

Backgrounds & Uncertainties in $ttH(\gamma\gamma)$

Jared Vasquez Yale University

Jared Vasquez

November 24, 2014

arXiv: 1409.3122

Modeling

Sample	Generator	PDF	Generator tune	σ [pb] at 7 TeV	σ [pb] at 8 TeV
tīH	Powhel + Pythia8	CT10	AU2 CT10	$0.086^{+0.008}_{-0.011}$	$0.129^{+0.012}_{-0.016}$
$tHjb \kappa_t = +1$	MG5 + Pythia8	CT10	AU2 CT10	$0.0111^{+0.0009}_{-0.0008}$	$0.0172\substack{+0.0012\\-0.0011}$
$tHjb \kappa_t = -1$	MG5 + Pythia8	CT10	AU2 CT10	$0.040^{+0.003}_{-0.003}$	$0.059^{+0.004}_{-0.004}$
$tHjb \kappa_t = 0$	MG5 + Pythia8	CT10	AU2 CT10	$0.129\substack{+0.010\\-0.009}$	$0.197^{+0.014}_{-0.013}$
$WtH \kappa_t = +1$	aMC@NLO + Herwig++	CT10	AU2 CT10	$0.0029^{+0.0007}_{-0.0006}$	$0.0047^{+0.0010}_{-0.0009}$
$WtH \kappa_t = -1$	aMC@NLO + Herwig++	CT10	AU2 CT10	$0.0043^{+0.0011}_{-0.0008}$	$0.0073^{+0.0017}_{-0.0013}$
$WtH \kappa_t = 0$	aMC@NLO + Herwig++	CT10	AU2 CT10	$0.016^{+0.004}_{-0.003}$	$0.027^{+0.006}_{-0.005}$
WH	Ρυτηία8	CTEQ6L1	AU2 CTEQ6L1	15.1 ± 1.6	19.3 ± 2.0
ZH	Ρυτηία8	CTEQ6L1	AU2 CTEQ6L1	1.22 ± 0.03	1.58 ± 0.04
ggF	PowHeg + Pythia8	CT10	AU2 CT10	0.579 ± 0.016	0.705 ± 0.018
VBF	PowHeg + Pythia8	CT10	AU2 CT10	0.335 ± 0.013	0.415 ± 0.017

All cross sections correspond to Higgs mass of 125 GeV

Continuum Background Fit

- Model continuum background with $e^{a\,m_{\gamma\gamma}}$
 - Function validated in data control regions obtained by loosening photon ID and isolation requirements.
 - Fit performed over range of $m_{\gamma\gamma} \in 105-160$ GeV for each category
 - Use BG+Signal fit to find bias of model choice (spurious signal)

	Observed limit	Expected limit	$+2\sigma$	$+1\sigma$	-1σ	-2σ
Combined (with systematics)	6.7	4.9	11.9	7.5	3.5	2.6
Combined (statistics only)	6.3	4.7	10.5	7.0	3.4	2.5
Leptonic (with systematics)	10.7	6.6	16.5	10.1	4.7	3.5
Leptonic (statistics only)	10.2	6.4	15.1	9.6	4.6	3.4
Hadronic (with systematics)	9.0	10.1	25.4	15.6	7.3	5.4
Hadronic (statistics only)	8.5	9.5	21.4	14.1	6.8	5.1

Current event selection optimized for limits

Leptonic Selection

≥ 1 e/µ (p_T > 15 /10 GeV),
 ≥ 1 jets (p_T > 25 GeV),
 ≥ 1 b-tag (80% WP*)

• MET \geq 20 GeV for 1 b-tag

■ Veto on m_{eγ} ∈ 84 - 94 GeV

Pre-Selection

2 Photons

- Leading $E_T > 0.35 * m_{\gamma\gamma}$
- Sub-Leading $E_T > 0.25 * m_{\gamma\gamma}$
- m_{yy} ∈ 105-160 GeV

To reduce the backgrounds from final states without top quarks

Shown to largely reduce electron fakes with small impact to signal

* WP = Working Point

Current event selection optimized for limits

> Each category optimized to suppress ggF production

Avoid looser jet and b-tag requirements due to larger ggF contributions and poor understanding of ggF+HF

* WP = Working Point

Yale University

Pre-Selection

- 2 Photons
 - Leading $E_T > 0.35 * m_{\gamma\gamma}$
 - Sub-Leading $E_T > 0.25 * m_{\gamma\gamma}$
 - m_{vy} ∈ 105-160 GeV

Hadronic Selection

No charged leptons

- ≥ 6 jets (p_T > 25 GeV),
 ≥ 2 b-tags (80% WP*)
- ≥ 5 jets (p_T > 30 GeV),
 ≥ 2 b-tags (70% WP*)
- ≥ 6 jets (p_T > 30 GeV),
 ≥ 1 b-tag (60% WP*)

Current event selection optimized for limits

Leptonic Selection

- ≥ 1 e/µ (p_T > 15 /10 GeV),
 ≥ 1 jets (p_T > 25 GeV),
 ≥ 1 b-tag (80% WP*)
- MET \geq 20 GeV for 1 b-tag
- Veto on m_{eγ} ∈ 84 94 GeV

Pre-Selection

2 Photons

- Leading $E_T > 0.35 * m_{\gamma\gamma}$
- Sub-Leading $E_T > 0.25 * m_{\gamma\gamma}$
- m_{vy} ∈ 105-160 GeV

Hadronic Selection

No charged leptons

- ≥ 6 jets (p_T > 25 GeV),
 ≥ 2 b-tags (80% WP*)
- ≥ 5 jets (p_T > 30 GeV),
 ≥ 2 b-tags (70% WP*)
- ≥ 6 jets (p_T > 30 GeV),
 ≥ 1 b-tag (60% WP*)

* WP = Working Point

Differences in CMS Event Selection

CMS Selection vs. Our Differences

Pre-Selection

2 Photons

- Leading $p_T > m_{\gamma\gamma} / 2$
- Sub-Leading p_T > 25 GeV
- m_{yy} ∈ 100-180 GeV

 $(E_T > 0.35 * m_{YY})$ $(E_T > 0.25 * m_{YY})$ $(m_{YY} \in 105-160 \text{ GeV})$

Yale

Leptonic Selection

- ≥ 1 e/µ (p_T > 20 GeV),
 ≥ 2 jets (p_T > 25 GeV),
 ≥ 1 b-tag
- ≥ 1 e/µ (p_T > 15/10 GeV),
 ≥ 1 jets (p_T > 25 GeV),
 MET cut for 1 b-tag
 Veto on m_{ey} ∈ 84-94 GeV

Hadronic Selection

No charged leptons

- ≥ 4 jets (p_T > 25 GeV),
 ≥ 1 b-tags
- Require 5j1b, 6j1b, & 6j2b categories with different jet pt and b-tagging WPs

Higgs backgrounds dominated by ggF and WH tH productions contribute significantly to each channel

Current Selection Yields

% Higgs Yield

									_
Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B^{\star}
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5_{-0.3}^{+0.5}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

 $*N_B$ is integrated number of events for background fit in the 120-130 GeV window

Hadronic channel weakened by large continuum background

Current Selection Yields

% Higgs Yield

Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B^{\star}
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5^{+0.5}_{-0.3}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$

 $*N_B$ is integrated number of events for background fit in the 120-130 GeV window

Comparison to CMS Yields

ATLAS Yields

			% Higgs Yield								
Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B^{\star}		
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$		
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5_{-0.3}^{+0.5}$		
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$		
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$		

*N_B is integrated number of events for background fit in the 120-130 GeV window

CMS Yields

	7 TeV	8 T	8 TeV				
	All decays	Hadronic channel	Leptonic channel	Different selections			
ttH	0.21(919	6) 0.51 (94%)	0.45 (98%)	$\psi\psi\psi$			
$\begin{array}{c} gg \rightarrow H \\ VBF \ H \end{array}$	0.01(4% 0(0%	0.02 (4%) 0 (0%)	0 (0%) 0 (0%)	Very different background			
WH/ZH	0.01(4%	0.01 (2%)	0.01 (2%)	contributions			
Total H	0.23	0.54	0.46				
Data	9	32	11				

arXiv: 1408.1682

Yale University

Jared Vasquez

Systematics

tīH [%]		tHqb [%]		WtH [%]		ggF [%]	WH [%]
had.	lep.	had.	lep.	had.	lep.	had.	lep.
				±2.8			
±5.6	±5.5	±5.6	±5.5	±5.6	±5.5	±5.6	±5.5
< 0.1	±0.7	< 0.1	±0.6	< 0.1	±0.6	< 0.1	±0.7
±7.4	±0.7	±16	±1.9	±11	±2.1	±29	±10
).24 evt.	0.16 evt.	applied on the sum of all Higgs boson production proces					
+10,-13		+7,-6		+14,-12		+11,-11	+5.5,-5.4
±11	±3.3	±12	±4.4	±12	±4.6	±130	±100
)	$t\bar{t}H$ had. ± 5.6 < 0.1 ± 7.4 0.24 evt. $\pm 10,$ ± 11	$t\bar{t}H$ [%] had. lep. $\pm 5.6 \pm 5.5$ $< 0.1 \pm 0.7$ $\pm 7.4 \pm 0.7$ 24 evt. 0.16 evt. +10,-13 $\pm 11 \pm 3.3$	$t\bar{t}H$ [%] $tHqb$ had.lep.had. ± 5.6 ± 5.5 ± 5.6 < 0.1 ± 0.7 < 0.1 ± 7.4 ± 0.7 ± 16 0.24 evt. 0.16 evt.applied $+10,-13$ $+7,-13$ ± 11 ± 3.3 ± 12	$t\bar{t}H$ [%] $tHqb$ [%]had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 < 0.1 ± 0.6 ± 7.4 ± 0.7 ± 16 ± 1.9 0.24 evt.0.16 evt.applied on the $\pm 10,-13$ $\pm 7,-6$ ± 11 ± 3.3 ± 12 ± 4.4	$t\bar{t}H$ [%] $tHqb$ [%] WtH had.lep.had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 < 0.1 ± 0.6 < 0.1 ± 0.7 ± 16 ± 1.9 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 12 $evt.$ 0.16 $evt.$ $+10,-13$ $+7,-6$ $+14,$ ± 11 ± 3.3 ± 12 ± 4.4	$t\bar{t}H$ [%] $tHqb$ [%] WtH [%]had.lep.had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 < 0.1 ± 0.7 < 0.1 ± 0.6 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.1 $.24$ evt. 0.16 evt.applied on the sum of all Higgs $+10,-13$ $+7,-6$ $+14,-12$ ± 11 ± 3.3 ± 12 ± 4.4 ± 12 ± 4.6	$t\bar{t}H$ [%] $tHqb$ [%] WtH [%] ggF [%]had.lep.had.lep.had.lep. ± 5.6 ± 5.5 ± 5.6 ± 5.5 ± 5.6 ± 5.6 < 0.1 ± 0.7 < 0.1 ± 0.6 < 0.1 ± 0.6 < 0.1 ± 7.4 ± 0.7 ± 16 ± 1.9 ± 11 ± 2.1 ± 29 $.24$ evt. 0.16 evt.applied on the sum of all Higgs boson prod $+10,-13$ $+7,-6$ $+14,-12$ $+11,-11$ ± 11 ± 3.3 ± 12 ± 4.4 ± 12 ± 4.6

Data driven photon ID + Isolation uncertainties obtained using electrons from Z→ee + jets in data and MC and applying photon criteria Includes 100% HF Content Uncertainty

HF Content Systematic

ggF+HF uncert motivated by tt+HF modeling

- Both processes are gluon initiated
- Use 100% uncertainty to be conservative
- Maybe this isn't conservative enough?
 To be sure, we avoid possible 5j1b, 4j2b & 4j1b categories with higher ggF content

WH+HF uncert motivated by W+b-jet modeling

- Both processes are initiated by qq

Differences from CMS Systematics

H contamination (H \rightarrow photons) WZ (ZZ) uncertainty (H \rightarrow leptons)

* Table from CMS ttH combination, not all numbers reflective of ttH(YY)

arXiv: 1408.1682

22% (19%)

36.7-41.2%

Yale University

Jared Vasquez

Despite many differences, limits between both analyses are very comparable

ATLAS Published Results

	Observed limit	Expected limit	$+2\sigma$	$+1\sigma$	$ -1\sigma$	$ -2\sigma$
Combined (with systematics)	6.7	4.9	11.9	7.5	3.5	2.6
Combined (statistics only)	6.3	4.7	10.5	7.0	3.4	2.5
Leptonic (with systematics)	10.7	6.6	16.5	10.1	4.7	3.5
Leptonic (statistics only)	10.2	6.4	15.1	9.6	4.6	3.4
Hadronic (with systematics)	9.0	10.1	25.4	15.6	7.3	5.4
Hadronic (statistics only)	8.5	9.5	21.4	14.1	6.8	5.1

CMS Published Results

ttH channel	Best-fit μ	95	95% CL upper limits on $\mu = \sigma / \sigma_{SM}$ ($m_{H} = 125.6 \text{ GeV}$)							
			Expected							
	Observed	Observed	Median signal-injected	Median	68% CL range	95% CL range				
$\gamma\gamma$	$+2.7^{+2.6}_{-1.8}$	7.4	5.7	4.7	[3.1, 7.6]	[2.2, 11.7]				

Results can also be interpreted as limits on the top-Higgs Yukawa coupling ($\kappa_{\rm t})$

No show stoppers for background treatment in Run II ⁽²⁾
How can we get better control of ggF+HF & WH+HF?

• How to consistently treat ttH, tHqb, & WtH?

Thanks For Listening!

Backup

tHqb and WtH Diagrams

Limits on Inclusive Higgs

Negative Log-likelihood scan of K_t

Yale