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Introduction

This presentation describes new results of investigating the dynamics of
the magnetic interaction of rigid bodies and continues the cycle of papers
devoted to the investigation of contact-free equilibrium of rigid bodies in
magnetostatics. These papers show that the magnetic interaction for a
wide class of magnetic bodies such as permanent magnets, inductance coils
(superconductive and with direct current) and their different combinations
("mixed"type systems) can be described through potential energy of their
interaction received from the Lagrangian formalism of electromechanical
analogy. It was also shown, that there are such magnetic configurations
of rigid bodies, including superconductive elements, that potential energy
has the minimum. Such systems with stable magnetic equilibrium are called
"Magnetic Potential Well"(S.S.Zub,V.M.Rashkovan [1,2]).
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Introduction

To investigate not only quasistatic models but also dynamic stable
configurations, as well as to consider a larger number of tasks (confinement,
scattering, orbital motion) an adequate mathematical apparatus for
investigating the dynamics of such systems is required. Such mathematical
apparatus is Hamiltonian formalism, presented below.
In this presentation this formalism is given for two-body problem
with magnetic (i.e. non-central force) interaction. Having the available
Lagrangian formalism for magnetic interaction of bodies (S.S.Zub [3,2])
and the trivial expansion of the Poisson structures given in this paper it is
easy to generalize this approach for describing the dynamics of N > 2 rigid
bodies (symmetric top model).
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Introduction

It should be noted that the Poisson structures were used when trying to
classically describe the magnetic interaction of spins (Mario Feingold, Asher
Peres; E. Magyari, H. Thomas, R. Weber, C. Kaufman and G. Miiller;
N. Srivastava, C. Kaufman, G. Miiller, E. Magyari, H. Thomas, R. Weber
[4,5,6,7]). These papers do not consider spatial motion of bodies, i.e. spatial
variables are absent. The energy of interaction given in these papers cannot
be used even for describing classic magnetic dipoles.
A more realistic description of magnetic interaction of two magnets was
given by V.V. Kozoriz based on Lagrangian formalism (V.V. Kozoriz [8]).
But the mathematical apparatus he uses does not give any description
of "mixed type"systems. Moreover, it is well known that the generalized
coordinates used (Euler’s angles) cannot correctly map all orientations of a
rigid body, which becomes apparent in the peculiarities of the coefficients
of the differential equations of motion.
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Introduction

We developed a formalism which results in the coordinate-free, i.e. the vector
form of motion equations for the system of magnetically interactive bodies
(including "mixed type"systems).
All Poisson brackets, expressions for motion equations, as well as the law
of total momentum conservation of the system were tested by means of
the analytical possibilities of the Maple system, but for the computational
modeling of the orbital motion of two magnets MatLab is more preferable.
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Hamiltonian formalism for two magnetic-interacting bodies

Definition of the Poisson structure.

Poisson structures related with the dynamics of a rigid body.
Poisson structure for two magnetic-interacting bodies.

Stanislav Zub Mathematical model of magnetically interacting rigid bodies



Introduction
Hamiltonian formalism for two magnetic-interacting bodies

Application of Maple and MatLab systems
Summary

Definition of the Poisson structure
Poisson structures related with the dynamics of a rigid body
Poisson structure for two magnetic-interacting bodies

Hamiltonian formalism for two magnetic-interacting bodies

Definition of the Poisson structure.
Poisson structures related with the dynamics of a rigid body.

Poisson structure for two magnetic-interacting bodies.

Stanislav Zub Mathematical model of magnetically interacting rigid bodies



Introduction
Hamiltonian formalism for two magnetic-interacting bodies

Application of Maple and MatLab systems
Summary

Definition of the Poisson structure
Poisson structures related with the dynamics of a rigid body
Poisson structure for two magnetic-interacting bodies

Hamiltonian formalism for two magnetic-interacting bodies

Definition of the Poisson structure.
Poisson structures related with the dynamics of a rigid body.
Poisson structure for two magnetic-interacting bodies.

Stanislav Zub Mathematical model of magnetically interacting rigid bodies



Introduction
Hamiltonian formalism for two magnetic-interacting bodies

Application of Maple and MatLab systems
Summary

Definition of the Poisson structure
Poisson structures related with the dynamics of a rigid body
Poisson structure for two magnetic-interacting bodies

Definition of the Poisson structure

Definition
A Poisson bracket (or a Poisson structure) on a manifold M is a bilinear
operation {, } on FM ≡ C∞(M): F ,G ∈ FM ⇒ {F ,G} ∈ FM .
Following Dirac the elements FM will be referred to as dynamic
variables.

Poisson bracket satisfies the next elemental rules [9,10]:
{α1F1 + α2F2,G} = α1{F1,G}+ α2{F2,G}; α1, α2 = const;

{F ,G} = −{G ,F};
{G ,F1F2} = {G ,F1}F2 + F1{G ,F2};
{F1{F2,F3}}+ {F2{F3,F1}}+ {F3{F1,F2}} = 0;

The last of these formulas is the Jacobi identity for Poisson brackets.
Satisfying this identity jointly with the 1st and 2nd properties gives the
space of dynamic variables a structure of Lee algebra with regard to
Poisson brackets. Stanislav Zub Mathematical model of magnetically interacting rigid bodies
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Definition of the Poisson structure

Definition
G ∈ FM is named the Casimir function if {G ,F} = 0 ∀F ∈ FM i.e.
Poisson bracket of the dynamic variable G with any other dynamic
variable vanish.

If x i , i = 1..dim(M) is a coordinate system on the Poisson manifold the
following expression for Poisson brackets of all dynamic variables results
from the properties of the Poisson structure:

(1) {F ,G} =
∑
i,k

{x i , xk} ∂F

∂x i

∂G

∂xk
;

Base Poisson brackets are structural functions of a Poisson manifold M
with regard to a given (generally speaking, local)coordinate system. They
form a structural tensor (matrix) J ik with dimension dim(M)× dim(M):

(2) J ik = {x i , xk}
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Definition of the Poisson structure

Thus formula (1) can be written like this

(1a) {F ,G} =
∑
i ,k

J ik ∂F

∂x i

∂G

∂xk
;

The structural tensor has the following properties: antisymmetry
and

(3) J ik = −Jki ;

Jacobi identity

(3a)

dim(M)∑
r=1

J ir ∂J jk

∂x r
+ J jr ∂Jki

∂x r
+ Jkr ∂J ij

∂x r
= 0;
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Definition of the Poisson structure

For a classical phase space with global coordinates qi , pi , i = 1..n
the structural tensor has the form of (block) matrix,

(4) J(q,p) =

[
0 1
−1 0

]
which results in the known expression for a classical Poisson
bracket.

(5) {F ,G} =
n∑
i

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
;

Any dynamic variable H generates a flow on the Poisson manifold
by the formula

(6)
dx

dt
= {x ,H} −→ dF

dt
= {F ,H} ∀F ∈ FM
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Definition of the Poisson structure

Useful properties of Poisson brackets. If a dynamic variable G
depends on generators (i.e. on x i ) as a composite function of
dynamic variables hk , similarly

{F ,G (h1, . . . , h
m)} = J ik ∂F

∂x i

∂G

∂hr

∂F

∂xk
=
∂G

∂hr

(
J ik ∂F

∂x i

∂F

∂xk

)
=
∂G

∂hr
{F , hr}

i.e.

(7) {F ,G (h1, . . . , h
m)} =

∂G

∂hr
{F , hr}

similarly

(7a) {F (h1, . . . , h
m),G (h1, . . . , h

m)} = {hr , hs} ∂F

∂hr

∂G

∂hs

For a physical system these relations can help to turn to a smaller
number of generators.
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Poisson structures related with the dynamics of a rigid body

Definition

If two main moments of inertia are equal, I1 = I2 = I⊥, the rigid body is
called a symmetric top.

The kinetic energy of the rotation of a body around its centre of inertia is
expressed in the following way by means of the angular rate (or the
moment ~m) in the coordinate system relating to the principal axes of
inertia.

(8) T =
1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
=

1

2

(
m2

1

I1
+

m2
2

I2
+

m2
3

I3

)
For the symmetric top as it will be shown below Mν is the Casimir
function, and the constant item in energy can be truncated (Appendix A):

(9) T =
1

2I⊥
m2 +

I⊥ − Iν
2Iν I⊥

M2
ν equivalent to T =

1

2I⊥
m2 =

α

2
m2.
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Poisson structures related with the dynamics of a rigid body

Usually

Components of the moment about the body are usually used as the
inertia tensor in a body related system is not time-dependent.

In our case

However in the case of a symmetric top as is shown above it is
convenient to use components of the moment about a fixed coordinate
system and, correspondingly, direction cosines of the symmetry axis ~ν
also with regard to a fixed coordinate system.

Our model of rigid body

Henceforth when building a model a symmetric top fully described by the
following vectors will only be used as a rigid body: ~ν, ~m – symmetry axis
and body momentum.
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Poisson structures related with the dynamics of a rigid body

Thus, the following Poisson structure can be defined

(10) {νi , νj} = 0; {mi , νj} = εijkνk ; {mi ,mj} = εijkmk ;

The corresponding structural tensor has the following form

(11) J(ν,m) =



0 0 0 0 ν3 −ν2

0 0 0 −ν3 0 ν1

0 0 0 ν2 −ν1 0
0 ν3 −ν2 0 m3 −m2

−ν3 0 ν1 −m3 0 m1

ν2 −ν1 0 m2 −m1 0
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Poisson structures related with the dynamics of a rigid body

The progressive motion of a body is described by the generators ~r1, ~p1

and ~r2, ~p2. We change the variables of the type (Appendix B):

(12) ~R =
m1~r1 + m2~r2

m1 + m2
; ~r = ~r2 −~r1;

The kinetic energy of the progressive motion in the centre-of-mass
system has the form

(13) T =
m1 + m2

2
~̇R2 +

m

2
~̇r2 =

1

2m
~p2; m =

m1m2

m1 + m2
;

as ~̇R = 0 and m is the reduced mass, ~r is the orbital radius-vector.

Stanislav Zub Mathematical model of magnetically interacting rigid bodies



Introduction
Hamiltonian formalism for two magnetic-interacting bodies

Application of Maple and MatLab systems
Summary

Definition of the Poisson structure
Poisson structures related with the dynamics of a rigid body
Poisson structure for two magnetic-interacting bodies

Poisson structures related with the dynamics of a rigid body

Consequently the kinetic energy of two bodies is as follows
(14) T (p2, ~m

′2, ~m
′′2) = 1

2mp2 + α
′

2
~m

′2 + α
′′

2
~m

′′2,
where ~r , ~p – orbital coordinates and impulses; ~ν

′
, ~m

′
и ~ν

′′
, ~m

′′
– are

symmetry axes and momenta of the 1st and 2nd bodies, respectively.
Therefore the Poisson structure for a system of two magnetically
interacting bodies has generators ~r , ~p, ~ν

′
, ~m

′
, ~ν

′′
, ~m

′′
. Each of 3 groups

describes independent degrees of freedom; therefore the structural tensor
has the following block form

(15) J =

J(r ,p) 0 0
0 J(ν′ ,m′ ) 0

0 0 J(ν′′ ,m′′ )


The following dynamic variables are Casimir functions for this Poisson
structure:
~ν

′2 = 1, ~ν
′′2 = 1; (~ν

′
, ~m

′
) = M

′

3 = const1, (~ν
′′
, ~m

′′
) = M

′′

3 = const2;
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Poisson structures related with the dynamics of a rigid body

Proposition

As it will be shown below the potential energy of the type
U(r , c

′
, c

′′
, c

′′′
) describes interaction for a rather wide class of

magnetic bodies. Where
r = |~r |; ~er = ~r/r ;

c
′
= (~er , ~ν

′
);

c
′′

= (~er , ~ν
′′
);

c
′′′

= (~ν
′
, ~ν

′′
);
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Remark
There are many physical models for which it is known that the
potential energy adequately describes interaction and has a reduced
form in the axisymmetric case:

1 permanent magnets - in classical courses;

2 superconductive elements - in the monograph on
electromechanics by White-Woodson (within quasistationary
approximation);

3 systems consisting of superconductive elements and constant
magnets - in my Ph.D. thesis (also within quasistationary
approximation);
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Poisson structures related with the dynamics of a rigid body

Example

Let two "magnetic charges" spaced on a fixed distance be a "dumbbell".
This system modulates a field of a long thin cylinder. The potential
energy of this system is as follows:

(16) U =
µ0κ

′
κ

′′

4π

∑
ε′ ,ε′′=±1

ε
′
ε

′′

Rε′ε′′

where Rε′ε′′ (r , c
′
, c

′′
, c

′′′
)

=
√

r2 + l ′2 + l ′′2 + 2r(ε′′ l ′′c ′′ − ε′ l ′c ′)− 2ε′ε′′ l ′ l ′′c ′′′

It is this system that we used to check the capability of the orbital
motion in the system of two magnets.
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Cases

The potential energy of the magnetic interaction of 2 bodies has the
same form for the cases: 2 "dumbbells"; 2 superconductive loops of a
ring form; magnetic dipole - superconductive loop of a ring form.

Proposition

In the case of a permanent magnet having axisymmatric form, when the
scalar magnetic potential outside the body ψ = ψ(r , z) = ψ(r , rc

′
), the

potential energy of its interaction both with a magnetic dipole and a
"dumbbell"has the form U(r , c

′
, c

′′
, c

′′′
).

Here z – is the dipole coordinate in the coordinate system, the axis ~z of
which coincides with the axis of the magnetic symmetry of the body;
r – the distance to the magnetic dipole from the datum point located on
the axis ~z .
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Poisson structures related with the dynamics of a rigid body

Potential energy of the magnetic dipole and magnetic axisymmetric body:

(17) U = µ(∂rψ(r , rc
′
)c

′′
+ ∂zψ(r , rc

′
)c

′′′
)

Potential energy of the magnetic "dumbbell"and magnetic axisymmetric
body:

(18) U = κ
∑

ε=±1

ψ(Rε(r , c
′′
), zε(r , c

′
, c

′′
))

where R2
ε = r2 + l2 + 2εlrc

′′
, zε = rc

′
+ εlc

′′′
.
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Poisson structure for two magnetic-interacting bodies

Hamiltonian of the system is given in the following expression

(19) H = T (p2, ~m
′2, ~m

′′2) + U(r , c
′
, c

′′
, c

′′′
)

The motion equations for this Hamiltonian have the form

(20)



~̇r = 1
m
~p;

~̇p = −∂rU~e − 1
r (∂c′ UPe

⊥(~ν
′
) + ∂c′′ UPe

⊥(~ν
′′
));

~̇ν
′
= α

′
(~m

′ × ~ν ′
);

~̇m
′
= ∂c′ U(~e × ~ν ′

)− ∂c′′′ U(~ν
′ × ~ν ′′

);

~̇ν
′′

= α
′′
(~m

′′ × ~ν ′′
);

~̇m
′′

= ∂c′′ U(~e × ~ν ′′
) + ∂c′′′ U(~ν

′ × ~ν ′′
);

where operator Pe
⊥ – is the projector on the plane perpendicular to the

vector ~e, i.e. Pe
⊥(~ν

′
) = ~ν

′ − c
′
~e.
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Poisson structure for two magnetic-interacting bodies

The components of the total momentum of the system are integrals
of motion.

(21) ~j =~l + ~m
′
+ ~m

′′
= const3, ~l = ~x × ~p;

This results from symmetry considerations, but, besides, this can be
checked by direct calculation.

(22)
d~j

dt
= {~j ,H} = 0;
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Poisson structure for two magnetic-interacting bodies

Thus, the system of equations (20) should be supplemented with
the relations:

(23)


~ν

′2 = 1, ~ν
′′2 = 1;

(~ν
′
, ~m

′
) = M

′
3 = const1, (~ν

′′
, ~m

′′
) = M

′′
3 = const2;

~j =~l + ~m
′
+ ~m

′′
= const3, ~l = ~x × ~p;

These relations can be used to reduce the order of the system
differential equations. In particular, it is very easy to exclude for
example the dynamic variable ~m

′′
using line 3 in (23). Using all

relations (23) it is possible exclude 4 + 3 = 7 dynamic variable and
have in essence a system of the 11th order.
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Application of Maple and MatLab systems

Base procedures for computing Poisson brackets (Maple).

Computational modeling in Maple.
Computational modeling in MatLab.
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Base procedures for computing Poisson brackets

Total structural tensor for a two-body system:
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Base procedures for computing Poisson brackets

Procedure for computing Poisson brackets.
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Base procedures for computing Poisson brackets

~̇
m

′
= {m′

i ,H} = {m′

i ,U(r , c
′
, c

′′
, c

′′′
)} = ∂c′ U(~e × ~ν′)− ∂c′′′ U(~ν′ × ~ν′′)
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Base procedures for computing Poisson brackets

Total moment of momentum conservation law: {ji ,H} = 0 ∀i
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Jacobi identity:
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Base procedures for computing Poisson brackets

Jacobi identity testing procedure.
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Base procedures for computing Poisson brackets

Test of Jacobi identity for structural tensor.
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Computational modeling in Maple

Motion equations of a two-dipole system
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Computational modeling in Maple

Motion equations of a two-dipole system.
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Computational modeling in Maple

Parameters of cylindrical magnets (dumb-bells).
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Total moment of momentum conservation law (z - component of
vector).
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Computational modeling in MatLab

Change of orbital radius on background of x - coordinate changing.
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Summary

The Hamiltonian formalism has been developed which results
in a contact-free, i.e. vector, form of motion equations for a
system of magnetically interacting bodies provided that the
axial symmetry of distribution of the mass of a body and its
magnetic properties is the same.
In the Maple system of symbolic computation the procedure of
calculating Poisson brackets has been programmed for a
system of 2 magnetically interacting symmetric tops.
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Summary

Using symbolic methods the following has been checked:
1 the Jacobi identity for a structural tensor of the Poisson

structure;

2 Poisson brackets between all dynamic variables which are of
interest for our problem;

3 system motion equations;
4 conservation of the components of the total moment of

momentum;
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1 the Jacobi identity for a structural tensor of the Poisson
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2 Poisson brackets between all dynamic variables which are of

interest for our problem;
3 system motion equations;

4 conservation of the components of the total moment of
momentum;
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Using symbolic methods the following has been checked:
1 the Jacobi identity for a structural tensor of the Poisson

structure;
2 Poisson brackets between all dynamic variables which are of

interest for our problem;
3 system motion equations;
4 conservation of the components of the total moment of

momentum;
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Summary

The orbital motion of two magnets ("dumbbells"model) has
been modeled numerically both in Maple and MatLab.
During computational modeling the uniformity of Casimir
functions and integrals of motions have been checked.
The example demonstrates stability of the orbital motion of
magnets with certain relations between their parameters.
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On the tensor of symmetric top inertia

Definition

If Iik =
∑

m(x2
i δik − xixk) is a symmetric tensor (Iik = Iki ) then Iik is

called the tensor of inertia.

For the symmetric top inertia tensor

(10) I =
∑

k

IkEk ⊗ E k

where Ek – are eigenvectors of the inertia tensor, i.e

(11) IEk = IkEk
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On the tensor of symmetric top inertia

Taking into account the symmetry of the top ( I1 = I2 ), we will obtain

(12) I = I1(E1 ⊗ E 1 + E2 ⊗ E 2) + I3E3 ⊗ E 3

or

(12a) I = I⊥P⊥ + IνPν

where Pν ,P⊥ - projectors

(13) Pν = ν ⊗ ν, P⊥ = E − Pν

The main properties of projectors in this case are as follows

(14) P2
ν = Pν , P2

⊥ = P⊥, P⊥Pν = 0, P⊥ + Pν = E ;

Using these properties it is easy to obtain

(15) I = I⊥E + (Iν − I⊥)Pν

and

(16) I−1 = I−1
⊥ P⊥ + I−1

ν Pν

(16a) I−1 = I−1
⊥ E +

I⊥ − Iν
Iν I⊥

Pν
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On the tensor of symmetric top inertia

In accordance with the inertia tensor we have

(17) mi = Iijω
j ⇒ ωi = I−1

ij mj

The kinetic energy of the rotation of a body around its centre of
inertia is expressed by means of the angular velocity (or moment) in
a fixed coordinate system in the following way

(18) T =
1

2
Iijω

iωj =
1

2
I−1
ij mimj

(19) T =
1

2I⊥
m2 +

I⊥ − Iν
2Iν I⊥

M3M3 ≈
1

2I⊥
m2 =

α

2
m2,

as M3 = Mν is the Casimir function, α is a quantity reciprocal to
the moment of body inertia, namely: α = 1/I⊥.
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Transfer to the inertial reference frame

Let us consider a Lagrangian system of 2 material particles the
interaction of which is not necessarily of central character

(20) L =
1

2
m1~̇r

2
1 +

1

2
m1~̇r

2
1 − U(~r1,~r2)

Let us change the variables of the type

(21) ~R =
m1~r1 + m2~r2

m1 + m2
; ~r = ~r2 −~r1;

This change of variables is always possible as the reverse conversion is
possible as well.

(21a) ~r1 = ~R − m2~r

m1 + m2
; ~r2 = ~R +

m1~r

m1 + m2
;

However, this change will have neither physical sense, nor mathematical n
benefit if the system is not invariant with regard to spatial translations.
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Transfer to the inertial reference frame

If the system is invariant with regard to translations which is the case
when particles interact only with one another rather than with outer
objects, then, firstly, the potential energy of interaction depends only on
the difference of the coordinates of particles rather than on their absolute
values, and, secondly, the impulse of the system as a single whole is
maintained and the motion of the centre of masses is uniform and linear.
This means in particular that the coordinates of the centre of masses ~R
can be chosen as the datum point for the inertial system and the relative
motion of particles in this new reference system can be considered. Then,
if we turn to the centre-of-mass system ~̇R = 0 and m are reduced masses,
~r is orbital radius-vector.

(22) L =
1

2
m~̇r2 − U(~r); m =

m1m2

m1 + m2
;

If a two-body system also has other degrees of freedom, for example,
rotational degrees, this transformation does not affect them.
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