Computational aspects for three-loop DIS calculations

Mikhail Rogal

mrogal@particle.uni-karlsruhe.de

Institute for Theoretical Particle Physics (TTP), Karlsruhe University, Germany

- ACAT 2008, Erice, Sicily, November 3-7, 2007

Introduction

Deep-inelastic lepton-hadron scattering ($e^{\pm}p, e^{\pm}n, \nu p, \overline{\nu}p, \dots$ - collisions)

Gauge boson:

 γ, Z^0 - NC

 W^{\pm} - CC

Kinematic variables

- momentum transfer $Q^2 = -q^2 > 0$
- Bjorken variable $x = Q^2/(2P \cdot q)$
- Inelasticity $y = (P \cdot q)/(P \cdot k)$

Particles: POLARIZED or UNPOLARIZED

Cross section: $d\sigma \sim L^{\mu\nu}W_{\mu\nu}$

 $\Rightarrow W_{\mu\nu}$ -hadronic tensor

Cross section: $d\sigma \sim L^{\mu\nu}W_{\mu\nu}$

For unpolarized DIS:

$$W_{\mu\nu} = e_{\mu\nu} \frac{1}{2x} F_L(x, Q^2) + d_{\mu\nu} \frac{1}{2x} F_2(x, Q^2) + \mathrm{i}\epsilon_{\mu\nu\alpha\beta} \frac{P^{\alpha}q^{\beta}}{P \cdot q} F_3(x, Q^2)$$

 $e_{\mu\nu}, d_{\mu\nu}$ - tensors, depend on *P*, *q*. symmetric under $\mu \leftrightarrow \nu$ main objects are $F_{2,L,3}$ structure functions

Polarized DIS : lepton and hadron are polarized \mapsto

Example: lepton-proton scattering, exchange via virtual photon γ ..., Zijlstra, van Neerven '93

$$\frac{d^2 \Delta \sigma}{dx \, dy} = \frac{8\pi \alpha^2}{q^2} \left[\{2 - y - Mxy\} g_1(x, Q^2) - \frac{2Mx}{E} g_2(x, Q^2) \right]$$

M-mass of the proton, *E* - energy of the lepton $M = 0 \Rightarrow \text{ONLY } g_1(x, Q^2)$ polarized structure function

Structure functions in QCD improved parton model

• Wilson coefficient functions $C_{i,parton}$

$$F_{i}(x,Q^{2}) = \sum_{parton} \int_{x}^{1} \frac{d\xi}{\xi} PDF_{parton}(\xi,\mu^{2}) C_{i,parton}\left(\frac{x}{\xi},\alpha_{s}(\mu^{2}),\frac{\mu^{2}}{Q^{2}}\right)$$

- Parton distribution functions PDF_{parton}
 - NOT calculable in perturbative QCD, extracted from experiment data
 - evolution of PDF's via DGLAP evolution equation with help of splitting functions $P_{parton, parton'}$

$$\frac{Q^2}{\partial Q^2} \begin{bmatrix} q \\ g \end{bmatrix} = \begin{bmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{bmatrix} \otimes \begin{bmatrix} q \\ g \end{bmatrix}$$

• The same features for polarized structure function $g_1(x, Q^2)$

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

 \downarrow

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu\nu}$ use of OPTICAL THEOREM: $w_{\mu\nu}(p,q) \propto Im t_{\mu\nu}(p,q)$

Optical theorem

- The partonic tensor $w_{\mu\nu}(p,q)$ is related to the imaginary part of the partonic forward Compton scattering amplitude $t_{\mu\nu}(p,q)$
 - α_s^3 calculation in DIS with help of loop technology

$$w_{\mu\nu}(p,q) = \frac{1}{2\pi} Im t_{\mu\nu}(p,q)$$

▲ Dispersion relation in x: coefficient of $(2p \cdot q)^N \leftrightarrow N$ -th moment

$$A^N \equiv \int_0^1 dx \, x^{N-1} A(x)$$

 \downarrow

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu\nu}$ use of OPTICAL THEOREM: $w_{\mu\nu}(p,q) \propto Im t_{\mu\nu}(p,q)$

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu
u}$ use of OPTICAL THEOREM: $w_{\mu
u}(p,q) \propto Im \, t_{\mu
u}(p,q)$

■ $t_{\mu\nu}(p,q)$ - generation of all possible diagrams up to 3 loops → QGRAF Nogueira '93

 \downarrow

QGRAF

Example: diagrams for the polarized splitting functions

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu
u}$ use of OPTICAL THEOREM: $w_{\mu
u}(p,q) \propto Im \, t_{\mu
u}(p,q)$

■ $t_{\mu\nu}(p,q)$ - generation of all possible diagrams up to 3 loops → QGRAF Nogueira '93

 \downarrow

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu
u}$ use of OPTICAL THEOREM: $w_{\mu
u}(p,q) \propto Im \, t_{\mu
u}(p,q)$

■ $t_{\mu\nu}(p,q)$ - generation of all possible diagrams up to 3 loops → QGRAF Nogueira '93

 \downarrow

- Depending on NC/CC, polarized/unpolarized use of symmetries to reduce number of diagrams: procedure of Moch, Vermaseren Vogt '05
- ▲ Symbolic manipulations → FORM and TFORM Tentyukov, Vermaseren '07

Use of symmetries

Number of diagrams for the polarized DIS after treatment by procedure of Moch, Vermaseren Vogt '05

legs	tree	1-loop	2-loop	3-loop
$q\gamma q\gamma$	1	3	25	359
$g\gamma g\gamma$	0	4	46	900
$q arphi q \psi$	0	4	131	3890
$g arphi g \psi$	2	31	924	29383 !!!

Original QGRAF output has up to 4 times more!

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu
u}$ use of OPTICAL THEOREM: $w_{\mu
u}(p,q) \propto Im \, t_{\mu
u}(p,q)$

■ $t_{\mu\nu}(p,q)$ - generation of all possible diagrams up to 3 loops → QGRAF Nogueira '93

 \downarrow

- Depending on NC/CC, polarized/unpolarized use of symmetries to reduce number of diagrams: procedure of Moch, Vermaseren Vogt '05
- ▲ Symbolic manipulations → FORM and TFORM Tentyukov, Vermaseren '07

• $P_{\text{parton,parton'}}, C_{i,parton}$: are in hadronic tensor $W_{\mu\nu}$ and also !!! in its analogue – partonic tensor $w_{\mu\nu}$

• For $w_{\mu
u}$ use of OPTICAL THEOREM: $w_{\mu
u}(p,q) \propto Im \, t_{\mu
u}(p,q)$

- $t_{\mu\nu}(p,q)$ generation of all possible diagrams up to 3 loops → QGRAF Nogueira '93
- Depending on NC/CC, polarized/unpolarized use of symmetries to reduce number of diagrams: procedure of Moch, Vermaseren Vogt '05
- ▲ Symbolic manipulations → FORM and TFORM Tentyukov, Vermaseren '07

\Downarrow

- Calculation of diagrams \mapsto done in Mellin-N space
 - Method of projection Gorishnii, Larin, Tkachev '83: Gorishnii, Larin '87
 - fixed Mellin-moments → MINCER in FORM Larin, Tkachev, Vermaseren '91
 - symbolic *N* calc. and inverse Mellin transf. to Bjorken-x space \mapsto *recipe of* Moch, Vermaseren, Vogt '04

Method of projection & MINCER

Method of projection in picturesIdentify scalar topologies

Scalar diagram with external momenta P and Q = $\int \prod_{n=1}^{3} d^{D} l_{n} \frac{1}{(P-l_{1})^{2}} \frac{1}{l_{1}^{2} \dots l_{8}^{2}}$

N-th moment: $\longrightarrow \text{ coefficient of } (2P \cdot Q)^N$

$$- \underbrace{\qquad} = \frac{\left(2P \cdot Q\right)^{N}}{\left(Q^{2}\right)^{N+\alpha}} C_{N}$$

$$\frac{1}{(P-l_1)^2} = \sum_i \frac{(2P \cdot l_1)^i}{(l_1^2)^{i+1}} \longrightarrow \frac{(2P \cdot l_1)^N}{(l_1^2)^N}$$

Feed scalar two-point functions in MINCER

>

Mincer

∫ $dP \frac{\partial}{\partial P^{\mu}} [(P - l_j)^{\mu} \times I(l_1, ..., P, ...)] = 0$ - integration by part identities t'Hooft, Veltman'72; Chetyrkin , Tkachov '81
 Leibniz, Newton :-)

Mincer

 $\int dP \frac{\partial}{\partial P^{\mu}} \left[(P - l_j)^{\mu} \times I(l_1, ..., P, ...) \right] = 0 \text{ - integration by part identities}$ t'Hooft, Veltman'72; Chetyrkin , Tkachov '81 $P_1 \qquad P \qquad P_2$ Leibniz, Newton :-) $\alpha_1 \qquad \alpha_0 \qquad \alpha_2$

Triangle rule

Define

$$I(\alpha_0, \beta_1, \beta_2, \alpha_1, \alpha_2) = \int d^D P \frac{1}{(P^2)^{\alpha_0} ((P+P_1)^2)^{\beta_1} (P_1^2)^{\alpha_1} ((P+P_2)^2)^{\beta_2} (P_2^2)^{\alpha_2}}$$

and act the integrand with $\frac{\partial}{\partial P_{\mu}}P_{\mu} = D + P_{\mu}\frac{\partial}{\partial P_{\mu}}$. Result \Rightarrow Recursion relation:

$$I(\alpha_{0},\beta_{1},\beta_{2},\alpha_{1},\alpha_{2}) \times (D - 2\alpha_{0} - \beta_{1} - \beta_{2}) = \beta_{1}(I(\alpha_{0} - 1,\beta_{1} + 1,\beta_{2},\alpha_{1},\alpha_{2}) - I(\alpha_{0},\beta_{1} + 1,\beta_{2},\alpha_{1} - 1,\alpha_{2})) \\ \beta_{2}(I(\alpha_{0} - 1,\beta_{1},\beta_{2} + 1,\alpha_{1},\alpha_{2}) - I(\alpha_{0},\beta_{1},\beta_{2} + 1,\alpha_{1},\alpha_{2} - 1))$$

Mincer

 $\int dP \frac{\partial}{\partial P^{\mu}} \left[(P - l_j)^{\mu} \times I(l_1, ..., P, ...) \right] = 0 \text{ - integration by part identities}$ t'Hooft, Veltman'72; Chetyrkin , Tkachov '81 $P_1 \qquad P \qquad P_2$ Leibniz, Newton :-) $\alpha_1 \qquad \alpha_0 \qquad \alpha_2$

Triangle rule

Define

$$I(\alpha_0, \beta_1, \beta_2, \alpha_1, \alpha_2) = \int d^D P \frac{1}{(P^2)^{\alpha_0} ((P+P_1)^2)^{\beta_1} (P_1^2)^{\alpha_1} ((P+P_2)^2)^{\beta_2} (P_2^2)^{\alpha_2}}$$

and act the integrand with $\frac{\partial}{\partial P_{\mu}}P_{\mu} = D + P_{\mu}\frac{\partial}{\partial P_{\mu}}$. Result \Rightarrow Recursion relation:

$$I(\alpha_{0}, \beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}) \times (D - 2\alpha_{0} - \beta_{1} - \beta_{2}) = \beta_{1}(I(\alpha_{0} - 1, \beta_{1} + 1, \beta_{2}, \alpha_{1}, \alpha_{2}) - I(\alpha_{0}, \beta_{1} + 1, \beta_{2}, \alpha_{1} - 1, \alpha_{2})) \\ \beta_{2}(I(\alpha_{0} - 1, \beta_{1}, \beta_{2} + 1, \alpha_{1}, \alpha_{2}) - I(\alpha_{0}, \beta_{1}, \beta_{2} + 1, \alpha_{1}, \alpha_{2} - 1))$$

In pictures

Classification of loop integrals

Classify according to topology of underlying two-point function

● top-level topology types ladder, benz, non-planar \Rightarrow

Classification of loop integrals

Classify according to topology of underlying two-point function

● top-level topology types ladder, benz, non-planar \Rightarrow

Using IBP identities more complicated topologies are reduced to simpler topologies

Symbolic N calculations

Combine identities: integration by parts, scaling, Passarino-Veltman type

 $\Rightarrow \text{ Difference equations for } I(N) \quad [\text{ recall: coefficient of } (2p \cdot q)^N]$ $a_0(N)I(N) - \dots - a_n(N)I(N-n) = I_0(N)$

Simple scalar example [red line: flow of massless parton momentum p]

$$-\frac{1}{1} + \frac{1}{1} + \frac{N+3+3\epsilon}{N+2} \frac{2p \cdot q}{q^2} + \frac{1}{1} + \frac$$

Successive reduction to simpler (lower topologies or 'less red') integrals

Examples of results

CC DIS: 10'th Mellin of F_3 structure function

Moch, Rogal '07

Polarized DIS: The spin splitting function ΔP_{qg} to NNLO

Vogt, Moch, Rogal, Vermaseren '08

Polarized DIS: The spin splitting function ΔP_{qg} to NNLO

Vogt, Moch, Rogal, Vermaseren '08

NNLO corr. $\le 15\%$ for $0.005 \le x < 0.9$

Summary

The recipe for higher order DIS calculations has been described

Application examples:

- Charged Current DIS
 S. Moch, M. Rogal, Nucl.Phys.B782 '07
 S. Moch, M. Rogal, A. Vogt, Nucl.Phys.B790:317-335, '07
 M. Rogal, arXiv:0711.0521 [hep-ph]
- 3-loop splitting functions for polarized DIS
 A. Vogt, S. Moch, M. Rogal, J.A.M. Vermaseren, arXiv:0807.1238
 [hep-ph] '08