject into an accumulator ring circumference ca 400 m) to compress the 3 ms proton pulse length to 1.5 µs, which is required by the operation of the neutrino horn (fed with 350 kA current pulses). The injection in the ring requires H⁻ pulses to be accelerated in the linac.
- Add a neutrino target station (studied in EUROv)
- <u>Build near and far neutrino</u> detectors (studied in LAGUNA)

ESS v Beam Studies NNN2B14 APC, Parisy condition: the neutron Tord Ekelof, Uppsala program must not be affected²

2014-11-04

Neutrinos from stored muon beams

Effect of systematics:

 Performance rapidly degrades if systematic error is not controlled at the several % level – Cross section error makes a critical contribution

Limiting systematics in the LBL programme:Bias as well as uncertainty

nuSTORM and cross section measurement:

- nuSTORM event rate is large:
 - Statistical precision high:
 - Can measure double-differential cross sections

CCQE cross section measurement:

- Systematic uncertainties for CCQE measurement at nuSTORM:
 - Six-fold improvement in systematic uncertainty compared with "state of the art"
 - Electron-neutrino cross section measurement unique

Neutrino Factory:

Two approaches:

-Optimise L and E to match detector threshold

• IDS-NF approach:

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

- Exploit LAr detector sited 1300 km from FNAL

• MAP/MASS approach: NuMAX – facility

Neutrinos from Muon Accelerators at Project X

NuMAX

- 1MW, 3GeV protons from PX stage II
- no muon cooling
- acceleration to 5GeV
- 8×10^{19} useful muons per year and polarity

Detector at SURF, 10kt magnetized LAr – fallback 5-10 times larger magnetized iron detector

NuMAX+

- 3MW, 3GeV protons from PX stage II
- muon cooling
- acceleration to 5GeV
- 5×10²⁰ useful muons per year and polarity

Bayes, Coloma

Neutrino Factory:

MICE:

- Study of material, lattice, momentum and emittance (Step IV) will start Q2 2015;
- Ionization cooling demonstration:
 - Revised configuration developed in response to P5 recommendations;
 - Cooling demonstration configuration complete: summer 2017
 - All components fabricated
 - Essential technology demonstration imminent

 \bullet

Future neutrino beams:

CERN Neutrino Platform

CERN Neutrino Platform

WA104 : ICARUS detector overhauling

ICARUS Collaboration with INFN and CERN help

- Move the detector from the GS Laboratory to CERN (2014)
- Prepare at CERN all the necessary infrastructure (clean rooms, cryogenics, ...)
- Reshape the detector with new components
- Construct a new generation of cryostats
- Reshape, maintain and modernize the cryo plant
- Reassemble the 2 T300 detectors inside their cryostats
- Construct a new outer vessel
- Make it ready for shipment to FNAL

WA105 : LAGUNA detector Demonstrator

LAGUNA Collaboration with CERN help

- Prepare at CERN all the necessary infrastructure (clean rooms, cryogenics, ...)
- Construct a new generation of cryostats based on membrane technology
- Provide all the necessary cryogenics
- Construct and test 2 prototypes of a 2-phases LAr TPC
 3 x1 x 1 m³
 - $6 \times 6 \times 6 m^3$
- Charged beam tests at the SPS with full readout capabilities

WA104 : Magnetized Muon Spectrometer

NESSIE Collaboration with CERN help

- Prepare at CERN all the necessary infrastructure (space, logistics)
- R&D on a warm air core magnet
- R&D on a cold air core magnet
- Construct and test prototypes of a possible muon spectrometer
- Charged beam tests at the SPS with full readout capabilities

LBNF : Test of a large TPC module

LBNF Collaboration with CERN help

- Prepare at CERN all the necessary infrastructure (space, logistics)
- Prepare a large cryostat for receiving this detector (new cap)
- Bring to CERN components assembled in the UK and USA
- Prepare/adapt the necessary cryogenics
- Charged beam tests at the SPS with full readout capabilities

CENF – Civil Engineering Extension B887

CERN Prototype Meeting – M.Nessi N.Lopez, M.Manfredi (GS-SE)

CENF – Civil Engineering Extension B887

Technical Aspect: Location

The EHN1 is a large industrial building situated on french territory, in Prévessin. The building has to be extended for the new generation of experiments on the neutrinos.

The Extension will extend northwards from the building for about 70 m in the direction of the beams.

CERN Prototype Meeting – M.Nessi N.Lopez, M.Manfredi (GS-SE)

M. Nessi; CERN Neutrino Platform

Neutrino extension

nuSTORM serving the CERN Neutrino Platform

under study; M. Nessi et al

Future neutrino experiments:

Epilogue and conclusions

Epilogue:

- Long-baseline neutrino-oscillation programme:
 - Narrow-band and wide-band projects complementary:
 - Neutrino oscillations, proton-decay, neutrino astrophysics and cosmology, supernovae
- Following P5 in the US:
 - FNAL has established LBNF:
 - interim International Executive Board:
 - Deliver LOI; help establish collaboration;
 - LBNF international governance group:

- PI meetings: CERN 05Dec14 FNAL 12Dec14
- Build on "CERN/LHC model" to see how best to organise LBNF as an international programme

Possible evolution of the projects:

Long-baseline neutrino oscillation programme Hyper-K Proposal submitted to KEK/ICRR KEK/ICRR submitted to KEK/ICRR Minos+ (exploitation) PIP II BNF Long-back on MAXT road-map Excavation, construction commissioning PIP II BNF Long-back on CCR Completion of FNAL PAC COR to FNAL PAC	Year Quarter (calendar)	2015	2016	2017	2018 1, 2, 3, 4	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028 1, 2, 3, 4	2029	2030	2031	2032	2033	2034
Wide-band beam MiNOS+ (exploitation) PIP II Image: Construction of FNAL PAC CDR to FNAL PAC Image: Construction of FNAL PAC review of CDR Completion of FNAL PAC review of CDR Preparation for CD 2 CD2 approval Excavation, construction commissioning First 10kT module complete Full 40kT fiducial mass	Long-baselne neutrino oscillation programme Hyper-K Proposal submitted to KEK/ICRR KEK/ICRR submit revised proposal to MEXT Hyper-K placed on MEXT road-map Excavation, construction commissioning Exploitation	1234													1234	1234					
LBNF Loi to FNAL PAC COR to FNAL PAC Completion of FNAL PAC review of CDR Preparation for CD 2 CD2 approval Excavation, construction commissioning First 10kT module complete Full 40kT fiducial mass	Wide-band beam MINOS+ (exploitation) PIP II										CPiV	assumes I	VIH known);	improved p	recision on	mixing par	ameters; p	roton-decay	searches; i	eutrino as	trophysics;
	LBNF LoI to FNAL PAC CDR to FNAL PAC Completion of FNAL PAC review of CDR Preparation for CD 2 CD2 approval Excavation, construction commissioning First 10kT module complete Full 40kT fiducial mass																				

supporting programme man a control of systematics/ must mate

Conclusions:

- Combination of accelerator&non-accelerator-based programmes can:
 - Confirm or refute the existence of sterile neutrinos;
 - Determine the mass hierarchy; and
 - Make a first sweep of the CP parameter space
- Next generation of LBL experiments have the potential to:
 - To complete the Standard Neutrino Model (SvM)
- To establish the SvM as the correct description of nature requires:
 - Development of a capability to produce large, high-energy data sets; and
 - To control systematic uncertainties
 - This requires a dedicated programme
- An incremental programme can be (has been) articulated:
 - Scientific imperative: develop three-pronged programme:
 - Deliver critical oscillation measurements through super-beam programme;
 - Establish systematic-uncertainty control programme
 - Including measurement of v_eN cross sections at nuSTORM
 - Develop capability required to implement the Neutrino Factory
 - Including MICE, the critical system demonstration for ionization cooling
- Realisation of fantastic programme requires international coordination