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Why we need good detectors                  
in the forward regions
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• Many interesting events (e.g. H → γγ decays) occur in the central part of the 
detector
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• … but we have at least one important case where we need to well 
reconstruct particles (jets) in the forward region: vector boson scattering

Why we need good detectors                  
in the forward regions

4

CENTRAL

CENTRAL

FORWARD

FORWARD

FORWARD

FORWARD

WW



Vector boson scattering: the process
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Vector boson scattering: the process
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Vector boson scattering: the process

• two fermion pairs in the central part of the detector 

– eν+μν, eν+qq, μν, qq+qq  

• two high energy ‘tagging’ jets in the forward and backward region
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Vector boson scattering: the importance

• WW scattering is the smoking gun for the EWSB mechanism!
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regularizes the cross-section 

• the shape of the cross-
section is sensitive to the 
characteristics of the Higgs 
boson

is it the same Higgs we 
discovered in 2012?
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13



Vector boson scattering: the importance

• WW scattering is the smoking gun for the EWSB mechanism! 

• But: it is a very difficult and rare process to study: 
• need the help of two high-energy 
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Vector boson scattering: the importance

• WW scattering is the smoking gun for the EWSB mechanism! 

• But: it is a very difficult and rare process to study: 
• need the help of two high-energy 

forward jets to tag the event (1) 

• need the full 3000 fb-1 from HL-LHC

15

price to pay for luminosity:      
a lot of pileup!



Pile up affects mostly the forward region

16

event display of a 140 PU 
event in ATLAS

energy distribution in one CMS 
ECAL endcap @ PU = 140



Pile up affects mostly the forward region
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Pile up affects mostly the forward region
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Reconstructing jets 
the standard approach
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Reconstructing jets 
the high granularity approach
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Reconstructing jets 
the high granularity approach
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• for example, a neutron cluster can be identified (isolated from the rest of 
the shower, no tracks associated)



Reconstructing jets 
the high granularity approach
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• thanks to longitudinal segmentation, the cluster axis can be computed, 
and traced back to the proton-proton axis 

• if the cluster vertex is incompatible with the primary vertex (PV), this is 
likely to be coming from a PU vertex

PVPU



Reconstructing jets 
the high granularity approach
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• the jet can then be reconstructed without the spurious pile up 
contribution ⇒ granularity for vertexing and pile up rejection 

• these will be key features for a lot of Physics searches at the HL-LHC:   
vector boson scattering, VBF H→ττ, VBF H→invisible, dark matter, …
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Reconstructing jets 
the high granularity approach
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• the internal shape of the jet can be further studied and internal sub-
components identified ⇒ granularity for jet tomography 

• these will be key features for a lot of Physics cases at the HL-LHC:      
gluon/quark jet separation, boosted W bosons, soft PU removal, …



Upgrade concept 2: All-Silicon 
calorimeter + scint. backing calorimeter
• Silicon/lead-copper-tungsten e.m. (25 

X0, 1 λ) and silicon/brass front hadron 
(3.5 λ) calorimeter 

– 6.8 M channels, pad sizes 1.05 cm2 or 
0.53 cm2 depending on η 

• Scintillator-brass backing 
calorimeter (5.5 λ, low radiation 
zone)
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Mechanical structure
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Mechanical structure
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wedges 
to be glued 

together to form a 
monolithic 
structure

Wedge: carbon fibre 
structure with 

embedded W plates 
(3° tilt). Cassettes 

slid into slots 

Section of a cassette: 
• 6mm Cu plate+pipes in the 

middle for cooling
• Cu/W baseplate for 

modules in HGC-ECAL



Modules mechanics
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Challenges: radiation hardness

• @ HL-LHC, the silicon sensors of the HGC will be exposed to hadron fluences 
ranging from ~2∙1014 up to ~1016 1 MeV neutron equivalent / cm2 

• similar to the fluences expected in the CMS Phase II Tracker 

– shared R&D 

– but: neutron dominated (instead of charged hadrons)
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Challenges: cooling

• Operation at -30° C to mitigate silicon radiation damage  

– leakage current double every 7° C 

– target uniformity on Si surface: ∆T~1-2° C 

• Use of evaporative CO2 cooling    
(~200 W per cassette!) 

– CO2 lines embedded in Cu plates 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Challenges: data links and services

• Distribute data signal and power using narrow (0.5 mm thick) PCBs 
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• heavy copper for power 
distribution 

• twinax cables for data links



Challenges: data links and services

• Distribute data signal and power using narrow (0.5 mm thick) PCBs 

• Everything has to fit within the allowed 
2 mm air gap 

– seems to be feasible
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Challenges: calibration

• Goal: HGC is targeting a constant term smaller than 1% 

– In order to keep the contribution to the constant term below 0.5%,                                               
the inter-calibration error has to be kept below 5% 

– there are 8.7 M channels! 

• Electronics inter-calibration at 1 % level by charge pulse injection 

• Sensors inter-calibration from MIP signal 

– instrument each wafer with a special low-noise 
cell to have 1 MIP sensitivity 

– sensors uniformity within a wafer?
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Expected performance (e.m. part)
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cfr. present ECAL: 
σE/E ~ 3%/√E ⊕ 0.5%



Expected performance (e.m. part)

• Improvements expected from longitudinal segmentation:
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can ‘see’ the shower 
development in the different 

layers



Physics at e+e- colliders

• e+e- colliders provide a clean environment for precision physics

39



Physics at e+e- colliders
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Physics at e+e- colliders

• e+e- colliders provide a clean environment for precision physics 

• Precision studies/measurements: 

– Higgs sector, SUSY particle spectrum, SM particles (e.g. W, top) and much more 

– High-multiplicity final states ubiquitous, often 6/8 jets
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Physics at e+e- colliders

• Any future collider experiment geared towards precise measurements 
requires very good jet energy resolution to maximize physics reach.  

• Oft-quoted example: vector boson scattering
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Physics at e+e- colliders

• Any future collider experiment geared towards precise measurements 
requires very good jet energy resolution to maximize physics reach.  

• Oft-quoted example: vector boson scattering
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reconstruction of two di-jet masses discriminates 
between WW and ZZ final states 



LC jet energy resolution requirements

• Gauge boson width sets ‘natural’ goal for jet energy resolution:  

• 3-4% jet energy resolution gives decent 2.6-2.3 σ 
W/Z separation 

• Sets a reasonable choice for LC jet energy goal  

– For W/Z separation, not much further gain, limited by 
natural widths
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LC jet energy resolution requirements

• Gauge boson width sets ‘natural’ goal for jet energy resolution:
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Goal: ~3.5% jet energy resolution                        
for 100-500 GeV jets



LC jet energy resolution requirements

• Gauge boson width sets ‘natural’ goal for jet energy resolution:
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cfr. with CMS: 
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LC jet energy resolution requirements

• Gauge boson width sets ‘natural’ goal for jet energy resolution:
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cfr. with ATLAS: 
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Particle flow calorimetry
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Particle flow calorimetry
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Particle flow calorimetry
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Particle flow calorimetry
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Particle flow calorimetry
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Particle flow calorimetry
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• Particle flow in action: the CMS example



Bonus material
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CMS needs a large R&D effort                        
to survive to 2036…
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today
by 2023, 

major 
upgrades

R&D

The LHC schedule:



… because of two major challenges:
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electromagnetic calorimeter (η~3)  

pile up 
• 140 average simultaneous 

interactions 
• many events with up to 180 

interactions per bunch crossing



… because of two major challenges:
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radiation levels in the detector 
• predicted neutron fluence of about 

1016 n/cm2 in forward regions  
• ionizing dose up to 150 Mrad in CMS 

electromagnetic calorimeter (η~3)  

100 Mrad 
(1 MGy) 30 Mrad 

(300 kGy)

pile up 
• 140 average simultaneous 

interactions 
• many events with up to 180 

interactions per bunch crossing

need rad-tolerant materials

need fast-response detectors



ECAL and HCAL endcaps will need 
to be replaced during LS3 
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predicted ECAL endcap 
signal response  

versus integrated 
luminosity and η

predicted HCAL endcap 
signal response after 1000 fb-1 

versus active layer and η  



Upgrade concept 1: LYSO e.m. Shashlik + 
HCAL rebuild
• Electromagnetic calorimeter 

– Compact Pb/LYSO Shashlik using WLS based on 
quartz capillaries and readout using GaInP SiPMs 

• Hadron calorimeter: 

– Scintillator-based hadron calorimeter with 30% of 
volume replaced by “finger tiles” and 10% by a 
solution with higher radiation tolerance
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Vector boson scattering: the maths
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VV → VV

s-channel t-channel QGC

only if a 
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Vector boson scattering: the maths
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VV → VV

s-channel t-channel QGC

only if a 
Higgs-like 

particle exists

Theorists can compute the cross-section (i.e. the probability) 
of this process:

magic trick of the 
Higgs particle

without the Higgs, W+LW-L → W+LW-L 
violates unitarity (prob. > 1) at √s ≃  1.2 TeV


