
01.02.2010

Mainzer MarkenzeichenMainzer Markenzeichen

TRIGA Ionenfallen MAMI LHC IceCube

ultrakalte
Neutronen

Antiprotonen Hadronen-
struktur

Higgs, SUSY,
Extra-Dimensionen

Neutrinos

Energie [GeV]
101410410010-1310-18

� Anwendung komplementärer Methoden, Ansätze und
Experimente zur Verfolgung gemeinsamer Ziele

� Methodische Vielfalt

� Breiter Bereich der physikalischen Skalen;
„von den niedrigsten zu den höchsten Energien“

ERC Advanced Grant (EFT4LHC) 
An Effective Field Theory Assault on the 
Zeptometer Scale: Exploring the Origins of 
Flavor and Electroweak Symmetry Breaking

                                                Cluster of Excellence 
Precision Physics, Fundamental Interactions and Structure of Matter

Matthias Neubert 
Mainz Institute for Theoretical Physics

Johannes Gutenberg University


!
Higgs cross section working group meeting 
CERN, Geneva, 18 November 2014

RG-improved predictions for the inclusive 
Higgs cross section at the LHC

V. Ahrens, T. Becher, M. Neubert, L. L. Yang: 0808.3008 (PRD), 0809.4283 (EPJC), 1008.3162 (PLB)



Here I will discuss SCET-based, RG-resummed 
predictions for the inclusive Higgs cross section.!

Different methods !
• based on the same factorization formula !

• with same N3LL+NNLO (+N3LOpartial) accuracy!
can give fairly (~10%) different cross sections, due 
to different choices of:!

• expansion parameters (power corrections) !

• treatment of large virtual corrections!

• scale setting prescriptions
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PDF uncertainty for MSTW, 
CT10, CTEQ and NNPDF  

run time is ~1.5 min

Available partial N3LO results (hard and soft functions) are currently 
being implemented!
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Results for cross section (N3LL+NNLO)

• Based on MSTW08NNLO: !

• ± 8% (PDF + αs) uncertainty @ 90% CL!

• ± 4% (PDF + αs) uncertainty @ 68% CL!

• PDF4LHC prescription gives +8/-7% uncertainty!

• Numerically, there is excellent agreement for σ !

 σ [pb] scale unc. Δσ [%]
iHixs 15,37 +9/-8
deFG 15,40 +7/-8

RGHiggs 15,43 +3/-1
(mH =125 GeV, LHC 7 TeV, mt =173.1 GeV, mb =4.2 GeV)

(not the most up-to-date results…)
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Differences
Several differences in these results are hidden by the 
excellent numerical agreement:!

• We find that soft-gluon resummation alone 
increases the cross section by 3%, dFG find 8%. 
This means more than a factor 2 difference in the 
resummation itself!!

• Different treatment of the hard function in our 
approach (“π2 resummation”) yields 9% increase. 
Once this is done, soft-gluon resummation itself 
becomes a small effect.!

• iHixs uses μ=MH/2, which enhances σ  by 10% 
compared with μ=MH. 

→ power corrections are important!

→ might help to reduce remaining 
ambiguities at N3LO!
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Some issues  
in soft-gluon resummation

Im



Common first step: integrate out the top

For                   we can integrate out the top quark, i.e. 
replace the SM by an effective theory with            .!

Calculations in EFT are much simpler (one loop and one 
scale less). NNLO results are only available in EFT.!

Ct is known to N3LO and shows excellent convergence. 
Power corrections (mH/mt)2  turn out to be small.

mH � 2mt

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
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where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [27] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [27]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [30–34]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5 nf = 5
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Factorization theorem

Scale of soft radiation is lower than mH : large logarithms (?)

H

p
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2

hard function soft function parton luminosity

soft radiation

Sterman ’87; Catani & Trentadue ’88  

⌧ =
m2

H

s
⇡ 0.0003

H(m2
H , µ)

Z 1

⌧

S(
p
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Dynamical threshold enhancement ?

Fall-off is not very strong. We find that the typical 
scale of “soft” radiation is of order MH/2, meaning 
that there are no parametrically large logarithms!

(1� x)12

z�2

⌧ =
m2

H

s
⇡ 0.0003

Becher, MN, Xu ‘07 

x = ⌧/z

f
f

g
g
(x
)
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Dynamical threshold enhancement ?

Find that approximately (with                         ):!

!

The threshold region is not strongly enhanced!
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [27] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [27]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [30–34]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246 GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to
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Dynamical threshold enhancement ?

In moment space, dominant contributions arise from 
N ~ 2. Numerical dominance of threshold terms can 
only be justified a posteriori ! ## #
It might deteriorate for multiple emissions…

(1� x)12

z�2

⌧ =
m2

H

s
⇡ 0.0003

Becher, MN, Xu ‘07 

x = ⌧/z

f
f

g
g
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Dynamical threshold enhancement ?

For Higgs production at the LHC, hard emissions are 
not strongly suppressed by PDFs.!

Expansion around the soft limit (z➞1, N➞∞) has an 
expansion parameter ~1/2, and hence the threshold 
enhancement cannot be justified parametrically:!

• Exact choice of expansion parameter (or space 
in which the expansion is performed) matters!

• Significant scheme dependence from different 
treatments of “power-suppressed” terms

8M. Neubert — RG-improved predictions for the inclusive Higgs cross section at the LHC 



Three differences



Three differences
1. Integral transform & choice of singular distributions!

• Mellin moments!

• Laplace transform (in Es)!
2. Scale setting for soft emissions!

• on the partonic level!

• on the hadronic level!
3. Evaluation of the hard function!

• time-like matching!

• space-like matching & RG evolution (π2 terms)

BLUE: de Florian, Grazzini                 GREEN: Ahrens, Becher, MN, Yang
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Soft emissions give rise to singular distributions in 
partonic cross section Cgg, which can be written as:!

!

!

!

Resummation predicts these singular distributions to 
all orders in perturbation theory.

1. Soft emissions and singular terms

1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
We start from the cross section formula for Higgs production via gluon fusion in the heavy

quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
gluon initialized channel, which is the subject of threshold resummation:

⌅(⇧) = ⌅0(µf )

⌥ 1
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z
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Second form is particularly natural, since the exact 
results for the hard-scattering kernels involve 
precisely these logarithms (at least to NNLO):!

!

!

!

In this sense, the SCET approach nicely matches 
onto fixed-order results!

1. Soft emissions and singular terms

denotes the Born-level cross section in units of the gluon-gluon luminosity ffgg(τ, µf). The
function A(xq) results from a quark loop connecting two gluons with the Higgs boson. It
approaches 1 for xq → ∞ and vanishes proportional to xq for xq → 0. It follows that Higgs-
boson production is predominantly mediated by a top-quark loop, while the contributions from
lighter fermions are strongly suppressed. We include radiative corrections in the heavy top-
quark limit, i.e., we will only keep logarithmic top-mass dependence in the hard-scattering
kernels Cij(z, mt, mH , µf). For not too heavy Higgs-boson masses the terms suppressed by
powers of the top-quark mass are numerically very small. Leaving them out greatly simplifies
the calculation, since one can then use an effective Lagrangian obtained after integrating out
the top quark.

Because they are suppressed by xq, the only numerically relevant correction due to lighter
fermions is the bottom-quark loop contribution. Its main effect is due to its interference with
the top-quark loop, which is well approximated by writing |

∑
q A(xq)|2 ≈ (1−ϵb) |A(xt)|2 with

ϵb =
3xb

4

(
ln2 4

xb
− π2 − 4

)
. (5)

While using the pole mass is appropriate for the top quark, the virtual b-quarks in Higgs-boson
production are far off their mass shell, and one should thus use the MS quark mass at the
Higgs mass scale when evaluating the bottom-quark contribution. At mH = 120 GeV we take
mb ≈ 2.8GeV, and the presence of the bottom-quark loop term in (3) reduces the cross section
by 6.5%. For comparison, the above approximate treatment would yield ϵb = 7.0%. Since the
b-quark contribution scales like 1/m2

H , it becomes smaller for higher Higgs-boson masses.
To validate these approximations numerically we have used the computer code [28], which

includes the exact quark-mass dependence at NLO [9, 10]. For the range 120 GeV < mH <
300 GeV we find that the full NLO fixed-order result is about 1% lower than what is obtained
with the above Born-level treatment of finite top-mass effects. The difference is negligible
compared to other uncertainties. Also, using the same code we find that the inclusion of the
b-quark loop decreases the NLO cross section by about 6% at mH = 120 GeV and about 2%
at mH = 300 GeV, in good agreement with the approximate lowest-order treatment described
above.

The variable z = m2
H/ŝ in (1) measures the ratio of the Higgs-boson mass to the parton-

parton center-of-mass energy
√

ŝ. The limit z → 1 is referred to as the “partonic threshold
region”. This is the region near Born kinematics, in which the colliding partons have just
enough energy to produce the Higgs boson. It is an empirical fact that in many cases this
region gives the dominant contributions to the cross section. In Section 3 we will resum these
contributions to all orders in perturbation theory.

The sum in (1) extends over all possible combinations of initial partons, but only Cgg

contributes at the Born level and contains the leading singular terms in the limit z → 1. We
split off these terms by writing

Cgg(z, mt, mH , µf) = C(z, mt, mH , µf) + Creg
gg (z, mt, mH , µf) , (6)

where the second piece does not contain singular distributions for z → 1. The explicit expres-
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sion for the leading singular terms through O(α2
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where we have defined the distributions
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+

. (8)

The reason for including a factor 1/z in the argument of the logarithm was explained in [27].
The remaining contributions to the hard-scattering kernels are free of singular distributions.
At NLO they read
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In these expressions αs ≡ αs(µ2
f ), and we do not distinguish between the factorization and

renormalization scales. Note that the coefficients of the ln[m2
H(1− z)2/µ2

fz] terms are propor-
tional to the Altarelli-Parisi splitting functions.

To visualize the numerical importance of the leading singular terms for Higgs-boson pro-
duction, we compare the contributions from these terms with the complete fixed-order results
in Figure 1. Throughout our analysis we use MRST2006NNLO PDFs [29] and the associ-
ated normalization αs(m2

Z) = 0.1191 ± 0.0036 of the running coupling constant, unless noted
otherwise. We use three-loop running and nf = 5 light quark flavors. The figure shows that
the complete fixed-order results are well approximated by the leading singular terms. Taking
mH = µf = 120 GeV as an example, the leading singular terms contribute 96% (94%) of the
NLO (NNLO) cross section at the Tevatron, and 90% (86%) of the NLO (NNLO) cross section
at the LHC. More specifically, for the LHC this means that 82% (74%) of the NLO (NNLO)
correction term are captured by the coefficient C in (7). Note also that only −1% (−8%)
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→ still true at (αs2)!
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To perform the resummation one takes the Laplace 
or Mellin moment transform of the cross section.!

!

!

• In the SCET approach, we solve the RGEs in 
Laplace space and then invert analytically. !

• Traditionally, resummation is performed in 
moment space, with a numerical inversion at 
the end.

Integral transform

where the plus-distribution is defined by

⇧ 1

0

dz
�
f(z)

⇥
+

g(z) ⇥
⇧ 1

0

dz f(z)
�
g(z)� g(1)

⇥
. (5)

Note that since resummation works in the limit z ⇤ 1, the di�erence between using Pn(z)
and P ⇥

n(z), which is proportional to ln(z), is subleading in 1� z.

2 Formal equivalence of resummation approaches

The resummation of such terms in Eq. (4) have been achieved in the pioneer works [5, 6],
and have been recasted in the language of soft-collinear e�ective theory (SCET) in [7–9].
In the context of Higgs production, the most recent results are the next-to-next-to-leading-
log (NNLL) resummation in [1, 2] (in terms of Pn(z)) and next-to-next-to-next-to-leading-log
(N3LL) resummation in [3, 4] (in terms of P ⇥

n(z)). Although using di�erent languages in the
derivation, di�erent approaches arrive in similar factorization formulas for the partonic cross
section, which in [3] is of the form

C(z, mt, mH , µf ) =
⌃
Ct(mt, µf )

⌥2

H(mH , µf ) S(
�

ŝ(1� z), µf ) . (6)

Resummation is then achieved by solving the evolution equations of the various functions Ct,
H, and S. While the evolution equations for Ct and H are easy to solve, that for S can be
solved only with the help of Laplace transform (used in [3]) or Mellin transform (used in [1]),
which are defined respectively by

LN

�
f(⇥)

⇥
⇥

⇧ ⇤

0

d⇥ e�⇥N f(⇥) , (7)

MN

�
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⇥
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⇧ 1

0

d⇥ (1� ⇥)N�1 f(⇥) , (8)

where ⇥ can be either (1 � z)/
�

z or 1 � z depending on whether or not one wants to resum
also some subleading terms proportional to ln(z). For the purpose of this section, we will
set ⇥ = 1 � z and will discuss the di�erent choices later. Under these transforms, the plus-
distributions become logarithms of N , e.g.,
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where N̄ = Ne�E . Note that Mellin transform and Laplace transform are equivalent in the
limit N ⇤ ⌅, and di�er only by terms of the order 1/N . This is the reason that we have
used the same symbol N for the moment variable in both Mellin and Laplace spaces. In the
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n(z), which is proportional to ln(z), is subleading in 1� z.
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limit N ⇤ ⌅, and di�er only by terms of the order 1/N . This is the reason that we have
used the same symbol N for the moment variable in both Mellin and Laplace spaces. In the
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Threshold limit z➞1 corresponds to expansion 
around N➞∞. Mellin- and Laplace-space results are 
the same after 1/N expansion.  

Difference arises in the inverse transform:

Singular terms from Mellin inversion

Mellin

Laplace

1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
We start from the cross section formula for Higgs production via gluon fusion in the heavy

quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
gluon initialized channel, which is the subject of threshold resummation:

⌅(⇧) = ⌅0(µf )

⌥ 1

�

dz

z
Cgg(z, mt, mH , µf ) ffgg(⇧/z, µf ) , (1)

where

⌅0(µf ) =
GF⌅

2

�2
s(µf )

288⇤

�����
⌃

q

A(xq)

�����

2

⇧ (2)

with ⇧ = m2
H/s and s being the hadronic center-of-mass energy, Cgg(z,mt, mH , µf ) is related

to the partonic cross section and ffgg is the gluon luminosity function

ffgg(y, µf ) =

⌥ 1

y

dx

x
fg/N1(x, µf ) fg/N2(y/x, µf ) . (3)

Here and below for simplicity we do not distinguish the renormalization scale and the fac-
torization scale, and denote both as µf . The renormalization scale dependence can be easily
recovered by expressing �s(µf ) in terms of �s(µr). The function A(xq) with xq ⇤ 4m2

q/m
2
H

comes from the heavy quark loop at leading order and can be found in [3].
The objects to resum are the singular distributions in Cgg(z,mt, mH , µf ) of the form

Pn(z) =

⌅
lnn(1� z)

1� z

⇧

+

or P �
n(z) =

⌅
1

1� z
lnn

⇥
1� z⌅

z
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+

, (4)
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(� lnN)n+1
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= 4P3(z)� 2⇧2P1(z) + 8⌅3P0(z) +

⇧4

60
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The Mellin transform of Pn(z) is approximately the same as the Laplace transform up
to terms suppressed by 1/N . For completeness, we note that the exact transform can be
generated by

⇧ 1

0

dz zN�1 (1� z)�1+� =
�(⇤)�(N)

�(N + ⇤)
. (52)

To compute the inverse Mellin transform of lnn N̄ , we use the formula

⇧ 1

0

dz zN�1 (� ln z)�1+� = N���(⇤) , (53)

and again expand both sides in ⇤. The results read
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lnn(� ln z)
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Singular terms from Mellin inversion

The main difference between the two last approaches 
is a factor of      :!

!

!

!

!

On the other hand, the simple Laplace inversion 
giving rise to              terms is not favored by the  
structure of fixed-order expressions!

� ln z =
1� zp

z
+O ⇥

(1� z)3
⇤

p
z

lnn(� ln z)
� ln z

⇡
p

z ⇥
lnn 1�zp

z

1� z

such terms do arise in !
fixed-order computation 

power correction at !
threshold z=1

1 Introduction

Techniques for resumming threshold logarithms have been well established in quantum chro-
modynamics (QCD). However, di�erent approaches exist in the literature and often lead to
visible numerical di�erences. In the case of Higgs production via gluon fusion, there are two
resummation calculations [1,2] and [3,4], which made di�erent claims about the size of the re-
summation e�ect beyond next-to-next-to-leading-order (NNLO). Therefore, it is necessary to
clarify the di�erence between these two approaches, which can be summarized in the following
points:

• Di�erent integral transforms;

• Di�erent choices of the soft scale;

• Di�erent subleading terms.

• In [3, 4], another class of corrections arising from analytical continuation, which appear
in the form of (CA�s⇤)n, are resummed.

The purpose of this paper is then to investigate the e�ects from these di�erences separately.
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quark limit. Neglecting suppressed partonic channels at higher orders, we only show here the
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to the partonic cross section and ffgg is the gluon luminosity function
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fg/N1(x, µf ) fg/N2(y/x, µf ) . (3)

Here and below for simplicity we do not distinguish the renormalization scale and the fac-
torization scale, and denote both as µf . The renormalization scale dependence can be easily
recovered by expressing �s(µf ) in terms of �s(µr). The function A(xq) with xq ⇤ 4m2
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LO NLO NNLO NNNLO
full 4,69 5,96 3,71 ?

Laplace 4,69 4,48 1,68 0,16
Laplace 4,69 5,12 2,87 1,00

Mellin 4,69 5,74 3,71 1,61
13% of LO

Singular terms up to N3LO

• Large differences between schemes indicate the 
importance of power corrections!!

• The singular pieces in the Mellin approach are 
very close to the full results, but given that there is 
no parametric reason this seems to be accidental.

Ahrens et al. 
(SCET)

(LHC@7 TeV, μr =μf =mH)

de Florian et al. 
(QCD)
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LO NLO NNLO NNNLO
full 13,7 17,6 10,6 ?

Laplace 13,7 12,5 4,36 0,34
Laplace 13,7 14,6 7,90 2,64

Mellin 13,7 16,4 10,3 4,32
12% of LO

Singular terms up to N3LO

Ahrens et al. 
(SCET)

(LHC@13 TeV, μr =μf =mH)

de Florian et al. 
(QCD)

• Large differences between schemes indicate the 
importance of power corrections!!

• The singular pieces in the Mellin approach are 
very close to the full results, but given that there is 
no parametric reason this seems to be accidental.
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LO NLO NNLO NNNLO
full 5,74 6,97 3,17 ?

Laplace 5,74 4,19 1,00 -0,028
Laplace 5,74 5,08 1,89 0,226

Mellin 5,74 5,42 2,22 0,371
2,5% of LO

Singular terms up to N3LO

Ahrens et al. 
(SCET)

(LHC@7 TeV, μr =μf =mH/2)

de Florian et al. 
(QCD)

• For different scale choices, matching corrections 
at LO and NLO can be larger (and similar) in both 
approaches.
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LO NLO NNLO NNNLO
full 16,0 20,6 9,39 ?

Laplace 16,0 11,3 2,67 -0,003
Laplace 16,0 14,1 5,20 0,629

Mellin 16,0 14,9 5,99 0,953
2,0% of LO

Singular terms up to N3LO

Ahrens et al. 
(SCET)

(LHC@13 TeV, μr =μf =mH/2)

de Florian et al. 
(QCD)

• For different scale choices, matching corrections 
at LO and NLO can be larger (and similar) in both 
approaches.
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2. Choice of the soft scale

µ =
p

ŝ(1� z)

Appropriate scale μ in the soft radiation? Can set scale 
either at:!

• partonic level: set                          and give a 
prescription for Landau pole !

• hadronic level: set μ equal to the average 
energy of soft radiation, determined numerically 
(result: μ~MH/2) 

Numerically, the two prescriptions give very similar 
results

(see e.g.: Sterman, Zeng 1312.5397; Bonvini, Forte, Ridolfi, Rottoli 1409.0864)

Z 1

⌧
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ŝ(1� z), µ)ffgg(⌧/z, µ)
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dz
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3. Choice of the hard scale 

• Hard function is scale dependent.!

• Naively, contains large corrections for any μ2 !

µ2/m2
H

0.2 0.5 1 2 5
0.8

1.0

1.2

1.4

1.6

1.8

2.0

H
(m

2 H
,µ

2
)

LO

NLO
NNLO

NNNLO Heinrich et al. ’09;  Baikov et al. ‘09; !
T. Gehrmann et al. ’10
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• Hard function!

• Scalar form factor:!

!

!

!

• Perturbative expansions:

Time-like gluon form factor

ar
X

iv
:0

8
0

8
.3

0
0

8
v

1
  

[h
ep

-p
h

] 
 2

1
 A

u
g

 2
0

0
8

FERMILAB-PUB-08-310-T
MZ-TH/08-25

Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders
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The very large K-factor for Higgs-boson production at hadron colliders is shown to result from
enhanced perturbative corrections of the form (CAπαs)

n, which arise in the analytic continuation
of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders
in perturbation theory using the renormalization group. After the resummation, the K-factor for
the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iϵ, µ2)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,
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H , µ2) =

∣

∣CS(−m2
H − iϵ, µ2)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iϵ, µ2)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iϵ, µ2)

∣

∣

2
. (5)

2

The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]

dCS(Q2, µ2)

d lnµ
=

[

ΓA
cusp(αs) ln

Q2

µ2
+ γS(αs)

]

CS(Q2, µ2) ,

(6)
where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
infrared divergences of the on-shell form factor [9]. Us-
ing results from [18] it can be derived to three-loop order
[16]. The evolution equation (6) links the coefficients of
the logarithmic terms in (3) to coefficients in the perturba-
tive expansions of the anomalous dimensions and the QCD
β-function. At one-loop order we have

c1(L) = −
ΓA

0

4
L2 −

γS
0

2
L + CA

π2

6
, (7)

where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2

s(Q
2) + . . . . (8)

The nature of the expansion changes drastically when the
same coefficient is evaluated at time-like momentum trans-
fer Q2 = −q2 − iϵ. We then obtain

CS(−q2, q2) = 1 + 2.75 αs(q
2) + (4.84 + 2.07i)α2

s(q
2)

+ . . . . (9)

The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iϵ prescription)

CS(−q2,−µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(−µ2)

4π

)n

(11)

with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain

CS(−q2,−q2) = 1 + 0.393 αs(−q2) − 0.152 α2
s(−q2) + . . .

(12)
instead of (9). The perturbative series analogous to that
in (10) reads

|CS(−m2
H ,−m2

H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iϵ. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[

2S(−µ2, µ2) − aγS (−µ2, µ2)

− aΓ(−µ2, µ2) ln
m2

H

µ2

]

, (18)

2

The Wilson coefficient obeys an evolution equation, which
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of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
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this effect is that the Sudakov (double) logarithms con-
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section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
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Z) = 0.118 as our normalization
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plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[

2S(−µ2, µ2) − aγS (−µ2, µ2)

− aΓ(−µ2, µ2) ln
m2

H

µ2

]

, (18)

Sudakov double logarithm

time-like:
space-like:

time-like gluon form factor

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =

⎧

⎨

⎩

arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2
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Time-like gluon form factor

• Replacement                               in double logs gives 
rise to large π2 terms, which can be resummed!

• We can avoid these terms in the matching by 
choosing a time-like value                    !

!

!

• Large π2 terms are resummed in the RG evolution of 
the hard function to the scale μf  

2

The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]

dCS(Q2, µ2)

d lnµ
=

[

ΓA
cusp(αs) ln

Q2

µ2
+ γS(αs)

]

CS(Q2, µ2) ,

(6)
where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
infrared divergences of the on-shell form factor [9]. Us-
ing results from [18] it can be derived to three-loop order
[16]. The evolution equation (6) links the coefficients of
the logarithmic terms in (3) to coefficients in the perturba-
tive expansions of the anomalous dimensions and the QCD
β-function. At one-loop order we have

c1(L) = −
ΓA

0

4
L2 −

γS
0

2
L + CA

π2

6
, (7)

where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2

s(Q
2) + . . . . (8)

The nature of the expansion changes drastically when the
same coefficient is evaluated at time-like momentum trans-
fer Q2 = −q2 − iϵ. We then obtain

CS(−q2, q2) = 1 + 2.75 αs(q
2) + (4.84 + 2.07i)α2

s(q
2)

+ . . . . (9)

The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iϵ prescription)

CS(−q2,−µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(−µ2)

4π

)n

(11)

with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain

CS(−q2,−q2) = 1 + 0.393 αs(−q2) − 0.152 α2
s(−q2) + . . .

(12)
instead of (9). The perturbative series analogous to that
in (10) reads

|CS(−m2
H ,−m2

H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iϵ. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[

2S(−µ2, µ2) − aγS (−µ2, µ2)

− aΓ(−µ2, µ2) ln
m2

H

µ2

]

, (18)

Parisi ’80; Ahrens, Becher, MN, Yang ‘08

→ same small expansion coefficients as for

L ! ln q2/µ2 � i⇡

µ2 = �q2

CS(Q
2, Q2)
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Time-like vs. space-like scale choice

• Convergence is much better for !

• Evaluate H  for            , where the convergence is 
good, and use RG to evolve it to an arbitrary scale
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NNNLO Heinrich et al. ’09;  Baikov et al. ‘09; !
T. Gehrmann et al. ’10
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Fixed-order vs. resummed results
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].

18

No large K-factors!
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Conclusions

• Higgs production cross section is not strongly 
dominated by partonic threshold contribution; 
related expansion parameter is ~1/2 !!

• As a result, a significant scheme dependence in 
soft-gluon resummation due to the truncation of 
“power corrections” remains at NNLO. !

• Large corrections arising from time-like gluon form 
factor and contained in the hard function H can and 
should be resummed using RG methods!!

• This might help reducing the ambiguities in the 
matching to recent partial N3LO results (subleading 
terms in threshold expansion). Anastasiou et al. 1411.3584
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LO NLO NNLO NNNLO
full 13,7 17,6 10,6 ?

Laplace 13,7 12,5 4,36 0,34
Laplace 13,7 14,6 7,90 2,64

Mellin 13,7 16,4 10,3 4,32
12% of 

LO

Conclusions
(LHC@13 TeV, μr =μf =mH)Entire cross section:

PRELIMINARYLO NLO NNLO NNNLO
full 13,7 9,17 2,03 ?

Laplace 13,7 4,05 -1,09 -0,478
Laplace 13,7 6,10 1,18 -0,011

Mellin 13,7 7,94 2,46 0,486
3,6% of 

LO

Cross section divided by the hard function:
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Conclusions

• Today, theory uncertainties are dominated by PDF 
errors and the treatment of yet unknown subleading 
threshold terms (not by scale dependences)!!

• These should be estimated by comparing different 
schemes, e.g. de Florain & Grazzini vs. Ahrens et al.!

• Before presenting our final numbers in the SCET 
approach, we will:!

✦ include known N3LO contributions to the hard and 
soft functions!

✦ match onto recently computed, partial N3LO results 
for subleading threshold terms
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