Higgs production in association with top quarks

Barbara Jäger

meeting of the LHC HXS WG 1 / ttH subgroup - October 2014

$pp ightarrow t \bar{t} H$: NLO-QCD corrections

* two independent calculations:

Beenakker et al. (2001) Dawson et al. (2001-2002)

* first NLO-QCD calculation for a massive $2 \rightarrow 3$ process

technique: Feynman diagram approach (tricky: numerically stable reduction of tensor integrals)

* size of corrections dependent on scale choice (about 20 to 40%) * theoretical uncertainty at NLO dramatically reduced to $\sim 15\%$

$pp \rightarrow t\bar{t}H$: NLO-QCD matched with parton shower

several implementations available (make use of MC@NLO or POWHEG formalism)

* aMC@NLO: Frederix et al. (2011)

% PowHel: Garzelli, Kardos, Papadopoulos, Trocsanyi (2011) matrix elements from HELAC-OneLoop matching with private version of the POWHEG-BOX

% POWHEG-BOX: Hartanto, B. J., Reina, Wackeroth (2014) implementation in public version of the POWHEG-BOX cross-checked with PowHel; code to be relased soon

Sherpa: Hartanto, Reina, Hoeche in testing phase; to be released soon

$pp \rightarrow t \bar{t} H$: NLO-QCD matched with parton shower

Standard Model Working Group: Les Houches Proceedings (2014)

systematic comparison: full agreement at NLO and NLO+PS between implementations in PowHel, POWHEG-BOX, Sherpa

$pp \rightarrow t\bar{t}H$: higher jet multiplicities

NLO-QCD corrections to $pp \rightarrow t\bar{t}H + jet$ completed by Deurzen et al. (2013) with the help of GoSam:

* NLO corrections can be sizable
 * scale uncertainty reduced

ightarrow better control on extra jet activity in $pp
ightarrow tar{t}H$

important pre-requisite for merged samples at NLO+PS level with different jet multiplicities

$pp \rightarrow t \bar{t} H$: NLO-EW corrections

generally: expect NLO-EW corrections to be smaller than NLO-QCD corrections ($\alpha \sim 0.1 \alpha_s$), but they can become significant in high-energy domain because of large Sudakov logarithms

recent calculation of technically challenging weak and EW corrections by

(a) Frixione, Hirschi, Pagani, Shao, Zaro (2014)(b) Zhang, Ma, Zhang, Chen, Guo (2014) :

 \ast predictions for LHC at $\sqrt{s}=8,13,100$ and 14,33,100 TeV

* in (b) top decays considered in narrow-width approximation

* NLO-EW corrections to incl. x-sec $\lesssim -1\%$

* tails of p_T distributions receive corrections up to -10%

NLO Weak corrections to $t\bar{t}H$ production

$pp \rightarrow t \bar{t} H$ signal: achievements of the HXSWG

YR1:

* NLO-QCD: σ (incl.) at 7 and 14 TeV for different values of M_H

* estimate of theor. uncertainties due to variation of scales, α_s , PDFs

YR2:

- * differential distributions at NLO-QCD for $\sqrt{s}=7~{
 m TeV}$
- * estimate of theoretical uncertainties at NLO-QCD
- * matching of NLO+PS: comparison between PowHel and aMC@NLO

YR3:

- ***** NLO-QCD: σ (incl.) at 8 TeV for different values of M_H
- * estimate of theoretical uncertainties at NLO-QCD
- * effects of top spin correlations in production and decay

$pp ightarrow t \bar{t} H$ signal: findings of the HXSWG

* LO results strongly depend on PDF set and scale choice

- * better agreement at NLO, but still sizeable PDF uncertainties \rightarrow recommend envelope prescription for uncertainty estimates
- * mild changes ($\lesssim 10\%$) in shapes of distributions for inclusive cuts, more pronounced for exclusive cuts and in boosted regime
- * effects of top spin correlations in production and decay can be pronounced for selected distributions

recommendation: whenever possible, use NLO+PS tool, ideally including spin correlations in top production and decay

beyond on-shell & spin-averaged $t\bar{t}H$ production

experimental signature of $pp \rightarrow t\bar{t}H$: not tops, but their decay products (e.g. from $t \rightarrow Wb \rightarrow \ell\nu b$ decay chains)

but: full NLO-QCD calculation of $pp \to \ell^+ \nu b \ell^- \bar{\nu} \bar{b} H$ out of reach

use prescription of *Frixione, Laenen, Motylinski, Webber (2007)*:

- 1) generate LHE events for $t\bar{t}H$ on-shell at NLO-QCD,
- 2) add decays of tops at LO in narrow-width approximation,
- 3) re-instate off-shell effects of the tops

options for this prescription in MadGraph5_aMC@NLO (MadSpin), PowHel (Decayer), and POWHEG-BOX

spin correlations

Artoisenet et al. (2012)

Biswas et al. (2014)

spin correlations of top quarks persist at NLO and help in discrimination of signal and background

off-shell effects

recall: full NLO-QCD calculation for $pp \to \ell^+ \nu b \ell^- \bar{\nu} \bar{b} H$ out of reach

 \rightarrow how can we estimate impact of missing off-shell effects?

c.f. related process of $pp \rightarrow t\bar{t}$:

systematic comparison of NLO-QCD calculation for $pp \rightarrow t\bar{t}$, amended by decays $t \rightarrow W^+b$ and $\bar{t} \rightarrow W^-\bar{b}$ with full $pp \rightarrow W^+W^-b\bar{b}$ process

Garzelli, Kardos, Trocsanyi (2014)

 \square off-shell effects can be sizable for distributions/correlations of decay products (e.g. $M_{b\ell}$)

more studies needed ...

* full NLO-QCD calculation for $pp \rightarrow \ell^+ \nu b \ell^- \bar{\nu} \bar{b} H$ first step: on-shell calculation for $pp \rightarrow t \bar{t} H$ with NLO-QCD corrections to decay

* matching and merging at NLO-QCD for $pp
ightarrow t ar{t} H + ext{jets}$

* interplay of QCD and EW corrections:

explore kinematic regimes where effects are different from inclusive scenario (boosted setup etc.)

* interference of the $t\bar{t}H$ signal with various backgrounds

expect these effects to be more important than NNLO-QCD corrections (which are out of reach at the moment)