$N^3LO + N^3LL'$ from analyticity

Marco Bonvini

University of Oxford

HXSWG ggf task force, November 18, 2014

Based on:

Richard Ball, M.B., Stefano Forte, Simone Marzani, Giovanni Ridolfi

arXiv:1303.3590 arXiv:1404.3204

and M.B., Simone Marzani

arXiv:1405.3654

XS σ is dominated by a single Mellin moment

$$\sigma_{gg}(\tau) \propto \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} \tau^{-N} f_g(N) f_g(N) C_{gg}(N, \alpha_s), \qquad \tau = \frac{m_{\rm H}^2}{s}$$

Largely dominated by the region close to the saddle point $N = N_0(au)$ [MB, Forte, Ridolfi 1204.5473]

Also noticed (from different arguments) in [deFlorian, Mazzitelli, Moch, Vogt 1408.6277]

Marco Bonvini

Analytic structure of the coefficient function

$$\begin{array}{ll} \mbox{Mellin space:} & C_{gg}(N,\alpha_s) = \int_0^1 dz \; z^{N-1} \, C_{gg}(z,\alpha_s) \\ (\mbox{ordinary funct}) & (\mbox{distribution}) \end{array}$$

 $C_{gg}(N, \alpha_s)$ is a meromorphic function in the complex N plane, with a known analytic structure (at finite perturbative order):

- logarithmic growth at large $\operatorname{Re}\left(N
 ight)$ [Sudakov factorisation]
- isolated poles in N = 1, 0, -1, -2, ... [Regge theory, BFKL]
- no other singularities

Reconstruction of the coefficient function

A meromorphic function can be reconstructed from its singularities [Liouville]

What do we know?

• sing at $N \to \infty$:

$$C_{gg}(\mathbf{N}, \alpha_s) \sim \alpha_s^n \log^k \mathbf{N}, \qquad 0 < k < 2n$$

from soft-gluon (Sudakov) resummation

 \bullet sing in N=1: $C_{gg}(N, \alpha_s) \sim \alpha_s^n \frac{1}{(N-1)^k}, \qquad 1 < k < n$

from high-energy (BFKL) resummation

These are the most important for the physical region $N \sim 2$!

Marco Bonvini

 $N^3LO + N^3LL'$ from analyticity

Ingredients of our predictions

We construct an analytic approximation according to

 $\begin{array}{ll} C_{gg}(N,\alpha_s) \ \simeq \ C_{\rm soft}(N,\alpha_s) \ + \ C_{\rm high-energy}(N,\alpha_s) \\ & N \rightarrow \infty \qquad \qquad N \rightarrow 1 \\ & z \rightarrow 1 \qquad \qquad z \rightarrow 0 \end{array}$

Both ingredients must respect the analytic structure of $C_{gg}(N, \alpha_s)$

current status	\mid fixed order $(lpha_s^3)$	resummed level
soft part	√	\checkmark
high-energy part	\checkmark	not yet

We include finite top mass effects in all pieces

We consider gg channel only (~ 97% of the full NNLO)

Marco Bonvini

 $N^3LO + N^3LL'$ from analyticity

High-energy part

LL poles of
$$C_{gg}(N, \alpha_s)$$
 in $N = 1$:

$$\frac{\alpha_s^k}{(N-1)^k} \leftrightarrow \qquad \alpha_s^k \frac{\log^{k-1} z}{z}$$
In the effective $m_t \to \infty$ theory double poles:

$$\frac{\alpha_s^k}{(N-1)^{2k}}.$$
Totally wrong!!
Difference important at large collider energy \sqrt{s}

LL behaviour described by BFKL resummation:

[Marzani, Ball, Del Duca, Forte, Vicini 0801.2544]

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2}(\frac{m_{\mathrm{H}}}{m_t}) \big[\gamma_+^{k_1}\big] \big[\gamma_+^{k_2}\big]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) c_{k_1,k_2} : coefficients determined from LO xs with off-shell gluons

- resummation more complicated (work in progress)
- momentum conservation: $C_{\text{high-energy}}(N=2,\alpha_s)=0$
- we remove spurious large-N growth (interfering with soft part)

[Ball,MB,Forte,Marzani,Ridolfi 1303.3590]

Soft part: traditional construction: N-soft

In the soft $N \to \infty$ limit soft-gluon (threshold) resummation gives [Sterman 1987] [Catani, Trentadue 1989] [Forte, Ridolfi 2003]

$$C_{N-\text{soft}}(N,\alpha_s) = g_0\left(\alpha_s, \frac{m_H}{m_t}\right) \times \exp \mathcal{S}(\alpha_s, \ln N)$$
$$\mathcal{S}(\alpha_s, \ln N) = \frac{1}{\alpha_s} g_1(\alpha_s \ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s \ln N) + \alpha_s^2 g_4(\alpha_s \ln N) + \dots$$

Current HXSWG recommendation: NNLO + NNLL' [deFlorian,Grazzini 1206.4133]

Now available up to N^3LL'

[MB, Marzani 1405.3654]

Soft part: analyticity improvement

$$C_{N-\text{soft}}(N,\alpha_s) = g_0\left(\alpha_s, \frac{m_{\rm H}}{m_t}\right) \times \exp \mathcal{S}(\alpha_s, \ln N) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{k=0}^{2n} c_{n,k} \ln^k N$$

has a cut in $N \leq 0$, not compatible with the analytic structure of $C_{gg}(N, \alpha_s)$!

The *N*-soft resummation/approximation is <u>not</u> acceptable!

Soft part: analyticity improvement

$$C_{N-\text{soft}}(N,\alpha_s) = g_0\left(\alpha_s, \frac{m_{\rm H}}{m_t}\right) \times \exp \mathcal{S}(\alpha_s, \ln N) = \sum_{n=0}^{\infty} \alpha_s^n \sum_{k=0}^{2n} c_{n,k} \ln^k N$$

has a cut in $N \leq 0$, not compatible with the analytic structure of $C_{gg}(N, lpha_s)$!

The *N*-soft resummation/approximation is <u>not</u> acceptable!

One step backward:

$$\begin{split} C_{gg}(N,\alpha_s) \stackrel{N \to \infty}{=} & \bar{g}_0\left(\alpha_s, \frac{m_{\rm H}}{m_t}\right) \times \exp\bar{\mathcal{S}}(\alpha_s, N) \\ \bar{\mathcal{S}}(\alpha_s, N) &= \int_0^1 dz \, \frac{z^{N-1} - 1}{1 - z} \Biggl\{ \int_{\mu_{\rm F}^2}^{M^2(1-z)^2} \frac{d\mu^2}{\mu^2} 2A(\alpha_s(\mu^2)) + D\Bigl(\alpha_s\bigl(M^2(1-z)^2\bigr)\Bigr) \Biggr\} \\ &= \sum_{n=1}^\infty \alpha_s^n \sum_{k=0}^n b_{n,k} \mathcal{D}_k(N) \qquad \qquad \mathcal{D}_k(z) = \left(\frac{\log^k(1-z)}{1-z}\right)_+ \end{split}$$

 $\mathcal{D}_k(N) = \int_0^1 dz \, z^{N-1} \mathcal{D}_k(z)$ is a sum of polygamma functions $\psi_j(N)$, which have poles in $N = 0, -1, -2, \ldots \rightarrow \text{correct analytic structure } \checkmark$

Soft part: kinematic and collinear improvements

$$\begin{array}{ll} \text{Single gluon emission:} \quad P_{gg}^{(0)}(z) \int_{\mu_{\mathrm{F}}^{2}}^{M^{2}\frac{(1-z)^{2}}{z}} \frac{dk_{\mathrm{T}}^{2}}{k_{\mathrm{T}}^{2}} = \frac{A_{g}^{(0)}(z)}{1-z} \ln \frac{M^{2}(1-z)^{2}}{\mu_{\mathrm{F}}^{2}z} \\ \text{Regular terms in } z = 1 \text{ usually dropped: } A_{g}^{(0)}(z) \to A_{g}^{(0)}(1), \ \frac{(1-z)^{2}}{z} \to (1-z)^{2} \\ \text{We keep them!} \end{array}$$

Soft part: kinematic and collinear improvements

Single gluon emission:
$$P_{gg}^{(0)}(z) \int_{\mu_{\rm F}^2}^{M^2 \frac{(1-z)^2}{z}} \frac{dk_{\rm T}^2}{k_{\rm T}^2} = \frac{A_g^{(0)}(z)}{1-z} \ln \frac{M^2 (1-z)^2}{\mu_{\rm F}^2 z}$$

Regular terms in z = 1 usually dropped: $A_g^{(0)}(z) \rightarrow A_g^{(0)}(1)$, $\frac{(1-z)^2}{z} \rightarrow (1-z)^2$

We keep them! Effectively:

• we replace
$$\left(\frac{\log^k(1-z)}{1-z}\right)_+ \rightarrow \left(\frac{\log^k \frac{1-z}{\sqrt{z}}}{1-z}\right)_+$$

we include collinear contributions

$$A_g^{(0)}(z) = A_g^{(0)}(1) \frac{1 - 2z + 3z^2 - 2z^3 + z^4}{z}$$

predicts LL next-to-soft terms $(1-z)^p \alpha_s^k \ln^{2k-1}(1-z)$ to all orders [Krämer, Laenen, Spira 1997]

• we call it A-soft

The 1/z in $A_g(z)$ would produce spurious N = 1 poles, ruining the high-energy behaviour; we then expand $A_g(z)$ in powers of (1 - z), using different orders as a measure of the uncertainty.

Marco Bonvini

 $C_{gg}(N, \alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$

 $C_{gg}(N, \alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$$

$N^3LO + N^3LL'$ from analyticity

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$$

$N^3LO + N^3LL'$ from analyticity

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \dots$$

Higgs K-factor at NLO (NNLO PDFs)

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \dots$$

Higgs K-factor at NLO (NNLO PDFs)

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \dots$$

Higgs K-factor at NNLO (NNLO PDFs) 2 $m_H = 125 \text{ GeV}$ 1.5 $a_s^2 \, K_{gg}^{(2)}$ 1 exact 0.5 pointlike N-soft A-soft₂ A-approx 0 1 10 100 √s [TeV]

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \dots$$

Higgs K-factor at NNLO (NNLO PDFs) 2 $m_H = 125 \text{ GeV}$ 1.5 $a_{s}^{2} \, K_{gg}^{(2)}$ 1 soft unc exact 0.5 pointlike N-soft A-soft₂ A-approx 0 1 10 100 √s [TeV]

We can ignore h.e. uncertainty and rely on soft uncertainty only

Marco Bonvini

 $N^3LO + N^3LL'$ from analyticity

N³LO approximation at LHC

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ scale dependence is exact with all channels

Marco Bonvini

Extension of A-soft to all orders trivial (though numerically challenging).

At resummed level, we also exponentiate $\bar{g}_0 = \exp \bar{h}_0$ [MB,Marzani 1405.3654]

pert. order	$\delta(1-z)$ coeff.	g_0	h_0	$ar{g}_0$	$ar{h}_0$
1	4.9374	8.7153	8.7153	4.9374	4.9374
2	8.94	40.10	2.122	10.92	-1.269
3	44.45	116.7	-12.1	2.0	-11.8

 \bar{g}_0 , $\log \bar{g}_0$ and $\log g_0$ have a much better behaviour than g_0

Similar to π^2 resummation [Ahrens,Becher,Neubert,Yang 0808.3008]

NNLO+N³LL': comparison to N-soft

Higgs cross section: gluon fusion

N-soft: poor convergence

NNLO+N³LL': comparison to N-soft

Higgs cross section: gluon fusion

A-soft: much better convergence!

$N^{3}LO+N^{3}LL$ ': effect of $N^{3}LO$

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ scale dependence is exact with all channels

$N^{3}LO+N^{3}LL$ ': effect of $N^{3}LO$

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ scale dependence is exact with all channels

Approximation uncertainty as small as (or smaller than) scale dependence

Higgs cross section: gluon fusion

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact with all channels

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact with all channels

Final results

red: canonical scale variation (CSV) purple: envelope of CSV for each soft variation blue: soft variation at central scale only (to be summed to red)

 $N^3LO + N^3LL'$ from analyticity

Conclusions: central value

Our suggestion

$N^3LO_{approx} + N^3LL'$

- Fixed-order part at N³LO_{approx}
 - up to NNLO known exactly (even with m_t corrections)
 - our approximate prediction is based on A-soft and LL high-energy logarithms
 - validated against known lower orders
 - finite m_t dependence almost complete (crucial at large \sqrt{s})
- Resummed part at N³LL'
 - one logarithmic order more than current recommendation (NNLL')
 - computed using A-soft: much better agreement than N-soft when expanded and compared against known orders, and faster convergence
 - finite m_t dependence almost complete
- Public codes ggHiggs, ResHiggs: http://www.ge.infn.it/~bonvini/higgs/
- Possible developments: high-energy LL resummation; other partonic channels

	$\mu_{ m R} = \mu_{ m F}$	$m = m_{\rm H}$	$\mu_{ m R}=\mu_{ m F}=m_{ m H}/2$			
NNLO	$42.1^{+10.8\%}_{-10.4\%}$		$46.3^{+10.5\%}_{-10.2\%}$			
N ³ LO	$48.1^{+6.0\%}_{-6.8\%}$	(+14.3%)	$50.7^{+6.1\%}_{-5.9\%}$	(+9.5%)		
$N^{3}LO+N^{3}LL'$	$51.3^{+5.0\%}_{-2.1\%}$	(+21.9%)	$50.8^{+4.6\%}_{-1.2\%}$	(+9.7%)		

- reduction of scale unc: 21%>13%>7%
- stabilisation upon central scale choice: 10% > 5% > 1%
- faster convergence and smaller scale dep at $\mu_{\rm R}=\mu_{\rm F}=m_{\rm H}/2$
- Approximation uncertainty
 - at central scale: negligible compared to scale uncertainty
 - envelope at each scale point: few percent more at N³LL'
- Quark channels uncertainty
 - we are assuming that quark channels are zero at N³LO
 - $\bullet\,$ if we don't, we get an additional $1\mathchar`-2\%$ uncertainty
 - $\bullet\,$ estimate from recent soft computation: -0.4%

Benchmark numbers (finite m_t)

/	$\mu_{\rm F}/m_{ m H}$	$\mu_{ m R}/m_{ m H}$	LO	NLO	NNLO		N^3L	0	N ³ L	O+N ³ LL'
-	2	2	11.8	27.2	38.3		45.6	6 ± 0.3	53.8	± 3.4
-	2	1	14.3	31.9	42.6		49.0	0 ± 0.6	53.0	± 2.3
-	1	2	11.4	26.6	37.7		44.8	3 ± 0.3	51.4	± 0.6
-	1	1	13.8	31.3	42.1		48.1	± 0.5	51.3	± 0.5
-	1	0.5	17.0	37.3	46.7		50.9	0 ± 0.8	51.1	± 0.5
(0.5	1	13.0	30.4	41.6		47.7	2 ± 0.4	50.2	± 0.6
(0.5	0.5	16.1	36.5	46.3		50.7	1 ± 0.7	50.8	± 0.2
(0.5	0.25	20.3	44.5	50.6		52.8	3 ± 1.2	51.8	± 1.3
(0.25	0.5	14.8	35.3	46.0		50.8	3 ± 0.5	51.0	± 0.03
(0.25	0.25	18.7	43.5	50.7		53.2	2 ± 0.9	52.6	± 1.3
60	m _H = 125 LHC 13 Te	GeV V	N ³ LO			60	m _H = 125 G LHC 13 TeV	eV	N ³ LO+N ³ LL	
55 [9] 50	Ŧ	≢ Ì ₽			[qd]	55	ł.	ł.		₽ I I
ь 45	- - - -			±		45				
40	- - -		L	I I		40		l		ll
	.25, 0.25	0.25, 0.5 0.5, 0.25 0.5, 0.5	1,1 1,1 1,1	」 5、1 1、2	ri ri R		.25, 0.25	0.5, 0.25	0.5, 1 1, 0.5 1, 1	л 1,2 2,1 2,2 2,2
	Marca	Romvini					311' from	analuticity		10

Benchmark numbers (infinite m_t effective theory)

	$\mu_{ m F}/m_{ m H}$	$\mu_{ m R}/m_{ m H}$	LO	NLO	NNLO	N ³ LO	N ³ LO+N ³ LL'
	2	2	11.8	27.3	38.4	$45.4 \pm 0.$	$.3 53.6 \pm 3.3$
	2	1	14.3	32.1	42.6	$48.7 \pm 0.$.5 52.7 ± 2.2
	1	2	11.4	26.7	37.8	$44.7 \pm 0.$	$.3 51.3 \pm 0.6$
	1	1	13.8	31.5	42.1	$47.9 \pm 0.$	$.5 51.1 \pm 0.5$
	1	0.5	17.0	37.6	46.6	50.8 ± 0.1	.8 51.0 ± 0.5
(0.5	1	13.0	30.6	41.6	$47.6 \pm 0.$.4 50.1 ± 0.6
(0.5	0.5	16.1	36.8	46.2	50.5 ± 0.5	50.7 ± 0.2
(0.5	0.25	20.3	44.9	50.2	$52.7 \pm 1.$	51.8 ± 1.3
(0.25	0.5	14.8	35.7	45.9	50.7 ± 0.2	55.5 ± 0.02
(0.25	0.25	18.7	44.0	50.3	$53.2 \pm 0.$.9 52.7 ± 1.2
60	m _H = 125 LHC 13 Te	GeV V	N ³ LO			60 m _H = 125 GeV LHC 13 TeV	N ³ LO+N ³ LL
55	Ŧ	Į Į	•			55	• <u>-</u>
ь р	-	. .	• Ē	Ŧ	1 9	50	••••••••••••••••••••••••••••••••••••••
45	-					45	
40	-				:	10	
40	0.25	, 0.5 0.25 , 0.5	.5, 1 , 0.5 1, 1	1, 2 2, 1	2, 2	0.25 , 0.5 , 0.25	, 0.5 , 1 , 0.5 , 0.5 1, 1 1, 1 2, 1 2, 2
	0.25,	0.25, 0.5, 0.5	5 1	μ _F , μ	R	0.25, 0.25	о 0 Це, Це, Це,
		D			N31	<u>о в м3ти с</u>	00

Comparisons

Comparison with other groups: soft expansion

$$L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$$

$$\begin{split} C_{gg}^{(3)}(z) &= a_{05}\mathcal{D}_5(z) + a_{04}\mathcal{D}_4(z) + a_{03}\mathcal{D}_3(z) + a_{02}\mathcal{D}_2(z) + a_{01}\mathcal{D}_1(z) + a_{00}\mathcal{D}_0(z) + a_{0\delta}\delta(1-z) \\ &+ a_{15}L^5(z) + a_{14}L^4(z) + a_{13}L^3(z) + a_{12}L^2(z) + a_{11}L(z) + a_{10} \\ &+ \Big[a_{25}L^5(z) + a_{24}L^4(z) + a_{23}L^3(z) + a_{22}L^2(z) + a_{21}L(z) + a_{20} \Big] \times (1-z) \\ &+ \dots \end{split}$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10} \right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20} \right] \times \frac{1}{N^{2}} + \dots$$

One-to-one correspondence between the two expansions. To determine c_{pk} , you need all a_{ij} with $i \leq p, j \geq k$.

Comparison with other groups: soft expansion

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{08} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10}\right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20}\right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

• Current HXSWG recommendation: NNLL' [deFlorian, Grazzini 1206.4133]
$L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10} \right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20} \right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

[Moch,Vogt hep-ph/0508265]

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10}\right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20}\right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

• N-soft: [Moch,Vogt hep-ph/0508265] + constant

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

 $C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_5(z) + a_{04}\mathcal{D}_4(z) + a_{03}\mathcal{D}_3(z) + a_{02}\mathcal{D}_2(z) + a_{01}\mathcal{D}_1(z) + a_{00}\mathcal{D}_0(z) + a_{0\delta}\delta(1-z)$ $+ a_{15}L^5(z) + a_{14}L^4(z) + a_{13}L^3(z) + a_{12}L^2(z) + a_{11}L(z) + a_{10}$ $+ \left[a_{25}L^5(z) + a_{24}L^4(z) + a_{23}L^3(z) + a_{22}L^2(z) + a_{21}L(z) + a_{20}\right] \times (1-z)$ $+ \dots$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10} \right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20} \right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

• z-soft: [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger 1403.4616]

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10} \right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20} \right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

z-soft-expansion: next-to-soft
[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Mistlberger 1411.3584]
also
[Bonocore, Laenen, Magnea, Vernazza, White 1410.6406]

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$\begin{aligned} C_{gg}^{(3)}(N) &= c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} \\ &+ \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10} \right] \times \frac{1}{N} \\ &+ \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20} \right] \times \frac{1}{N^{2}} \\ &+ \dots \end{aligned}$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

• A-soft: [Ball,MB,Forte,Marzani,Ridolfi 1404.3204] [MB,Marzani 1405.3654]

 $L(z) = \log(1-z), \qquad \mathcal{D}_k(z) = (L^k(z)/(1-z))_+$

$$C_{gg}^{(3)}(z) = a_{05}\mathcal{D}_{5}(z) + a_{04}\mathcal{D}_{4}(z) + a_{03}\mathcal{D}_{3}(z) + a_{02}\mathcal{D}_{2}(z) + a_{01}\mathcal{D}_{1}(z) + a_{00}\mathcal{D}_{0}(z) + a_{0\delta}\delta(1-z) + a_{15}L^{5}(z) + a_{14}L^{4}(z) + a_{13}L^{3}(z) + a_{12}L^{2}(z) + a_{11}L(z) + a_{10} + \left[a_{25}L^{5}(z) + a_{24}L^{4}(z) + a_{23}L^{3}(z) + a_{22}L^{2}(z) + a_{21}L(z) + a_{20}\right] \times (1-z) + \dots$$

$$C_{gg}^{(3)}(N) = c_{05} \ln^{6} N + c_{04} \ln^{5} N + c_{03} \ln^{4} N + c_{02} \ln^{3} N + c_{01} \ln^{2} N + c_{00} \ln N + c_{0\delta} + \left[c_{15} \ln^{5} N + c_{14} \ln^{4} N + c_{13} \ln^{3} N + c_{12} \ln^{2} N + c_{11} \ln N + c_{10}\right] \times \frac{1}{N} + \left[c_{25} \ln^{5} N + c_{24} \ln^{4} N + c_{23} \ln^{3} N + c_{22} \ln^{2} N + c_{21} \ln N + c_{20}\right] \times \frac{1}{N^{2}} + \dots$$

Legend: correct, zero, non-zero by choice, non-zero by Mellin conversion

• dFMMV: [deFlorian,Mazzitelli,Moch,Vogt 1408.6277]

Comparison at next-to-soft

soft expansion: [Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Mistlberger 1411.3584] $C_{gg}^{(3)}(N) \sim \frac{1}{N} \left[\ln^5 N + 5.701 \ln^4 N + 18.86 \ln^3 N + 30.6 \ln^2 N + 32.0 \ln N + 6.5 \right]$

dFMMV:

A-soft:

[deFlorian,Mazzitelli,Moch,Vogt 1408.6277]

$$C_{gg}^{(3)}(N) \sim \frac{1}{N} \left[\ln^5 N + 5.701 \ln^4 N + 18.9 \ln^3 N + 46 \ln^2 N + 18 \ln N + 9 \right] +50\% - 44\% + 38\%$$

[Ball,MB,Forte,Marzani,Ridolfi 1404.3204]

 $C_{gg}^{(3)}(N) \sim \frac{1}{N} \left[\ln^5 N + 3.951 \ln^4 N + 13.8 \ln^3 N + 19.5 \ln^2 N + 24.8 \ln N + 8.8 \right]$ -31% - 27% - 36% - 22% + 35%

Remember: saddle point $N_0 \sim 2 \implies \ln^5 N < \ln^4 N < \ldots < \ln^0 N$

Inclusion of exact next-to-soft

70 $m_{\rm H} = 125~{\rm GeV}$ LHC 13 TeV 60 50 40 σ [pb] 30 20 LO NI O NNLO 10 NNNLO NNNLO+NS 0 0.1 0.2 0.3 0.5 2 1 3 μ_R / m_H

Higgs cross section: gluon fusion

Hardly makes a difference...

How important are next-to-next-to-soft corrections?

How important are next-to-next-to-soft corrections?

How important are next-to-next-to-soft corrections?

At N³LO, at least 3-4 orders in a soft expansion are required to reach stability. Faster convergence possible [some tests with F.Herzog]

Backup slides

High-energy part: construction

LL behaviour described by BFKL resummation:

[Marzani, Ball, Del Duca, Forte, Vicini 0801.2544]

$$C_{\mathsf{high-energy}}(N,\alpha_s) = \sum_{k_1,k_2 \ge 0} c_{k_1,k_2}(\frac{m_{\mathrm{H}}}{m_t}) \left[\gamma_+^{k_1}\right] \left[\gamma_+^{k_2}\right]$$

 $\gamma_+(N)$: DGLAP anomalous dimension (largest eigenvalue) c_{k_1,k_2} : coefficients determined from LO xs with off-shell gluons

- formally accurate only at LL (with running coupling effects)
- resummation more complicated (work in progress)
- momentum conservation $C_{\text{high-energy}}(N = 2, \alpha_s) = 0$, but grows at $N \to \infty$ Halt! The $N \to \infty$ behaviour is jurisdiction of the soft part!
- we use an expansion of γ₊(N) about N = 1 to NLL: removes the growth ✓, but we loose momentum conservation
- we enforce mom. cons. by adding subdominant terms (poles at $N \leq 0$)
- we vary subleading terms as a measure of the uncertainty

[Ball,MB,Forte,Marzani,Ridolfi 1303.3590]

Soft part: validation

$$C_{gg}(N, \alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$$

Marco Bonvini

Soft part: validation

$$C_{gg}(N, \alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \dots$$

Marco Bonvini

28

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s \, C_{gg}^{(1)}(N) + \alpha_s^2 \, C_{gg}^{(2)}(N) + \alpha_s^3 \, C_{gg}^{(3)}(N) + \dots$

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s \, C_{gg}^{(1)}(N) + \alpha_s^2 \, C_{gg}^{(2)}(N) + \alpha_s^3 \, C_{gg}^{(3)}(N) + \dots$

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \alpha_s^3 C_{gg}^{(3)}(N) + \dots$

$N^3LO + N^3LL'$ from analyticity

 $C_{gg}(N,\alpha_s) = 1 + \alpha_s C_{gg}^{(1)}(N) + \alpha_s^2 C_{gg}^{(2)}(N) + \alpha_s^3 C_{gg}^{(3)}(N) + \dots$

$N^3LO + N^3LL'$ from analyticity

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s \, C_{gg}^{(1)}(N) + \alpha_s^2 \, C_{gg}^{(2)}(N) + \alpha_s^3 \, C_{gg}^{(3)}(N) + \dots$$

$$C_{gg}(N,\alpha_s) = 1 + \alpha_s \, C_{gg}^{(1)}(N) + \alpha_s^2 \, C_{gg}^{(2)}(N) + \alpha_s^3 \, C_{gg}^{(3)}(N) + \dots$$

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NLO (NNLO PDFs)

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NLO (NNLO PDFs)

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NNLO (NNLO PDFs) 2 $m_H = 125 \text{ GeV}$ 1.5 $a_s^2 \, K_{gg}^{(2)}$ 1 exact 0.5 pointlike N-soft A-soft₂ A-approx 0 1 10 100 √s [TeV]

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NNLO (NNLO PDFs) 2 $m_H = 125 \text{ GeV}$ 1.5 $a_{s}^{2} \, K_{gg}^{(2)}$ 1 soft unc exact 0.5 pointlike N-soft A-soft₂ A-approx 0 1 10 100 √s [TeV]

We can ignore h.e. uncertainty and rely on soft uncertainty only

Marco Bonvini

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NNNLO (NNLO PDFs)

$$\frac{\sigma_{gg}}{\sigma_{\rm LO}} = 1 + \alpha_s \, K_{gg}^{(1)} + \alpha_s^2 \, K_{gg}^{(2)} + \alpha_s^3 \, K_{gg}^{(3)} + \dots$$

Higgs K-factor at NNNLO (NNLO PDFs)

Higgs cross section: gluon fusion

At N $^3 LO$, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact but only gg channel

Higgs cross section: gluon fusion

At N $^3 LO$, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact but only gg channel

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact with all channels

Higgs cross section: gluon fusion

At N³LO, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale dependence is exact with all channels

More on final results

More on final results

Threshold resummation: logarithmic counting

∞ 2	2n	∞	n+1
$C(N, M^2) = 1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=1}^{\infty} \alpha_k^n \sum_{k=1}^{\infty} $	$\sum_{k=0} c_{nk} \ln^k N \qquad \ln C(N, M^2) =$	$= \sum_{n=1}^{\infty} \alpha_s^n$	$\sum_{k=0}^{k} \hat{b}_{nk} \ln^{k} N$

	$A(\alpha_s)$	$D(\alpha_s)$	$ar{g}_0(lpha_s)$	accuracy: c_{nk}	\hat{b}_{nk}
LL	1-loop	—	tree-level	k = 2n	k = n + 1
NLL	2-loop	1-loop	tree-level	$2n-1 \leq k \leq 2n$	$n \leq k \leq n+1$
NLL'	2-loop	1-loop	1-loop	$2n-2 \leq k \leq 2n$	$n \leq k \leq n+1$
NNLL	3-loop	2-loop	1-loop	$2n-3 \leq k \leq 2n$	$n-1 \leq k \leq n+1$
NNLL'	3-loop	2-loop	2-loop	$2n-4 \le k \le 2n$	$n-1 \leq k \leq n+1$
NNNLL	4-loop	3-loop	2-loop	$2n-5 \leq k \leq 2n$	$n-2 \leq k \leq n+1$
NNNLL'	4-loop	3-loop	3-loop	$2n-6 \le k \le 2n$	$n-2 \le k \le n+1$

Un-primed counting: appropriate for $\ln C(N, M^2)$, assumes $\alpha_s \ln N \sim 1$ Primed counting: more appropriate for $C(N, M^2)$, assumes just $\alpha_s \ln^2 N \sim 1$

NNLL': [Catani, de Florian, Grazzini, Nason 2003] [de Florian, Grazzini 2012] NNNLL: [Ahrens, Becher, Neubert, Yang 2008] (within SCET) NNNLL': [MB, Marzani 2014]