BACKGROUNDS AND UNCERTAINTIES FOR TTH(H—>BB)

WUMING LUO ON BEHALF OF TTH@CMS

BACKGROUNDS FOR TTH

TTJets is the main background: Other relevant bkg MC # ZJets, ttbar+Z/W, WJets, WW, WZ, ZZ, single top * Need accurate background modeling: # Small Signal(0.132 pb @125GeV), large Bkg(25.81 pb) Bkg very similar to Signal # irreducible: tt+bb

INCLUSIVE TTJETS SAMPLES @8TEV

Dedicated ttjets samples for different tt decay mode
All these samples are generated with MADGRAPH
+PYTHIA

Inclusive: up to tt+3 extra patrons (@Tree Level)
Statistics(~10M) is OK, some limitations

	XS(pb)	nGen
tt —> jets	112.33	31111456
tt—>lv+4jets	107.66	25327478
tt —> lvlv+ 2jets	25.81	12100452

Wuming Luo

EXCLUSIVE TTJETS SAMPLES

- % For ttH (H—>bb), tt+HF(heavy flavor) is more similar to Signal than tt+LF(light flavor)
- Different uncertainty on the production of additional LF jets compared to HF jets(e.g. Q² scale)
- Split the inclusive ttjets sample, based on the quark flavor associated with the reco jets in the event % tt+bb: ≥2 reco jets matched to "extra" b-quarks(non top) % tt+b: only one match (soft and collinear) % tt+cc: ≥1 reco jets matched to c-quarks % tt+LF: the rest

Wuming Luo

5

STATE

CORRECTIONS TO MC@8TEV

- % Lepton Scale Factor, trigger Scale Factor
- # Jet Energy Scale and Jet Energy Resolution
- B-tagging Scale Factor
 - Correct MC jet b-tag discriminator shape to match Data
 - % for both heavy flavor(HF) and light flavor(LF) jets
- %top Pt reweighting*
 - Data/MC discrepancy for jets and lepton Pt spectrum
 Due to mis-modeling in the top Pt spectrum

TOP PT REWEIGHTING

EFFECT OF TOP P_T REWEIGHTING

Significant improvement in data/MC agreement

Wuming Luo

SYSTEMATIC UNCERTAINTIES

PileUp, Lepton/Trigger SF ℁b-tag SF **#JER and JES** Luminosity, Cross Section % top Pt reweighting **MC** statistics [™]Q² scale for MadGraph ttjets Extra 50% rate uncertainty for tt+HF

> TTJets

MC STATISTICS

Basic idea (Barlow-Beeston):

* Assign separate uncertainty for every MC process in every MC bin to allow MC BDT shapes to float within stat. uncertainty

Include MC bin uncertainty if

- # it contributes significantly to total uncertainty
- MC uncertainty comparable to data uncertainty
- % bin has sufficient signal

Gives observed MC stats effect with small number of nuisances: 36 stat. uncertainties

ADDITIONAL TT+HF UNCERTAINTY

- Contribution from tt+HF very similar to signal
 uncertainty on rate and shape has a big impact on our ttH search
- Due to lack of more accurate higher order theory predictions, we obtained tt+HF estimate and uncertainty based on the inclusive ttbar sample
- ** Assign an extra 50% rate uncertainty for tt+bb, tt+b and tt+cc independently on top of other uncertainties
 ** Cross checks show 50% is a reasonable choice

IMPACT OF SYSTEMATIC UNCERTAINTIES

Top 5 uncertainties are related to ttjets backgrounds
#tt+bb rate uncertainty has a very large impact

Removed Uncertainty	Improvement in limit (%)
tt+bb 50% rate uncertainty	18.7
top Pt reweighting	5.0
tt+b 50% rate uncertainty	4.2
tt+cc 50% rate uncertainty	3.4
MC statistical Uncertainties	3.4

IMPROVEMENT FOR RUN2

Higher order calculation for ttjets samples # e.g. aMC@NLO+PYTHIA8 from KIT Better estimation of tt+HF Dedicated tt+HF sample? # ttbb XS measurement from DESY, difficult to use due to the overlap of Signal region Discriminating variables ttH vs ttbb Spin correlation, sub-jet structure etc Inputs from theorists?

TTjets is the main background for ttH(H->bb)
irreducible tt+bb difficult to model
TTjets MC modeling related uncertainties(Rate or Shape) have large impact on our analysis
Especially the rate for tt+bb
Higher order calculations and better tt+HF estimation will help us for RUN2

BACK UP

TTBB/TTB CONSISTENCY CHECK

Define 2 new MVAs:
* ttb(b) vs ttlf (x-axis)
* ttH vs ttb(b) (y-axis)
* Find a region with: (the orange one)
* low ttH contamination
* decent ttbb/ttlf ratio

ttbb

ttlf

Wuming Luo

ttH

TTBB/TTB CONSISTENCY CHECK

We the shape of the ttb(b) vs ttlf BDT
Consider tt+bb and tt+b as 2 separate signals
Find best fit value r while fitting to data using all 7 categories

Wuming Luo

0.02

TTBB/TTB CONSISTENCY CHECK

The 2D fitting includes all uncertainties except the extra 50% rate uncertainty for tt+bb and tt+b

The fit result favors a larger amount of tt+bb and tt+b than the SM prediction, but still consistent within uncertainties

We also tried a bkg-only fit to data, the nuisance parameters are pulled in a way consistent with this cross check

Black point: 2D fit for ttbb/ttb Blue point: SM prediction with 50% uncertainty Red point: B-only data Maximum Likelihood fit with errors

*both fits are using "combine" tool Wuming Luo

IMPACT OF SYS. UNCERT.

Impact of removing one systematic uncertainty on the full analysis		
Removed uncertainty	Improvement in the limit (%)	
CMS_ttH_QCDscale_ttbb	18.7	
CMS_ttH_CSVCErr1	5.7	
CMS_ttH_topPtcorr	5.0	
CMS_ttH_QCDscale_ttb	4.2	
CMS_ttH_QCDscale_ttcc	3.4	
Monte Carlo Statistical Uncertainties	3.4	
CMS_ttH_CSVHF	3.1	
QCDscale_ttH	2.7	
CMS_ttH_CSVHFStats2	1.9	
Q2scale_ttH_ttbar1p	1.9	
Q2scale_ttH_ttbar_bb	1.1	
CMS_ttH_CSVHFStats1	1.1	
CMS_ttH_eff_lep	1.1	
Q2scale_ttH_V	1.1	
pdf_qqbar	1.1	
QCDscale_ttbar	1.1	
CMS_ttH_CSVCErr2	1.1	
CMS_scale_j	0.4	
CMS_ttH_CSVLFStats1	0.4	
pdf_gg	0.4	
CMS_ttH_CSVLF	0.4	
CMS_ttH_CSVLFStats2	0.4	
Q2scale_ttH_ttbar2p	0.4	

