

Accurate predictions for tH signal at LHC

Federico Demartin UCLouvain (CP3)

In collaboration with F. Maltoni, K. Mawatari, M. Zaro

26.01.2015

So far

Experimental searches

ATLAS (in progress) CMS coll. CMS-PAS-HIG-14-015

Limits on *tH* cross section (optimized for $-y_t$)

Pheno studies at the LHC

 $\begin{array}{l} \textit{Maltoni, Paul, Stelzer, Willenbrock} \; [arXiv:hep-ph/0106293] \; (LO, sig+bkg) \\ \textit{Biswas, Gabrielli, Mele} \; [arXiv:1211.0499] \; (LO, \; H \rightarrow \gamma\gamma \; sig+bkg) \\ \textit{Farina, Grojean, Maltoni, Salvioni, Thamm} \; [arXiv:1211.3736] \\ \; (NLO \; xsect \; 5F, \; LO \; distr, \; H \rightarrow b\bar{b} \; sig+bkg, \; \pm y_t) \\ \textit{Ellis, Hwang, Sakurai, Takeuchi} \; [arXiv:1312.5736] \; (LO, \; sign/phase \; of \; y_t) \\ \textit{Chang, Cheung, Lee, Lu} \; [arXiv:1403.2053] \\ \; (LO \; distr, \; H \rightarrow b\bar{b}, \gamma\gamma, 4\ell, \tau^+\tau^- \; sig+bkg, \; detector \; simulation, \; \pm y_t) \end{array}$

Aims of our work: outline

(1) Provide recommendations for tH cross section at NLO-QCD Compare & combine flavour schemes (4F vs 5F) Uncertainties: scale, PDF, $\alpha_s(m_Z)$, m_b

(2) Study distributions at NLO-QCD + parton shower MG5_aMC@NLO + Pythia8 with 4F and 5F Dependence on $\mu_{R,F}$ and scale of the shower

(3) Possibility to study sign/phase of y_t

Setup

Madgraph5_aMC@NLO NLO-QCD predictions + parton shower (PY6, PY8, HW6, HW++) *Maltoni, Zaro et al.* [arXiv:1405.0301] https://launchpad.net/mg5amcnlo

HC_NLO_XO (FeynRules UFO model)

All SM single-Higgs interaction at NLO-QCD (and BSM up to dim-6) Accurate & precise characterisation of H couplings and properties

FD, *Maltoni*, *Mawatari*, *Zaro et al*. [arXiv:1306.6464, 1311.1829, 1407.5089] https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation

$$\mathcal{L}_{0}^{t} = -\frac{m_{t}}{v} \, \bar{\psi}_{t} \big(\cos \alpha \, \kappa_{\scriptscriptstyle Htt} + i \sin \alpha \, \kappa_{\scriptscriptstyle Att} \, \gamma_{5} \big) \psi_{t} \, X_{0}$$

 $(y_t \text{ is on-shell})$

Definitions of tH (a multiscale process)

all large logs $\ln(m_b/Q)$ resummed in the b's PDF

correct kinematics of all b's

They differ in the missing higher-order contributions (\Rightarrow go to NLO)

see also Maltoni, Ridolfi, Ubiali [arXiv:1203.6393]

Cross-section:

flavour scheme and scale dependence

Cross-section:

flavour scheme and scale dependence

analogous to single-top Campbell, Frederix, Maltoni, Tramontano [arXiv:0903.0005]

Cross-section: flavour scheme (FS) and scale μ dependence

Cross-section: PDF, $\alpha_s(m_Z)$ and m_b uncertainty

Global PDF fits via LHAPDF: NNPDF2.3, MSTW2008, CT10 each group provides error sets to compute δ_{PDF} (data fit uncertainty)

Reference value for the strong coupling: $\alpha_s(m_Z) = 0.1190 \pm 0.0012$ Uncertainty as recommended by PDF4LHC Encompasses preferred α_s values of each group and PDG global average

Reference value for bottom mass (pole): $m_b = 4.75 \pm 0.25$ GeV 4F: enters the hard scattering amplitude and the phase space 5F: defines threshold for $g \rightarrow b\bar{b}$ splitting in the PDFs

 $\alpha_s^{\rm CT}$ = 0.1180, $\alpha_s^{\rm NNPDF}$ = 0.1191, $\alpha_s^{\rm MSTW}$ = 0.1202, $\alpha_s^{\rm PDG2014}$ = 0.1185 Martin et al. [arXiv:0905.3531], Lai et al. [arXiv:1004.4624], Lionetti et al.[arXiv:1103.2369], PDF4LHC [arXiv:1101.0536, 1101.0538], Martin et al. [arXiv:1007.2624], Ball et al. [arXiv:1101.1300]

Cross-section: PDF, $\alpha_s(m_Z)$ and m_b uncertainty

Tiny correlations between the fractional uncertainties \Rightarrow can be neglected

$$\delta^{\pm}_{PDF+lpha_s+m_b}=\sqrt{(\delta^{\pm}_{PDF})^2+(\delta^{\pm}_{lpha_s})^2+(\delta^{\pm}_{m_b})^2}$$

Compute reference XS values with common m_b and α_s (when possible).

Then add fractional uncertainties computed using each group's dedicated PDF set (when available).

Checked explicitly for PDF+ α_s ; see also *Martin et al.* [arXiv:1007.2624] and joint PDF study *Ball et al.* [arXiv:1211.5142]

Cross-section: total uncertainty

Cross-section: total uncertainty

Comparison of envelope vs "Santander" matching

Harlander, Kramer, Schumacher [arXiv:1112.3478]

Yukawa of the bottom is completely negligible!

	4F $\sigma_{ m NLO}$ [fb]	5F $\sigma_{ m NLO}$ [fb]
y_b off	69.92(15)	74.65(9)
y _b on	69.76(15)	74.53(8)

Less than integration accuracy (0.1-0.2%).

Distributions: Higgs (no decay)

Reasonable agreement for 4F/5F shapes within scale uncertainty

Same for the top quark

Shower scale dependence is very small

Université catholique de Louvain

Distributions: light jet

Distributions: b-jets

anti- k_T $p_T > 30$ GeV R = 0.4 $|\eta| < 2.5$ no H decay, $t \to b\ell^+\nu_\ell$ Significant discrepancy between 4F and 5F, especially for 2nd *b*-jet 5F has large scale dependence 1st *b*-jet comes from top at low- p_T , frm hard scattering at high- p_T

Yukawa of the top

$$\mathcal{L}_{0}^{t} = -\frac{m_{t}}{v} \, \bar{\psi}_{t} \big(\cos \alpha \, \kappa_{Htt} + i \sin \alpha \, \kappa_{Att} \, \gamma_{5} \big) \psi_{t} \, X_{0}$$

 $\kappa_{\rm \scriptscriptstyle Att} = 2/3$ in order to keep SM $\sigma_{\rm GF}$

SM coupling to W

Interpolation of cross section between $\pm y_{t,SM}$

Threshold enhancement for a complex phase (no unitarity violation)

Summary of the results

0) ALL RESULTS ARE PRELIMINARY a paper will appear soon

- 1) NLO-QCD cross section with uncertainties at 13 Tev, including 5F/4F combination: $\sigma_{NLO} \sim 72 \text{ pb} \pm 13\%$
- NLO+PS event generation in MG5_aMC, 4F and 5F. Differential uncertainties show good agreement where expected; 4F possibly give better description of b-jets and extra radiation
- 3) Possibility of changing the phase of the top Yukawa to study Higgs' properties

Thanks for your attention!

backup slides

