$\ln^2(-1) = -\pi^2 \neq -6 \operatorname{Li}_2(1) = -\pi^2$

(for lack of a better title and sleep)

Frank Tackmann

Deutsches Elektronen-Synchrotron

ggH meeting November 18, 2014

Gluon Form Factor.

Consider the on shell gluon form factor at spacelike momentum transfer $q^2 < 0$

$C_g(q^2)$ is IR-divergent

- Can consider it in $d = 4 2\epsilon$ dimensions: $C_g(q^2, \epsilon)$
- Equivalently, can "renormalize" it at some scale μ : $C_g(q^2, \mu)$
 - ► This is what happens in SCET, where C_g(µ) becomes (part of) the matching coefficient of the O_{gg}(µ) operator which is renormalized, usually in MS
- It depends on q^2 only through Sudakov logarithms

$$C_g(q^2,\mu) = \sum_{n,m \le 2n} c_{mn} \, \alpha_s^n(\mu) \, \ln^m(q^2/\mu^2)$$

Gluon Form Factor.

$$C_g(q^2,\mu) = \sum_{n,m \leq 2n} c_{mn} \, lpha_s^n(\mu) \, \ln^m(q^2/\mu^2)$$

Ratio $|C(-q^2-{
m i}0)/C(q^2)|^2$ of timelike to spacelike form factors

• is IR finite (ϵ or μ -independent) but contains leftover Sudakov logarithms

 $\alpha_s^n \ln^m (-1 - \mathrm{i}0) = \alpha_s^n (-\mathrm{i}\pi)^m$

- Responsible for large corrections in Drell-Yan/DIS (quark form factor)
- Can resum these by RG evolving from $-i\mu
 ightarrow \mu$
- Very well known since many years

[..., Parisi '80; Sterman '87; Magnea, Sterman '90]

 \Rightarrow Same happens in $gg \rightarrow H$ where $C_g(-m_H^2 - i0)$ at timelike q^2 appears which contributes to large pert. corrections

[Ahrens, Becher, Neubert, Yan '08]

Now consider full $t\bar{t}H$ induced ggH form factor

 $C_{ggH}(m_H,m_t)=\langle H|tar{t}H|gg
angle$

ln $m_t
ightarrow \infty$ limit: $C_{ggH}(m_H, m_t; \mu) = C_t(m_t; \mu) \, C_g(-m_H^2 - \mathrm{i0}; \mu)$

- $C_t(m_t;\mu)$ contains single logarithms $\ln(m_t/\mu)$
- $C_g(-m_H^2-{
 m i}0;\mu)$ contains Sudakov logarithms $\ln(-m_H^2-{
 m i}0/\mu^2)$

General finite m_t : Write $C_{ggH}(m_H, m_t; \mu)$ in terms of

- Single logs $\ln(-im_H/m_t)$ (very small effect, starting at NNLO)
- Sudakov logs $\ln(-m_H^2-{
 m i}0/\mu^2)$ (dominant)

C_{ggH} Perturbative Series.

 $H_{gg}(m_H,m_t;\mu)=|C_{ggH}(m_H,m_t;\mu)|^2$ at different scales and with/without finite m_t (up to 1-loop)

- $\mu = m_H, m_t o \infty:$ $H_{gg} = H_{gg}^{(0)}(1 + 0.810 + 0.356 + \cdots)$ $\mu = m_H, \text{finite } m_t:$ $H_{gg} = H_{ag}^{(0)}(1 + 0.815 + 0.360 + \cdots)$
- $\mu = m_H/2, m_t o \infty:$ $H_{gg} = H_{gg}^{(0)}(1 + 0.786 + 0.258 + \cdots)$ $\mu = m_H/2,$ finite $m_t:$ $H_{gg} = H_{ag}^{(0)}(1 + 0.791 + 0.261 + \cdots)$
- $$\begin{split} \mu &= -\mathrm{i} m_H, m_t \to \infty: \qquad H_{gg} = H_{gg}^{(0)} (1 + 0.270 + 0.0417 + \cdots) \\ \mu &= -\mathrm{i} m_H, \text{finite } m_t: \qquad H_{gg} = H_{gg}^{(0)} (1 + 0.274 + 0.0425 + \cdots) \end{split}$$

(where the numbers are total NLO and NNLO contributions)

Clear improvement in the pert. series of the form factor, so the relevant question is:

Can we use this to improve the inclusive cross section, and if so how?

< 🗇 ▶

Total Cross Section.

Total σ in d dimensions to regulate IR

$$\sigma = \underbrace{H_{gg}(\epsilon)}_{\text{virtual}} \times \underbrace{[\mathcal{I}_{gi}(\epsilon, \mu_f) \otimes_z f_i(\mu_f)]^2}_{\text{real collinear}} \times \underbrace{S_{gg}(\epsilon)}_{\text{real soft}} + \text{IR finite}$$

• $1/\epsilon$ IR divergences cancel between virtual and real collinear+soft

Renormalized EFT version

 $\sigma = H_{gg}(\mu) imes [\mathcal{I}_{gi}(\mu,\mu_f) \otimes_z f_i(\mu_f)]^2 imes S_{gg}(\mu) + \mathsf{IR}$ finite

- Now
 µ
 dependence cancels between first three terms
- Collinear contributions contain 1 z dependence
 (in collinear limit but for arbitrary z, includes qg, qq channels at (N)NLO)
- Threshold limit $z \to 1$ takes the further limit that collinear are soft as well, combining them into overall virtual+soft
 - ⇒ Above virtual+soft+collinear limit is weaker and sufficient to discuss how H_{gg} enters

Combine collinear+soft:

$$\sigma = \underbrace{H_{gg}(\mu) \, sc(\mu)}_{\text{"singular"}} + \text{IR-finite}$$

Consider the singular and ignore the IR-finite pieces (only for a moment)

$$egin{aligned} \sigma &= \left[1+h^{(1)}(\mu)+sc^{(1)}(\mu)
ight. \ &+h^{(2)}(\mu)+sc^{(2)}(\mu)+h^{(1)}(\mu)sc^{(1)}(\mu)+\mathcal{O}(lpha_s^3)
ight] \end{aligned}$$

• $h^{(i)}(\mu)$ contains large corrections from $\ln^2(-1) = -\pi^2$ at each order.

• To avoid them evaluate $H_{gg}(-i\mu)$ and evolve it back to μ (simply evaluating $sc(-i\mu)$ would just move the large terms from $h^{(i)}$ to $sc^{(i)}$)

$$H_{gg}(\mu) = H_{gg}(-\mathrm{i}\mu) U_H(-\mathrm{i}\mu,\mu)$$

 \Rightarrow Gives " π^2 -resummed" singular

$$egin{aligned} \sigma &= U_H(-\mathrm{i}\mu,\mu) ig[1+h^{(1)}(-\mathrm{i}\mu)+sc^{(1)}(\mu) \ &+h^{(2)}(-\mathrm{i}\mu)+sc^{(2)}(\mu)+h^{(1)}(-\mathrm{i}\mu)sc^{(1)}(\mu)+\mathcal{O}(lpha_s^3) ig] \end{aligned}$$

To explicitly define $sc(\mu)$ we can cut on any IR-sensitive kinematic variable $p \equiv \{p_T^H, p_T^{\text{jet}}, E_T, \mathcal{T}^{\text{jet}}, \mathcal{T}_B, \mathcal{T}_C, ...\} < p_{\text{cut}}$

 $\sigma(p_{\mathrm{cut}})$ is a *physical* cross section

• For $p_{\rm cut} \ll m_H$ it is always dominated by the singular, since $\sigma^{\rm ns}(p_{\rm cut})$ is power-suppressed (by $\sim p_{\rm cut}/m_H$)

Frank Tackmann (DESY)

To explicitly define $sc(\mu)$ we can cut on any IR-sensitive kinematic variable $p \equiv \{p_T^H, p_T^{\text{jet}}, E_T, \mathcal{T}^{\text{jet}}, \mathcal{T}_B, \mathcal{T}_C, ...\} < p_{\text{cut}}$

 $\sigma(p_{\mathrm{cut}})$ is a *physical* cross section

• For $p_{\rm cut} \ll m_H$ it is always dominated by the singular, since $\sigma^{\rm ns}(p_{\rm cut})$ is power-suppressed (by $\sim p_{\rm cut}/m_H$)

Frank Tackmann (DESY)

< 🗇 >

Spectrum and $p_{\rm cut}$ Independence.

$$\sigma = H_{gg}(\mu) \, sc(\mu, p_{ ext{cut}}) + \sigma^{ ext{ns}}(p_{ ext{cut}}) + \int_{p_{ ext{cut}}}^{\infty} \mathrm{d}p \, rac{\mathrm{d}\sigma}{\mathrm{d}p}$$

must be p_{cut} independent, which means

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}p} &= H_{gg}(\mu) \frac{\mathrm{d}sc(\mu)}{\mathrm{d}p} + \frac{\mathrm{d}\sigma^{\mathrm{ns}}}{\mathrm{d}p} \\ &= U_H(-\mathrm{i}\mu,\mu) \left[\frac{\mathrm{d}sc^{(1+2)}(\mu)}{\mathrm{d}p} + h^{(1)}(-\mathrm{i}\mu) \frac{\mathrm{d}sc^{(1)}(\mu)}{\mathrm{d}p} \right] + \frac{\mathrm{d}\sigma^{\mathrm{ns}(1+2)}}{\mathrm{d}p} \end{split}$$

• At large $p \gtrsim m_H/2$: singular and nonsingular spectra are separately meaningless and must recombine into correct fixed-order spectrum $d\sigma^{\rm FO}$

$$d\sigma^{\text{FO}(1)} = dsc^{(1)} + d\sigma^{\text{ns}(1)} d\sigma^{\text{FO}(2)} = dsc^{(2)} + h^{(1)}(\mu)dsc^{(1)} + d\sigma^{\text{ns}(2)}$$

- Either make $U_H \ p_{
 m cut}$ -dependent and turn it off at some large $p_{
 m cut}$
- Or adjust $\sigma^{
 m ns}$ to $U_H[\sigma^{
 m ns(1)}(1-U_H^{(1)})+\sigma^{
 m ns(2)}]$
 - Extends π^2 -resummation to $d\sigma^{ns}$ and thereby to full $d\sigma/dp$ and σ

- π^2 -resummation improves singular which directly translates into a much improved convergence for $\sigma(p_{\rm cut})$ at small $p_{\rm cut}$
- Once we reach $p_{
 m cut}\gtrsim m_H/2$ (and turn off the $p_{
 m cut}$ resummation), we have accumulated most of the cross section

[Stewart, FT, Walsh, Zuberi '13]

- \Rightarrow Better choice is to extend π^2 -resummation to $\sigma^{\rm ns}(p_{\rm cut})$ and full σ
 - Numerically, nonsingular also shows improved convergence
 - Safer than forcing π²-resummation to turn off, which could then easily lead to a decreasing cumulant (unphysical negative spectrum)

< 🗗

- π^2 -resummation improves singular which directly translates into a much improved convergence for $\sigma(p_{\rm cut})$ at small $p_{\rm cut}$
- Once we reach $p_{
 m cut}\gtrsim m_H/2$ (and turn off the $p_{
 m cut}$ resummation), we have accumulated most of the cross section

[Berger, Marcantonini, Stewart, FT, Waalewijn '10]

- \Rightarrow Better choice is to extend π^2 -resummation to $\sigma^{
 m ns}(p_{
 m cut})$ and full σ
 - Numerically, nonsingular also shows improved convergence
 - Safer than forcing π²-resummation to turn off, which could then easily lead to a decreasing cumulant (unphysical negative spectrum)

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $lpha_s(m_Z)=0.1171$ and 3-loop running, $m_t=172.5~{
m GeV}$ in EFT limit

	$\mu=m_H/2$	$\mu=m_H$	$\mu=2m_H$
$\mu_F=m_H/2$	48.35	46.70	
$\mu_F = m_H$	48.48	47.02	44.36
$\mu_F = 2m_H$		47.38	44.83

	$\mu=m_{H}/4$	$\mu=m_H/2$	$\mu=m_H$
$\mu_F=m_H/4$	47.88	48.36	
$\mu_F=m_H/2$	47.68	48.35	46.70
$\mu_F = m_H$		48.48	47.02

< 47 ▶

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $\alpha_s(m_Z) = 0.1171$ and 3-loop running at each order

- Perturbative corrections get more moderate
- Scale variations are reduced and provide better coverage (uncertainties use maximal absolute difference of 6-point variation from central)

Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with $\alpha_s(m_Z) = 0.1171$ and 3-loop running at each order

- Perturbative corrections get more moderate
- Scale variations are reduced and provide better coverage (uncertainties use maximal absolute difference of 6-point variation from central)

" π^2 -resummation" follows from the Sudakov resummation of the gluon form factor at timelike momentum transfer

- Does not rely on threshold limit
 - Can be used standalone or in conjunction with other exclusive resummations
- Significantly improves perturbative behavior in exclusive region of physical observables
- Can be extended to inclusive cross section
 - Improves perturbative series
 - Smaller perturbative uncertainties with better coverage
 - By itself does not justify any partial N³LO result, but can be added to your favourite one if you like, since any approximate result includes the N³LO form factor

< 47 >