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Gluon Form Factor.

Consider the on shell gluon form factor at spacelike momentum transfer
q2 < 0

Cg(q
2) = 〈g|GaµνGaµν |g〉 = + + · · ·

q2 < 0q2 < 0

Cg(q
2) is IR-divergent

Can consider it in d = 4− 2ε dimensions: Cg(q2, ε)

Equivalently, can “renormalize” it at some scale µ: Cg(q2, µ)
I This is what happens in SCET, where Cg(µ) becomes (part of) the matching

coefficient of the Ogg(µ) operator which is renormalized, usually in MS

It depends on q2 only through Sudakov logarithms

Cg(q
2, µ) =

∑
n,m≤2n

cmn α
n
s (µ) lnm(q2/µ2)
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Gluon Form Factor.

Cg(q
2, µ) =

∑
n,m≤2n

cmn α
n
s (µ) lnm(q2/µ2)

Ratio |C(−q2 − i0)/C(q2)|2 of timelike to spacelike form factors
is IR finite (ε or µ-independent) but contains leftover Sudakov logarithms

αns lnm(−1− i0) = αns (−iπ)m

I Responsible for large corrections in Drell-Yan/DIS (quark form factor)
I Can resum these by RG evolving from −iµ→ µ
I Very well known since many years

[..., Parisi ’80; Sterman ’87; Magnea, Sterman ’90]

⇒ Same happens in gg → H where Cg(−m2
H − i0) at timelike q2

appears which contributes to large pert. corrections
[Ahrens, Becher, Neubert, Yan ’08]
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ggH Form Factor.

Now consider full tt̄H induced ggH form factor

CggH(mH ,mt) = 〈H|tt̄H|gg〉

= + + · · ·q2 =m2
Hq2 =m2

H

In mt →∞ limit: CggH(mH ,mt;µ) = Ct(mt;µ)Cg(−m2
H − i0;µ)

Ct(mt;µ) contains single logarithms ln(mt/µ)

Cg(−m2
H − i0;µ) contains Sudakov logarithms ln(−m2

H − i0/µ2)

General finite mt: Write CggH(mH ,mt;µ) in terms of
Single logs ln(−imH/mt) (very small effect, starting at NNLO)

Sudakov logs ln(−m2
H − i0/µ2) (dominant)
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CggH Perturbative Series.

Hgg(mH ,mt;µ) = |CggH(mH ,mt;µ)|2 at different scales and
with/without finite mt (up to 1-loop)

µ = mH ,mt →∞ : Hgg = H(0)
gg (1 + 0.810 + 0.356 + · · · )

µ = mH , finite mt : Hgg = H(0)
gg (1 + 0.815 + 0.360 + · · · )

µ = mH/2,mt →∞ : Hgg = H(0)
gg (1 + 0.786 + 0.258 + · · · )

µ = mH/2, finite mt : Hgg = H(0)
gg (1 + 0.791 + 0.261 + · · · )

µ = −imH ,mt →∞ : Hgg = H(0)
gg (1 + 0.270 + 0.0417 + · · · )

µ = −imH , finite mt : Hgg = H(0)
gg (1 + 0.274 + 0.0425 + · · · )

(where the numbers are total NLO and NNLO contributions)

Clear improvement in the pert. series of the form factor, so the relevant
question is:

Can we use this to improve the inclusive cross section, and if so how?
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Total Cross Section.

Total σ in d dimensions to regulate IR

σ = Hgg(ε)︸ ︷︷ ︸
virtual

× [Igi(ε, µf)⊗z fi(µf)]2︸ ︷︷ ︸
real collinear

× Sgg(ε)︸ ︷︷ ︸
real soft

+ IR finite

1/ε IR divergences cancel between virtual and real collinear+soft

Renormalized EFT version

σ = Hgg(µ)× [Igi(µ, µf)⊗z fi(µf)]2 × Sgg(µ) + IR finite

Now µ dependence cancels between first three terms

Collinear contributions contain 1− z dependence
(in collinear limit but for arbitrary z, includes qg, qq channels at (N)NLO)

Threshold limit z → 1 takes the further limit that collinear are soft as well,
combining them into overall virtual+soft
⇒ Above virtual+soft+collinear limit is weaker and sufficient to discuss

how Hgg enters
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Singular Part.

Combine collinear+soft: σ = Hgg(µ) sc(µ)︸ ︷︷ ︸
“singular”

+ IR-finite

Consider the singular and ignore the IR-finite pieces (only for a moment)

σ =
[
1 + h(1)(µ) + sc(1)(µ)

+ h(2)(µ) + sc(2)(µ) + h(1)(µ)sc(1)(µ) +O(α3
s)
]

h(i)(µ) contains large corrections from ln2(−1) = −π2 at each order.
To avoid them evaluate Hgg(−iµ) and evolve it back to µ
(simply evaluating sc(−iµ) would just move the large terms from h(i) to sc(i))

Hgg(µ) = Hgg(−iµ)UH(−iµ, µ)

⇒ Gives “π2-resummed” singular

σ = UH(−iµ, µ)
[
1 + h(1)(−iµ) + sc(1)(µ)

+ h(2)(−iµ) + sc(2)(µ) + h(1)(−iµ)sc(1)(µ) +O(α3
s)
]
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Singular vs. Nonsingular.
To explicitly define sc(µ) we can cut on any IR-sensitive kinematic variable
p ≡ {pHT , pjetT , ET ,T jet,TB,TC , ...} < pcut

σ = Hgg(µ) sc(µ, pcut)︸ ︷︷ ︸
singular

+ σns(pcut)︸ ︷︷ ︸
nonsingular︸ ︷︷ ︸

σ(pcut)

+

∫ ∞
pcut

dp
dσ

dp

σ(pcut) is a physical cross section
For pcut � mH it is always dominated by the singular, since σns(pcut)
is power-suppressed (by ∼ pcut/mH )
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Spectrum and pcut Independence.

σ = Hgg(µ) sc(µ, pcut) + σns(pcut) +

∫ ∞
pcut

dp
dσ

dp

must be pcut independent, which means

dσ

dp
= Hgg(µ)

dsc(µ)

dp
+

dσns

dp

= UH(−iµ, µ)

[
dsc(1+2)(µ)

dp
+ h(1)(−iµ)

dsc(1)(µ)

dp

]
+

dσns(1+2)

dp

At large p & mH/2: singular and nonsingular spectra are separately
meaningless and must recombine into correct fixed-order spectrum dσFO

dσFO(1) = dsc(1) + dσns(1)

dσFO(2) = dsc(2) + h(1)(µ)dsc(1) + dσns(2)

Either make UH pcut-dependent and turn it off at some large pcut
Or adjust σns to UH [σns(1)(1− U (1)

H ) + σns(2)]

I Extends π2-resummation to dσns and thereby to full dσ/dp and σ
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Singular vs. Nonsingular.

π2-resummation improves singular which directly translates into a much
improved convergence for σ(pcut) at small pcut
Once we reach pcut & mH/2 (and turn off the pcut resummation), we have
accumulated most of the cross section
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⇒ Better choice is to extend π2-resummation to σns(pcut) and full σ
I Numerically, nonsingular also shows improved convergence
I Safer than forcing π2-resummation to turn off, which could then easily lead

to a decreasing cumulant (unphysical negative spectrum)
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Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with αs(mZ) = 0.1171 and 3-loop running,
mt = 172.5GeV in EFT limit

µ = mH/2 µ = mH µ = 2mH

µF = mH/2 48.35 46.70

µF = mH 48.48 47.02 44.36

µF = 2mH 47.38 44.83

µ = mH/4 µ = mH/2 µ = mH

µF = mH/4 47.88 48.36

µF = mH/2 47.68 48.35 46.70

µF = mH 48.48 47.02
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Benchmark Results.

(Disclaimer: Numbers are preliminary and have not been cross-checked)

Using MSTW2008NNLO with αs(mZ) = 0.1171 and 3-loop running at each order
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Summary.

“π2-resummation” follows from the Sudakov resummation of the gluon form
factor at timelike momentum transfer

Does not rely on threshold limit
I Can be used standalone or in conjunction with other exclusive resummations

Significantly improves perturbative behavior in exclusive region of
physical observables

Can be extended to inclusive cross section
I Improves perturbative series
I Smaller perturbative uncertainties with better coverage
I By itself does not justify any partial N3LO result, but can be added to your

favourite one if you like, since any approximate result includes the N3LO
form factor
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