RG-improved predictions for the inclusive Higgs cross section at the LHC

Matthias Neubert

Mainz Institute for Theoretical Physics Johannes Gutenberg University

Higgs cross section working group meeting CERN, Geneva, 18 November 2014

Precision Physics, Fundamental Interactions and Structure of Matter

ERC Advanced Grant (EFT4LHC) An Effective Field Theory Assault on the Zeptometer Scale: Exploring the Origins of Flavor and Electroweak Symmetry Breaking

V. Ahrens, T. Becher, M. Neubert, L. L. Yang: 0808.3008 (PRD), 0809.4283 (EPJC), 1008.3162 (PLB)

Here I will discuss SCET-based, RG-resummed predictions for the inclusive Higgs cross section.

Different methods

- based on the same factorization formula
- with same N³LL+NNLO (+N³LO_{partial}) accuracy

can give fairly (~10%) different cross sections, due to different choices of:

- expansion parameters (power corrections)
- treatment of large virtual corrections
- scale setting prescriptions

😁 🔿 🔿 Termina	al — bash — 70>	<42	\frown					
becher:~/Documents/Software/RGHiggs-1.1> ./RunHiggs.py 7000 125(MSTW) 🚆								

Higgs production at the LHC in NNLO RG-improved QCD								

Using MSTW PDF sets			enainly for MSTW	,				
sarts - 7000 GeV		CI 10, CI	EQ and NNPDF					
m H = 125 0 GeV								
Cross sections with scale uncer	tainties ((pb)						
Fixed order:	13.443	+1.431	-1.373					
Fixed order + EW:	14.135	+1.504	-1.443					
Only threshold resummed: 13.834 +0.703 -0.171								
Only pi^2 resummed: 14.618 +0.549 -0.636								
Threshold+pi^2 resummed: 14.679 +0.415 -0.112								
Threshold+pi^2 resummed + EW:	15.434	+0.436	-0.118					
Cross sections with PDF+alpha_s	uncertain	nties (pb)						
Fixed order: 13.443 +1.001 -0.968								
Fixed order + EW:	14.135	+1.053	-1.018					
Only threshold resummed:	13.834	+1.051	-1.014					
Only pi^2 resummed:	14.618	+1.166	-1.118					
Threshold+pi^2 resummed:	14.679	+1.172	-1.124					
Threshold+pi^2 resummed + EW:	15.434	+1.232	-1.182					
becher:~/Documents/Software/RGHiggs-1.1> run time is ~1.5 min								

Available partial N³LO results (hard and soft functions) are currently being implemented!

Results for cross section (N³LL+NNLO)

(not the most up-to-date results...)

	σ [pb]	scale unc. $\Delta\sigma$ [%]
iHixs	15,37	+9/-8
deFG	15,40	+7/-8
RGHiggs	15,43	+3/-1

 $(m_H = 125 \text{ GeV}, \text{LHC 7 TeV}, m_t = 173.1 \text{ GeV}, m_b = 4.2 \text{ GeV})$

- Based on MSTW08NNLO:
 - \pm 8% (PDF + α_s) uncertainty @ 90% CL
 - $\pm 4\%$ (PDF + α_s) uncertainty @ 68% CL
 - PDF4LHC prescription gives +8/-7% uncertainty
- Numerically, there is excellent agreement for σ !

Differences

Several differences in these results are hidden by the excellent numerical agreement:

- We find that soft-gluon resummation alone increases the cross section by 3%, dFG find 8%. This means more than a factor 2 difference in the resummation itself! → power corrections are important!
- Different treatment of the hard function in our approach ("π² resummation") yields 9% increase.
 Once this is done, soft-gluon resummation itself becomes a small effect. → might help to reduce remaining ambiguities at N³LO!
- iHixs uses $\mu = M_H/2$, which enhances σ by 10% compared with $\mu = M_H$.

in soft-gluon resummation

Common first step: integrate out the top

For $m_H \ll 2m_t$ we can integrate out the top quark, i.e. replace the SM by an effective theory with $n_f = 5$.

Calculations in EFT are much simpler (one loop and one scale less). NNLO results are only available in EFT.

 C_t is known to N³LO and shows excellent convergence. Power corrections $(m_H/m_t)^2$ turn out to be small.

Factorization theorem

Sterman '87; Catani & Trentadue '88

Scale of soft radiation is lower than m_H : large logarithms (?)

Fall-off is not very strong. We find that the typical scale of "soft" radiation is of order $M_H/2$, meaning that there are no parametrically large logarithms!

Find that approximately (with $a - 1 \approx 1.5$):

$$\sigma \approx \sigma_{\rm Born} \int_0^1 dz \, z^{a-1} \, C(z, m_t, m_H, \mu_f)$$

The threshold region is not strongly enhanced!

M. Neubert - RG-improved predictions for the inclusive Higgs cross section at the LHC

In moment space, dominant contributions arise from $N \sim 2$. Numerical dominance of threshold terms can only be justified *a posteriori* !

It might deteriorate for multiple emissions...

For Higgs production at the LHC, hard emissions are not strongly suppressed by PDFs.

Expansion around the soft limit ($z \rightarrow 1$, $N \rightarrow \infty$) has an expansion parameter ~1/2, and hence the threshold enhancement cannot be justified parametrically:

- Exact choice of expansion parameter (or space in which the expansion is performed) matters
- Significant scheme dependence from different treatments of "power-suppressed" terms

Three differences

Three differences

- 1. Integral transform & choice of singular distributions
 - Mellin moments
 - Laplace transform (in E_s)
- 2. Scale setting for soft emissions
 - on the partonic level
 - on the hadronic level
- 3. Evaluation of the hard function
 - time-like matching
 - space-like matching & RG evolution (π^2 terms)

BLUE: de Florian, Grazzini GREEN: Ahrens, Becher, MN, Yang

1. Soft emissions and singular terms

$$\sigma(\tau) = \sigma_0(\mu_f) \int_{\tau}^1 \frac{dz}{z} C_{gg}(z, m_t, m_H, \mu_f) ff_{gg}(\tau/z, \mu_f)$$

Soft emissions give rise to singular distributions in partonic cross section C_{gg} , which can be written as:

$$\left[\frac{\ln^{n}(1-z)}{1-z}\right]_{+} \quad \text{or} \quad \left[\frac{1}{1-z}\ln^{n}\left(\underbrace{1-z}{\sqrt{z}}\right)\right]_{+} \frac{2E_{s}(z)}{M_{H}}$$

Resummation predicts these singular distributions to all orders in perturbation theory.

1. Soft emissions and singular terms

Second form is particularly natural, since the exact results for the hard-scattering kernels involve precisely these logarithms (at least to NNLO):

$$C_{gg}(z, m_t, m_H, \mu_f) = \delta(1-z) + \frac{\alpha_s}{\pi} \left[\delta(1-z) \left(\frac{11}{2} + 2\pi^2 \right) + 6 \left[\frac{1}{1-z} \ln \frac{m_H^2(1-z)^2}{\mu_f^2 z} \right]_+ + 6 \left(\frac{1}{z} - 2 + z - z^2 \right) \ln \frac{m_H^2(1-z)^2}{\mu_f^2 z} - \frac{11}{2} \frac{(1-z)^3}{z} \right]$$

$$C_{gq}(z, m_t, m_H, \mu_f) = \frac{\alpha_s}{\pi} \left[\frac{2}{3} \frac{1 + (1-z)^2}{z} \ln \frac{m_H^2(1-z)^2}{\mu_f^2 z} + \frac{2z}{3} - \frac{(1-z)^2}{z} \right]$$

$$\Rightarrow \text{ still true at } (\alpha_s^2)!$$

In this sense, the SCET approach nicely matches onto fixed-order results!

Integral transform

To perform the resummation one takes the Laplace or Mellin moment transform of the cross section.

$$\mathcal{L}_N[f(\xi)] \equiv \int_0^\infty d\xi \, e^{-\xi N} \, f(\xi)$$

$$\mathcal{M}_N[f(\xi)] \equiv \int_0^1 d\xi \, (1-\xi)^{N-1} f(\xi)$$

- In the SCET approach, we solve the RGEs in Laplace space and then invert analytically.
- Traditionally, resummation is performed in moment space, with a numerical inversion at the end.

Singular terms from Mellin inversion

Threshold limit $z \rightarrow 1$ corresponds to expansion around $N \rightarrow \infty$. Mellin- and Laplace-space results are the same after 1/N expansion.

Difference arises in the inverse transform:

Singular terms from Mellin inversion

$$-\ln z = \frac{1-z}{\sqrt{z}} + \mathcal{O}\left[(1-z)^3\right]$$

The main difference between the two last approaches is a factor of \sqrt{z} :

	LO	NLO	NNLO	NNNLO	
full	4,69	5,96	3,71	?	
Laplace	4,69	4,48	1,68	0,16	
Laplace	4,69	5,12	2,87	1,00	Ahrens <i>et al.</i> (SCET)
Mellin	4,69	5,74	3,71	1,61	de Florian <i>et a</i> (QCD)
				120/oflO	-

(LHC@7 TeV, $\mu_r = \mu_f = m_H$)

- 13% of LO
- Large differences between schemes indicate the importance of power corrections!
- The singular pieces in the Mellin approach are very close to the full results, but given that there is no parametric reason this seems to be accidental.

	LO	NLO	NNLO	NNNLO	
full	13,7	17,6	10,6	?	
Laplace	13,7	12,5	4,36	0,34	
Laplace	13,7	14,6	7,90	2,64	Ahrens <i>et a</i> (SCET)
Mellin	13,7	16,4	10,3	4,32	de Florian <i>et</i> (QCD)
(LHC@13 TeV, $\mu_r = \mu_f = m_H$)			12% of LO	-	

 $(L \square \cup @ I \cup I e v, \mu_f = \mu_f = I I H)$

- Large differences between schemes indicate the importance of power corrections!
- The singular pieces in the Mellin approach are very close to the full results, but given that there is no parametric reason this seems to be accidental.

	LO	NLO	NNLO	NNNLO	
full	5,74	6,97	3,17	?	
Laplace	5,74	4,19	1,00	-0,028	
Laplace	5,74	5,08	1,89	0,226	Ahrens <i>et al.</i> (SCET)
Mellin	5,74	5,42	2,22	0,371	de Florian <i>et al</i> (QCD)
(LHC@7 TeV, $\mu_r = \mu_f = m_H/2$) 2,5% of LO					-

 For different scale choices, matching corrections at LO and NLO can be larger (and similar) in both approaches.

	LO	NLO	NNLO	NNNLO	
full	16,0	20,6	9,39	?	
Laplace	16,0	11,3	2,67	-0,003	
Laplace	16,0	14,1	5,20	0,629	Ahrens <i>et al.</i> (SCET)
Mellin	16,0	14,9	5,99	0,953	de Florian <i>et al</i> (QCD)
(LHC@13 TeV, $\mu_r = \mu_f = m_H/2$) 2,0% of LO					

 For different scale choices, matching corrections at LO and NLO can be larger (and similar) in both approaches.

2. Choice of the soft scale

$$\int_{\tau}^{1} \frac{dz}{z} S(\sqrt{\hat{s}}(1-z),\mu) ff_{gg}(\tau/z,\mu)$$

Appropriate scale μ in the soft radiation? Can set scale either at:

- partonic level: set $\mu = \sqrt{\hat{s}(1-z)}$ and give a prescription for Landau pole
- hadronic level: set μ equal to the average energy of soft radiation, determined numerically (result: $\mu \sim M_H/2$)

Numerically, the two prescriptions give very similar results

(see e.g.: Sterman, Zeng 1312.5397; Bonvini, Forte, Ridolfi, Rottoli 1409.0864)

3. Choice of the hard scale

- Hard function is scale dependent.
- Naively, contains large corrections for any μ^2 !

Time-like gluon form factor

- Hard function $H(m_H^2, \mu^2) = |C_S(-m_H^2 i\epsilon, \mu^2)|^2$
- Scalar form factor:

time-like gluon form factor

$$C_{S}(Q^{2},\mu^{2}) = 1 + \sum_{n=1}^{\infty} c_{n}(L) \left(\frac{\alpha_{s}(\mu^{2})}{4\pi}\right)^{n}, \quad L = \ln(Q^{2}/\mu^{2})$$

$$c_{1}(L) = C_{A} \left(-L^{2} + \frac{\pi^{2}}{6}\right)$$
Sudakov double logarithm

• Perturbative expansions:

space-like: $C_S(Q^2, Q^2) = 1 + 0.393 \,\alpha_s(Q^2) - 0.152 \,\alpha_s^2(Q^2) + \dots$ time-like: $C_S(-q^2, q^2) = 1 + 2.75 \,\alpha_s(q^2) + (4.84 + 2.07i) \,\alpha_s^2(q^2)$

Time-like gluon form factor

- Replacement $L \rightarrow \ln q^2/\mu^2 i\pi$ in double logs gives rise to large π^2 terms, which can be resummed Parisi '80; Ahrens, Becher, MN, Yang '08
- We can avoid these terms in the matching by choosing a time-like value $\mu^2 = -q^2$

$$C_S(-q^2, -q^2) = 1 + 0.393 \,\alpha_s(-q^2) - 0.152 \,\alpha_s^2(-q^2) + \dots$$

→ same small expansion coefficients as for $C_S(Q^2, Q^2)$

 Large π² terms are resummed in the RG evolution of the hard function to the scale μ_f

Time-like vs. space-like scale choice

- Convergence is much better for $\mu^2 < 0$
- Evaluate H for $\mu^2 < 0$, where the convergence is good, and use RG to evolve it to an arbitrary scale

Fixed-order vs. resummed results

No large *K*-factors!

Conclusions

- Higgs production cross section is not strongly dominated by partonic threshold contribution; related expansion parameter is ~1/2 !
- As a result, a significant scheme dependence in soft-gluon resummation due to the truncation of "power corrections" remains at NNLO.
- Large corrections arising from time-like gluon form factor and contained in the hard function *H* can and should be resummed using RG methods!
- This might help reducing the ambiguities in the matching to recent partial N³LO results (subleading terms in threshold expansion). Anastasiou et al. 1411.3584

Conclusions

Entire cross section: (LHC@13 TeV, $\mu_r = \mu_f = m_H$)

	LO	NLO	NNLO	NNNLO	
full	13,7	17,6	10,6	?	
Laplace	13,7	12,5	4,36	0,34	
Laplace	13,7	14,6	7,90	2,64	12% of
Mellin	13,7	16,4	10,3	4,32	LO

Cross section divided by the hard function:

Conclusions

- Today, theory uncertainties are dominated by PDF errors and the treatment of yet unknown subleading threshold terms (not by scale dependences)!
- These should be estimated by comparing different schemes, e.g. de Florain & Grazzini vs. Ahrens et al.
- Before presenting our final numbers in the SCET approach, we will:
 - include known N³LO contributions to the hard and soft functions
 - match onto recently computed, partial N³LO results for subleading threshold terms