Overview of the EGEE project and the gLite middleware

www.eu-egee.org
• What is EGEE?
 – The project
 – The infrastructure

• gLite middleware

• EGEE applications

• Sources of further information
A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user.
Aim of EGEE:
“to establish a seamless European Grid infrastructure for the support of the European Research Area (ERA)”

EGEE
- 1 April 2004 – 31 March 2006
- 71 partners in 27 countries, federated in regional Grids

EGEE-II
- 1 April 2006 – 30 April 2008
- Expanded consortium

EGEE-III
- 1 May 2008 – 30 April 2010
- Transition to sustainable model
A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user.
EGEE working with related infrastructure projects

Map showing countries connected to the EGEE Production Infrastructure, infrastructure via the US Open Science Grid, countries in the EELA-2 project, countries in the EUMedGrid project, countries in the BalticGrid-II project, countries in the SEE-GRID-SCI project, countries in the EUIndiaGrid project, countries in the EUChinaGrid project, and countries in several regional projects.
What is happening now?

Real Time Monitor
- Java tool
- Displays jobs running (submitted through RBs)
- Shows jobs moving around world map in real time, along with changes in status

[Image of map with colored markers and statistics]

[Web address: http://gridportal.hep.ph.ic.ac.uk/rtm/]

(snapshot 16 January 2007)
• **Production service**
 – Scaling up the infrastructure with resource centres around the globe
 – Stable, well-supported infrastructure, running only well-tested and reliable middleware

• **Pre-production service**
 – Run in parallel with the production service (restricted nr of sites)
 – First deployment of new versions of the gLite middleware
 – Test-bed for applications and other external functionality

• **T-Infrastructure (Training&Education)**
 – Complete suite of Grid elements and application (Testbed, CA, VO, monitoring, support, …)
 – Everyone can register and use GILDA for training and testing
NA3 activity:
User training and induction

- Expand portfolio of training materials & courses
- Train a wide variety of EGEE users (internal/external)
- Develop effective mechanisms for training end-users of the EGEE infrastructure
- Collaborate in cross-activity initiatives
 - ICEAGE Project Digital Library
 - http://library.iceage-eu.org/
 - Videos, MP3 talks on grid computing
- http://www.egee.nesc.ac.uk/
 - Training events
 - Training material repository
- http://egee.lib.ed.ac.uk/
 - EGEE Digital Library
 - Repository of training materials

29 Active partners
~ 29 FTEs
89 Individuals
6 Federations
NA4 Activity: Application identification and support

- **Application Identification and Support (NA4)**
 - 25 countries, 40 partners, 280+ participants, 1000s of users

- **Support the large and diverse EGEE user community:**
 - Promote dialog: Users’ Forums & EGEE Conferences
 - Technical Aid: Porting support, procedural issues
 - Liaison: Software and operational requirements

- **Main activities:**
 - 5 application clusters: HEP, Life sciences, Astronomy & astrophysics, Earth science, Computational chemistry, Fusion, Grid observatory

- **Support:**
 - Application porting support
 - www.lpds.sztaki.hu/gasuc
 - VO support
 - Direct user support
 - www.ggus.org
 - Regional support

- **http://egeena4.lal.in2p3.fr**
Country participating in EGEE

No. Cores

> 200 sites in 40 countries
~ 38 000 CPUs
~ 5 PB storage
98k jobs/day
> 200 Virtual Organizations
⇒ The world’s largest multi-disciplinary Grid
Operations Coordination Centre (OCC)
- management, oversight of all operational and support activities

Regional Operations Centres (ROC)
- providing the core of the support infrastructure, each supporting a number of resource centres within its region
- Grid Operator on Duty

Resource centres
- providing resources (computing, storage, network, etc.)

Grid User Support (GGUS)
- At FZK, coordination and management of user support, single point of contact for users
VO concept

- gLite middleware runs on each shared resource to provide
 - Data services
 - Computation services
 - Security service

- Resources and users form Virtual organisations: basis for collaboration

- Distributed services (both people and middleware) enable the grid
A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user.
The Grid relies on advanced software, called middleware, which interfaces between resources and the applications.

The Grid middleware:
- Basic services
 - Secure and effective access to resources
- High level services
 - Optimal use of resources
 - Authentication to the different sites that are used
 - Job execution & monitoring of progress
 - Problem recovery
 - Transfer of results back to the user
When using a PC or workstation you
- Login with a username and password (“Authentication”)
- Use rights given to you (“Authorisation”)
- Run jobs
- Manage files: create them, read/write, list directories

Components are linked by a bus
- Operating system
- One admin. domain

When using a Grid you
- Login with digital credentials – single sign-on (“Authentication”)
- Use rights given you (“Authorisation”)
- Run jobs
- Manage files: create them, read/write, list directories

Services are linked by the Internet
- Middleware
- Many admin. domains
• gLite 3.0, gLite 3.1
 ⇒ Merger of LCG 2.7 and GLite 1.5

 – **Exploit experience and existing components from VDT (Condor, Globus), EDG/LCG, and others**
 – Develop a lightweight stack of generic middleware useful to EGEE applications (HEP and Biomedics are pilot applications).
 ▪ Should eventually deploy dynamically (e.g. as a globus job)
 ▪ Pluggable components – cater for different implementations
 – Focus is on providing a stable and usable infrastructure
Basic gLite use case: Job submission

User Interface
- Submit job (executable + small inputs)
- Create proxy

Resource Broker
- Retrieve status & (small) output files

File and Replica Catalog
- Submit job
- Retrieve output & (small) output files
- Register file
- Job status

Information System
- Query
- Publish state

VO Management Service
- (DB of VO users)

Logging and bookkeeping

Site X
- Computing Element
- Storage
- Input file(s)
- Output file(s)

Site X
- Job status

Logging and bookkeeping

VO Management Service
- (DB of VO users)
Main components

User Interface (UI): The place where users logon to the Grid

Resource Broker (RB) (Workload Management System (WMS)): Matches the user requirements with the available resources on the Grid

Information System: Characteristics and status of CE and SE

File and replica catalog: Location of grid files and grid file replicas

Logging and Bookkeeping (LB): Log information of jobs

Computing Element (CE): A batch queue on a site’s computers where the user’s job is executed

Storage Element (SE): provides (large-scale) storage for files
Main components

User Interface (UI): The place where users logon to the Grid

Resource Broker (RB) (Workload Management System (WMS)): Matches the user requirements with the available resources on the Grid

Information System: Characteristics and status of CE and SE

File and replica catalog: Location of grid files and grid file replicas

All built upon authorisation, authentication, security

Computing Element (CE): A batch queue on a site's computers where the user's job is executed

Storage Element (SE): Provides (large-scale) storage for files
Who provides the resources?!

<table>
<thead>
<tr>
<th>Service</th>
<th>Provider</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>User / institute / VO</td>
<td>Computer with client SW</td>
</tr>
<tr>
<td>Resource Broker (WMS)</td>
<td>VOs - EGEE does not fund RBs</td>
<td></td>
</tr>
<tr>
<td>Information System</td>
<td>Grid operations - EGEE funded effort</td>
<td></td>
</tr>
<tr>
<td>File and replica catalog</td>
<td>VOs - EGEE does not fund catalogs</td>
<td></td>
</tr>
<tr>
<td>Logging and Bookkeeping</td>
<td>VOs - EGEE does not fund LB servers</td>
<td></td>
</tr>
<tr>
<td>Computing Element (CE)</td>
<td>VOs - EGEE does not fund CEs</td>
<td>VOs provide resources to match average need</td>
</tr>
<tr>
<td>Storage Element (SE)</td>
<td>VOs - EGEE does not fund SEs</td>
<td>VOs provide resources to match average need</td>
</tr>
<tr>
<td>External services</td>
<td>User / institute / VO</td>
<td>To extend the capabilities of the core infrastructure</td>
</tr>
</tbody>
</table>
Where computer science meets the application communities!

- Recommended External Software Packages for Egee Communities
- Current RESPECT tools:
 - GridWay
 - P-GRADE Portal
 - GANGA
 - GReIC
 - I2glogin

- http://egeena4.lal.in2p3.fr/ → “Grid software” menu

Production infrastructure contains these services

- Basic services: Must be complete and robust; Should not assume the use of Higher-Level Grid Services
- High level services: help the users building their computing infrastructure but should not be mandatory
• A Grid is the combination of networked resources and the corresponding middleware, which provides services for the user.
EGEE Applications

- >270 VOs from several scientific domains
 - Astronomy & Astrophysics
 - Civil Protection
 - Computational Chemistry
 - Comp. Fluid Dynamics
 - Computer Science/Tools
 - Condensed Matter Physics
 - Earth Sciences
 - Fusion
 - High Energy Physics
 - Life Sciences
- Further applications under evaluation

Applications have moved from testing to routine and daily usage
~80-95% efficiency
Application families

• Simulation
 – Large number of similar, independent jobs – parameter study

• Bulk Processing
 – Widely-distributed input data, Sophisticated data management

• Workflow
 – Complex dependencies between individual tasks

• Legacy Applications
 – Licenses: control access to software on the grid
 – No recompilation ⇒ no direct use of grid APIs

• Parallel Jobs
 – Many CPUs needed simultaneously, Use of MPI libraries
 – Limited support in gLite: MPI configuration is not uniform

• Responsive Apps.
 – Short response time
 – No real support in gLite ⇒ Interactive Grid FP6 project
Further information, references

- **EGEE**

- **gLite middleware**
 - http://www.glite.org

- **gLite manuals, documentation**
 - (gLite user guide)

- **Recommended External Software Packages for Egee CommuniTies (RESPECT)**

- **Description of work of EGEE-III**
 - https://edms.cern.ch/document/886385/4
Summary

• **EGEE is running the largest multi-VO grid in the world!**
 – Creating the “grid layer” in e-Infrastructure for research, public service and industry

• **Key concepts for EGEE**
 – Sustainability – planning for the long-term
 – Production quality
 – User support

• **EGEE’s middleware: gLite. Current version 3.1**
 – Basic middleware services
 – High level middleware services

• **External software to foster uptake of technology**