$\ln^2(-1) = -\pi^2 \neq -6\text{Li}_2(1) = -\pi^2$

(for lack of a better title and sleep)

Frank Tackmann

Deutsches Elektronen-Synchrotron

ggH meeting November 18, 2014

Gluon Form Factor.

Consider the on shell gluon form factor at spacelike momentum transfer $q^2 < 0$

$C_g(q^2)$ is IR-divergent

- Can consider it in $d=4-2\epsilon$ dimensions: $C_g(q^2,\epsilon)$
- Equivalently, can "renormalize" it at some scale $\mu\colon C_g(q^2,\mu)$
	- In This is what happens in SCET, where $C_q(\mu)$ becomes (part of) the matching coefficient of the $O_{qg}(\mu)$ operator which is renormalized, usually in $\overline{\text{MS}}$
- It depends on q^2 only through Sudakov logarithms

$$
C_g(q^2, \mu) = \sum_{n,m \leq 2n} c_{mn} \alpha_s^n(\mu) \ln^m(q^2/\mu^2)
$$

Gluon Form Factor.

$$
C_g(q^2,\mu)=\sum_{n,m\leq 2n}c_{mn}\,\alpha_s^n(\mu)\,\ln^m(q^2/\mu^2)
$$

Ratio $|C(-q^2 - i0)/C(q^2)|^2$ of timelike to spacelike form factors

• is IR finite (ϵ or μ -independent) but contains leftover Sudakov logarithms

 $\alpha_s^n \ln^m(-1 - \mathrm{i} 0) = \alpha_s^n (-\mathrm{i} \pi)^m$

- \triangleright Responsible for large corrections in Drell-Yan/DIS (quark form factor)
- ► Can resum these by RG evolving from $-i\mu \rightarrow \mu$
- \blacktriangleright Very well known since many years

[..., Parisi '80; Sterman '87; Magnea, Sterman '90]

 \Rightarrow Same happens in $gg \to H$ where $C_g(-m_H^2-\mathrm{i} 0)$ at timelike q^2 appears which contributes to large pert. corrections

[Ahrens, Becher, Neubert, Yan '08]

qaH Form Factor.

Now consider full $t\bar{t}H$ induced ggH form factor

 $C_{g g H}(m_H, m_t) = \langle H | t \bar{t} H | g g \rangle$

In m_t → ∞ limit: $C_{ggH}(m_H, m_t; \mu) = C_t(m_t; \mu) C_g(-m_H^2 - i0; \mu)$ $\bullet \; C_t(m_t; \mu)$ contains single logarithms $\ln(m_t/\mu)$ $C_g(-m_H^2 - \mathrm{i} 0; \mu)$ contains Sudakov logarithms $\ln(-m_H^2 - \mathrm{i} 0/\mu^2)$

General finite m_t : Write $C_{qqH}(m_H, m_t; \mu)$ in terms of

- Single logs $\ln(-im_H/m_t)$ (very small effect, starting at NNLO)
- Sudakov logs $\ln(-m_H^2 \mathrm{i} 0/\mu^2)$ (dominant)

$C_{a\alpha H}$ Perturbative Series.

 $H_{gg}(m_H,m_t;\mu)=|C_{ggH}(m_H,m_t;\mu)|^2$ at different scales and with/without finite m_t (up to 1-loop)

- $\mu = m_H, m_t \rightarrow \infty$: $H_{gg} = H_{aa}^{(0)}(1 + 0.810 + 0.356 + \cdots)$ $\mu = m_H$, finite m_t : $H_{gg} = H_{aa}^{(0)}(1 + 0.815 + 0.360 + \cdots)$
- $\mu = m_H/2, m_t \rightarrow \infty$: $H_{gg} = H_{aa}^{(0)}(1 + 0.786 + 0.258 + \cdots)$ $\mu = m_H/2$, finite m_t : $H_{gg} = H_{gg}^{(0)}(1 + 0.791 + 0.261 + \cdots)$
- $\mu = -\mathrm{i} m_H, m_t \to \infty:$ $H_{gg} = H_{gg}^{(0)}(1 + 0.270 + 0.0417 + \cdots)$ $\mu = -\mathrm{i} m_H$, finite m_t : $H_{qq} = H_{qq}^{(0)}(1 + 0.274 + 0.0425 + \cdots)$

(where the numbers are total NLO and NNLO contributions)

Clear improvement in the pert. series of the form factor, so the relevant question is:

Can we use this to improve the inclusive cross section, and if so how?

(母)

Total Cross Section.

Total σ in d dimensions to regulate IR

$$
\sigma = \underbrace{H_{gg}(\epsilon)}_{\text{virtual}} \times \underbrace{[\mathcal{I}_{gi}(\epsilon, \mu_f)] \otimes_z f_i(\mu_f)]^2}_{\text{real collinear}} \times \underbrace{S_{gg}(\epsilon)}_{\text{real soft}} + \text{IR finite}
$$

 \bullet 1/ ϵ IR divergences cancel between virtual and real collinear+soft

Renormalized EFT version

 $\sigma = H_{\sigma q}(\mu) \times [\mathcal{I}_{q_i}(\mu, \mu_f) \otimes_z f_i(\mu_f)]^2 \times S_{\sigma q}(\mu) + \text{IR finite}$

- Now μ dependence cancels between first three terms
- Collinear contributions contain $1 z$ dependence (in collinear limit but for arbitrary z, includes qq , qq channels at (N)NLO)
- Threshold limit $z \rightarrow 1$ takes the further limit that collinear are soft as well. combining them into overall virtual+soft
	- \Rightarrow Above virtual+soft+collinear limit is weaker and sufficient to discuss how H_{aa} enters

Combine collinear+soft:

$$
\sigma = \underbrace{H_{gg}(\mu) \; sc(\mu)}_{\text{``singular''}} + \text{IR-finite}
$$

Consider the singular and ignore the IR-finite pieces (only for a moment)

$$
\sigma = [1 + h^{(1)}(\mu) + sc^{(1)}(\mu) + h^{(2)}(\mu) + sc^{(2)}(\mu) + h^{(1)}(\mu)sc^{(1)}(\mu) + \mathcal{O}(\alpha_s^3)]
$$

 $h^{(i)}(\mu)$ contains large corrections from $\ln^2(-1) = -\pi^2$ at each order.

• To avoid them evaluate $H_{qg}(-i\mu)$ and evolve it back to μ (simply evaluating $sc(-i\mu)$ would just move the large terms from $h^{(i)}$ to $sc^{(i)}$)

$$
H_{gg}(\mu)=H_{gg}(-{\rm i}\mu)\,U_H(-{\rm i}\mu,\mu)
$$

 \Rightarrow Gives " π^2 -resummed" singular

$$
\sigma = U_H(-i\mu, \mu)[1 + h^{(1)}(-i\mu) + sc^{(1)}(\mu) + h^{(2)}(-i\mu) + sc^{(2)}(\mu) + h^{(1)}(-i\mu)sc^{(1)}(\mu) + \mathcal{O}(\alpha_s^3)]
$$

To explicitly define $sc(\mu)$ we can cut on any IR-sensitive kinematic variable $p \equiv \{p_T^H, p_T^{\rm jet}, E_T, \mathcal{T}^{\rm jet}, \mathcal{T}_B, \mathcal{T}_C, ...\} < p_{\rm cut}$

 $\sigma(p_{\text{cut}})$ is a *physical* cross section

For $p_{\text{cut}} \ll m_H$ it is always dominated by the singular, since $\sigma^{\text{ns}}(p_{\text{cut}})$ is power-suppressed (by $\sim p_{\text{cut}}/m_H$)

To explicitly define $sc(\mu)$ we can cut on any IR-sensitive kinematic variable $p \equiv \{p_T^H, p_T^{\rm jet}, E_T, \mathcal{T}^{\rm jet}, \mathcal{T}_B, \mathcal{T}_C, ...\} < p_{\rm cut}$

 $\sigma(p_{\text{cut}})$ is a *physical* cross section

For $p_{\text{cut}} \ll m_H$ it is always dominated by the singular, since $\sigma^{\text{ns}}(p_{\text{cut}})$ is power-suppressed (by $\sim p_{\text{cut}}/m_H$)

 \leftarrow \oplus

Spectrum and p_{cut} Independence.

$$
\sigma = H_{gg}(\mu) \, \text{sc}(\mu, p_{\text{cut}}) + \sigma^{\text{ns}}(p_{\text{cut}}) + \int_{p_{\text{cut}}}^{\infty} \mathrm{d}p \, \frac{\mathrm{d}\sigma}{\mathrm{d}p}
$$

must be p_{cut} independent, which means

$$
\frac{d\sigma}{dp} = H_{gg}(\mu) \frac{dsc(\mu)}{dp} + \frac{d\sigma^{ns}}{dp}
$$

= $U_H(-i\mu, \mu) \left[\frac{dsc^{(1+2)}(\mu)}{dp} + h^{(1)}(-i\mu) \frac{dsc^{(1)}(\mu)}{dp} \right] + \frac{d\sigma^{ns(1+2)}}{dp}$

• At large $p \ge m_H/2$: singular and nonsingular spectra are separately meaningless and must recombine into correct fixed-order spectrum $\mathrm{d}\sigma^\mathrm{FO}$

$$
d\sigma^{FO(1)} = ds c^{(1)} + d\sigma^{ns(1)}
$$

$$
d\sigma^{FO(2)} = ds c^{(2)} + h^{(1)}(\mu) ds c^{(1)} + d\sigma^{ns(2)}
$$

- \bullet Either make U_H p_{cut} -dependent and turn it off at some large p_{cut}
- Or adjust $\sigma^{\rm ns}$ to $U_H[\sigma^{\rm ns(1)}(1-U_H^{(1)})+\sigma^{\rm ns(2)}]$
	- Extends π^2 -resummation to $d\sigma^{\text{ns}}$ and thereby to full $d\sigma/dp$ and σ

- π^2 -resummation improves singular which directly translates into a much improved convergence for $\sigma(p_{\text{cut}})$ at small p_{cut}
- Once we reach $p_{\text{cut}} \geq m_H/2$ (and turn off the p_{cut} resummation), we have accumulated most of the cross section

[Stewart, FT, Walsh, Zuberi '13]

- \Rightarrow Better choice is to extend π^2 -resummation to $\sigma^{\rm ns}(p_{\rm cut})$ and full σ
	- \blacktriangleright Numerically, nonsingular also shows improved convergence
	- Safer than forcing π^2 -resummation to turn off, which could then easily lead to a decreasing cumulant (unphysical negative spectrum) 4 何)

- π^2 -resummation improves singular which directly translates into a much improved convergence for $\sigma(p_{\text{cut}})$ at small p_{cut}
- Once we reach $p_{\text{cut}} \geq m_H/2$ (and turn off the p_{cut} resummation), we have accumulated most of the cross section

[Berger, Marcantonini, Stewart, FT, Waalewijn '10]

- \Rightarrow Better choice is to extend π^2 -resummation to $\sigma^{\rm ns}(p_{\rm cut})$ and full σ
	- \blacktriangleright Numerically, nonsingular also shows improved convergence
	- Safer than forcing π^2 -resummation to turn off, which could then easily lead to a decreasing cumulant (unphysical negative spectrum)

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $\alpha_s(m_Z) = 0.1171$ and 3-loop running, $m_t = 172.5$ GeV in EFT limit

←母→

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $\alpha_s(m_Z) = 0.1171$ and 3-loop running at each order

- **•** Perturbative corrections get more moderate
- Scale variations are reduced and provide better coverage (uncertainties use maximal absolute difference of 6-point variation from centra[l\)](#page-12-0)

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $\alpha_s(m_Z) = 0.1171$ and 3-loop running at each order

- **•** Perturbative corrections get more moderate
- Scale variations are reduced and provide better coverage (uncertainties use maximal absolute difference of 6-point variation from centra[l\)](#page-12-0)

" π^2 -resummation" follows from the Sudakov resummation of the gluon form factor at timelike momentum transfer

- Does not rely on threshold limit
	- \triangleright Can be used standalone or in conjunction with other exclusive resummations
- Significantly improves perturbative behavior in exclusive region of physical observables
- Can be extended to inclusive cross section
	- Improves perturbative series
	- \triangleright Smaller perturbative uncertainties with better coverage
	- \blacktriangleright By itself does not justify any partial N³LO result, but can be added to your favourite one if you like, since any approximate result includes the $\mathsf{N}^3\mathsf{LO}$ form factor

∢ শী ।