New implementation of
 the sector decomposition on FORM

Takahiro Ueda (KEK)

in collaboration with Junpei Fujimoto (KEK)

ACAT 2008, Erice, Sicily 5 November 2008

Outline

- Introduction / Motivation
- Loop integration \square numerical approach \Rightarrow sector decomposition
- Why FORM?
- Quick review for sector decomposition
- Formalism
- Some demonstrations
- Examples of multi-loop integrals (space-like region)
- Advance beyond the thresholds...
- Very preliminary results with extrapolation (1-loop)
- Summary

Introduction - Loop Integrals

- High precision experiments in future require high precision theoretical calculations
- We must evaluate various loop diagrams to get higher order corrections to processes in phenomenology

e.g., LHC (pp-collider) $\Rightarrow \underset{\begin{array}{c}\text { EW corrections }\end{array}}{\text { Large QCD background }} \underset{ }{\text { E. }}$ needs of method How to evaluate loop integrals ?
- Analytic approach
- Find formulae for loop integrals as functions of kinematic parameters
- But difficult for many loops, many legs, many parameters
- Numerical approach \Leftarrow Today's topic
- Evaluate loop integrals numerically
- But usually costs a lot of CPU powers

Numerical Approach with Sector Decomposition

- We can executes the momentum integration by introducing parametric representation (e.g., Feynman parameters)
- In the context of the dimensional regularization, UVdivergences can be removed by usual way, but IR-divergences may appear as singularities on the edge of the integration domain
- Sector decomposition algorithm by T.Binoth \& G.Heinrich can extract such IR-divergences as (finally) $1 / \epsilon$ poles
- Then, we can numerically evaluate parametric integration and obtain coefficients of Laurent expansion
- Numerical approach with sector decomposition serves us a powerful method to perform (any) loop integrals

Why FORM

- FORM by J.Vermaseren, is rather fast, especially in the manipulation we need in HEP calculations, e.g., Dirac matrices
- De-facto in HEP calculation, now GRACE group also use it, therefore it is easy to combine them into the whole system
- More important thing is memory problem
- In an intermediate stage of the sector decomposition, one needs to handle a lot of terms and very large expression

	B	DB	TB	QB
\# sectors	12	293	10915	661484

(Generated sectors for massless on-shell boxes)

- Most of other CAS try to keep them in the memory, and cannot handle it

They assume there are infinite physical memories

- Tough recently other solution to avoid memory problem appears, Qlink on Mathematica (by A.V.Smirnov)
FORM is originally designed to treat such a huge expressions and has strong advantage for it

Sector Decomposition - Formalism

- Example: 1-loop massless on-shell scalar box

$$
I_{4}^{0 m}=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left(k^{2}+i 0\right)\left[\left(k+p_{1}\right)^{2}+i 0\right]\left[\left(k+p_{12}\right)^{2}+i 0\right]\left[\left(k+p_{123}\right)^{2}+i 0\right]}
$$

after introducing Feynman parameters

$$
\begin{aligned}
& \text { and momentum integration } \\
& =\Gamma(2+\epsilon) \int_{0}^{1} d^{4} x \frac{\delta\left(1-x_{1234}\right)}{\left(-s x_{1} x_{3}-t x_{2} x_{4}-i 0\right)^{2+\epsilon}}
\end{aligned}
$$

Kinematic invariants: $s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{2}+p_{3}\right)^{2}$ abbrev. $\quad p_{12}=p_{1}+p_{2} \quad p_{123}=p_{1}+p_{2}+p_{3}$

$$
x_{1234}=x_{1}+x_{2}+x_{3}+x_{4}
$$

How Sector Decomposition Works

- Sector decomposition algorithm disentangle such singularities (for example)
$\int_{0}^{1} d x \int_{0}^{1} d y \frac{f(x, y)}{\sqrt{(x+y)^{2-\epsilon}}} \quad$ T.Binoth \& G.Heinr
$=\int_{0}^{1} d x \int_{0}^{x} d y \frac{f(x, y)}{(x+y)^{2-\epsilon}}+\int_{0}^{1} d y \int_{0}^{y} d x \frac{f(x, y)}{(x+y)^{2-\epsilon}}$ $y>x$
map to $[0,1] \quad y \rightarrow x y$
$\int_{0}^{1} d x \int_{0}^{1} x d y \frac{f(x, x y)}{(x+x y)^{2-\epsilon}}$

$=\int_{0}^{1} d x \int_{0}^{1} d y x^{-1+\theta} \frac{f(x, x y)}{(1+y)^{2-\epsilon}}+\int_{0}^{1} d x \int_{0}^{1} d y y^{-1+\epsilon} \frac{f(x y, y)}{(1+x)^{2-\epsilon}}$

$$
\text { singular when } x \rightarrow 0 \quad \text { singular when } y \rightarrow 0
$$

- Then one can easily extract poles as

$$
\int_{0}^{1} d x x_{\substack{x^{-1+\epsilon} \\ \text { singular } \\ \text { when } x \rightarrow 0}} f(x)=\frac{f(0)}{\epsilon \epsilon}+\int_{0}^{1} d x x^{\epsilon} \underbrace{\frac{f(x)-f(0)}{x}}_{\text {pole }}
$$

How Sector Decomposition Works

- The cases, in which there is δ-function or three or more variables, can be handled in a similar way
- Iterative use of sector decomposition allows us to treat more complex singularities in a systematic way
(box example becomes)

$$
\begin{aligned}
J_{4}^{0 m}= & 2 \int_{0}^{1} d^{3} x x_{1}^{-1-\epsilon} \frac{\left(1+x_{12}+x_{1} x_{3}\right)^{2 \epsilon}}{\left(-s-x_{2} x_{3} t\right)^{2+\epsilon}} \\
& +2 \int_{0}^{1} d^{3} x x_{1}^{-1-\epsilon} x_{2}^{-1-\epsilon} \frac{\left(1+x_{12}+x_{1} x_{2} x_{3}\right)^{2 \epsilon}+\left(1+x_{1}+x_{2} x_{13}\right)^{2 \epsilon}}{\left(-s-x_{3} t\right)^{2+\epsilon}}+(s \leftrightarrow t) \\
= & \frac{C_{2}}{\epsilon^{2}}+\frac{C_{1}}{\epsilon}+C_{0}
\end{aligned}
$$

- Here C_{0}, C_{1}, C_{2} are written by sums of multi-dimensional integrals

Then all we have to do is to perform these integral numerically

Strategy for Choosing Sub-sectors

- If there are many integration variables, the choice of subsectors is not unique (\# generated sectors can change)

Currently, we have implemented one strategy for choosing sub-sectors, which is based on the original idea of Binoth \& Heinrich

- Take smallest set of variables S such that the polynomial $P(x)$ vanishes when all parameters in S are set to zero
- Give priority to the variable which has large exponent
(for example)

$$
\begin{aligned}
& x_{1} x_{2}^{2}+x_{3}^{2} \\
& S=\left\{x_{2}, x_{3}\right\} \leftarrow\left\{x_{2}, x_{3}, x_{1}\right\}
\end{aligned}
$$

possibly $\left\{x_{2}, x_{3}\right\},\left\{x_{2}, x_{1}\right\},\left\{x_{3}, x_{1}\right\},\left\{x_{2}, x_{3}, x_{1}\right\}$ are checked in this order, but first one $\left\{x_{2}, x_{3}\right\}$ is adopted
$x_{3}^{2}\left(x_{1} x_{2}^{2}+1\right) \quad x_{2}^{2}\left(x_{1}+x_{3}^{2}\right)$
decomposed two steps at most

Strategy for Choosing Sub-sectors

- With this heuristic strategy one may enter the infinite loop for more complex case (e.g., $x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}$)

- But it is enough for usual Feynman loop evaluation, and it gives smallest \# sectors
Discussion about the other strategies, in which the iteration is guaranteed to stop, can be found in C.Bogner \& S.Weinzierl, CPC178 (2008) 596 A.V.Smirnov \& M.N.Tentyukov, arXiv:0807.4129 [he-ph]

Example Calculations - System

- System

Example Calculations (I)

- On-shell massless double box (input file)

```
Vector p1,p2,p3; \int}\frac{\mp@subsup{d}{}{D}\mp@subsup{k}{1}{}}{i\mp@subsup{\pi}{}{D/2}}\int\frac{\mp@subsup{d}{}{D}\mp@subsup{k}{2}{}}{i\mp@subsup{\pi}{}{D/2}}\frac{1}{[-(\mp@subsup{k}{1}{}+\mp@subsup{p}{1}{}\mp@subsup{)}{}{2}](-\mp@subsup{k}{1}{2})[-(\mp@subsup{k}{1}{}+\mp@subsup{p}{12}{}\mp@subsup{)}{}{2}][-(\mp@subsup{k}{1}{}-\mp@subsup{k}{2}{}\mp@subsup{)}{}{2}](-\mp@subsup{k}{2}{2})[-(\mp@subsup{k}{2}{}+\mp@subsup{p}{12}{}\mp@subsup{)}{}{2}][-(\mp@subsup{k}{2}{}+\mp@subsup{p}{123}{}\mp@subsup{)}{}{2}]
Local DB = FD(k1+p1) * FD(k1) * FD(k1+p1+p2) * FD(k1-k2)
    * FD(k2) * FD(k2+p1+p2) * FD(k2+p1+p2+p3);
```

FD: denominator,
$F D(k)=1 /(-k . k)$

```
í\#procedure DefKine(l) Procedure called after momentum integration
```

```
    multiply replace_(D,4-2*ep);
\longleftarrowD=4-2\epsilon
```


id p1.p2 = (s - p1.p1 - p2.p2) / 2;
id p2.p3 = (t - p2.p2 - p3.p3) / 2;
id p1.p3 = (- s - t - p1.p1 - p3.p3) / 2;
\#do $i=1,3$
id $\mathrm{p}^{\prime} \mathrm{i}^{\prime} . \mathrm{p}^{`} \mathrm{i}^{\prime}=0$;
\#enddo
"\#endprocedure
id p1.p2 = (s - p1.p1 - p2.p2) / 2; id p2.p3 = (t - p2.p2 - p3.p3) / 2; id p1.p3 = (- s - t - p1.p1 - p3.p3) / 2;
\#do $i=1,3$ id 'i'. $^{\prime}{ }^{\prime} i^{\prime}=0 ;$ \#enddo
kinematics
\#call DefParam(s, -1) Register kinematic parameters and their default values \#call $\operatorname{DefParam}(\mathrm{t},-1)\}$ (One can modify these values at run-time)

Example Calculations (I)

- On-shell massless double box (result)

```
***************************************************
* Parameters:
* llol
***********************************************************************
* Integrator configurations:
* VERBOSE_LEVEL = 2
* DCUHRE_KEY = 9
* DCUHRE_MINPTS = 0
* DCUHRE_MAXPTS = 100000000
* DCUHRE_ABS_TOL = 0.100000000000000E-15
* DCUHRE_REL_TOL = 0.100000000000000E-05
***************************************************************************
* DB: Gamma(3+2*ep) * ep^-4 0.00s
* 0.20000000661904E+01 aerr= 0.12485517866572E-05 rerr= 0.6242759E-06
******************************************************************************
* DB: Gamma(3+2*ep) * ep^-3 0.00s
* -0.60000001069171E+01 aerr= 0.54096786712553E-05 rerr= 0.9016131E-06
* DB: Gamma(3+2*ep) * ep^-2 0.28s
* -0.49167420522766E+01 aerr= 0.17982248269768E-04 rerr= 0.3657350E-05
***********************************************************************
* DB: Gamma(3+2*ep) * ep^-1 9.54s
* 0.11494738132380E+02 aerr= 0.85267241358588E-04 rerr= 0.7417937E-05
************************************************************************
* DB: Gamma(3+2*ep) * ep^0
134.61s
* 0.13801183392483E+02 aerr= 0.29980115734943E-03 rerr= 0.2172286E-04
************************************************************************
(Xeon 3GHz, DCUHRE)
```

(analytic) V.A.Smirnov, PLB460 (1999) 297
(numerical) T.Binoth \& G.Heinrich, NPB585 (2000) 741

100000000
DCUHRE_ABS_TOL $=0.100000000000000 E-15$
DCUHRE_REL_TOL $=0.100000000000000 E-05$

2 Here, we used DCUHRE,

 an adaptive multi-demensional integration routine with Genz-Malik cubature rules* DB: Gamma(3+2*ep) * ep^-4 0.00s
* $0.20000000661904 \mathrm{E}+01$ aerr $=0.12485517866572 \mathrm{E}-05$ rerr $=0.6242759 \mathrm{E}-06$
* DB: Gamma(3+2*ep) * ep^-3 0.00s
* - $0.60000001069171 \mathrm{E}+01$ aerr $=0.54096786712553 \mathrm{E}-05$ rerr $=0.9016131 \mathrm{E}-06$
* DB: Gamma(3+2*ep) * ep^-2 0.28s
* $-0.49167420522766 \mathrm{E}+01$ aerr $=0.17982248269768 \mathrm{E}-04$ rerr $=0.3657350 \mathrm{E}-05$
* DB: Gamma(3+2*ep) * ep^-1 9.54s
* 0.11494738132380E+02 aerr= 0.85267241358588E-04 rerr= 0.7417937E-05
* DB: Gamma(3+2*ep) * ep^0 134.61s
* $0.13801183392483 \mathrm{E}+02$ aerr $=0.29980115734943 \mathrm{E}-03$ rerr $=0.2172286 \mathrm{E}-04$
* $* *$ compared with analytical result

Example Calculations (II)

- On-shell massless non-planar double box (input file)

```
Symbol s,t,u; \Gamma(7-D) \int
Local NDB =
    Gamma(7-D) * int1(x1, ...,x7)
        * upow( (x1+x2+x3)*(x4+x5+x6+x7) + (x4+x6)*(x5+x7), 7-3/2*D)
        * fpow( (-s) * ( x2*x3*(x4+x5+x6+x7) + x2*x6*x7 + x3*x4*x5 )
            +(-t) * x1*x4*x7 + (-u)* x1*x5*x6 , D-7)
;
```

multiply replace_(D,4-2*ep);

```
#call DefParam(s, -1)
```

\#call DefParam(t, -1) $s+t+u \neq 0$; unphysical
\#call DefParam(u, -1)
\#call DefParam(DCUHRE_REL_TOL, 1.d-2)
(result)
NDB/Gamma(3+2*ep) =

$$
\begin{aligned}
& +0.175001 \mathrm{E}+01 \epsilon^{-4}-0.300027 \mathrm{E}+01 \epsilon^{-3} \\
& -0.228286 \mathrm{E}+02 \epsilon^{-2}+0.113661 \mathrm{E}+03 \epsilon^{-1} \\
& -0.395206 \mathrm{E}+03 \quad+\mathcal{O}(\epsilon)
\end{aligned}
$$

One can also use the expression after momentum integration as input

Example Calculations (III)

- Massless propagator-type diagrams

$$
\begin{aligned}
= & \operatorname{Gamma}(2+3 * e p) * \text { pow }(-\mathrm{s},-2-3 * e p) *(\\
& +0.20738550050052 \mathrm{E}+02
\end{aligned}
$$

+0.93705981683747E+02 ϵ
$+0.31742454422785 \mathrm{E}+03 \epsilon^{2}$
$+\mathcal{O}\left(\epsilon^{3}\right)$
)

Example Calculations (IV)

- Non-integer powers

Analytic result can be found in

I. Bierenbaum \& S. Weinzierl Eur.Phys.J.C32 (2003) 67

Advance beyond the Thresholds

- Consider box example again, but for $s t<0$

$$
J_{4}^{0 m}=\int_{0}^{1} d^{4} x \frac{\delta\left(1-x_{1234}\right)}{\left(-s x_{1} x_{3}-t x_{2} x_{4}-i 0\right)^{2+\epsilon}}
$$

- The denominator is not positive definite, and can become to zero at some points in the integration region
- Infinitesimal $i 0$ is not suitable for numerical calculation

We need some method to handle it

- contour deformation Z.Nagy \& D.E.Soper, PRD74, 093006 (2006)
- Deform the integration path in the complex plane
- Already used in some calculations
e.g., (1-loop pentagon)
A.Lazopoulos, K.Melnikov \& F.J.Petriello, PRD76 (2007) 014001
(2-loop vertex) C.Anastasiou, S.Beerli \& A. Daleo, JHEPO5 (2007) 071
Here we try to another possibility
- numerical extrapolation
E. de Doncker, Y.Shimizu, J.Fujimoto \& F. Yuasa, CPC159 (2004) 145

Numerical Extrapolation

Simple example:

$$
\int_{0}^{1} d x \frac{1}{(x-a-i \delta)^{2}}=-\frac{1}{a(1-a)} \quad \delta \rightarrow 0 \quad 0<a<1
$$

- If we take δ_{k} as geometric series

$$
\delta_{k}=\delta_{1} r^{k-1} \quad k=1,2,3, \ldots \quad 0<r<1
$$

Then the series $\left\{I\left(\delta_{k}\right)\right\}$ converges linearly
This convergence can be accelerated by adequate method,
e.g., Wynn's ϵ-algorithm

- Only we have to do for the integrand, is just to insert i δ

More topics and applications about numerical integration with extrapolation method can be found in Yuasa-san's talk

Example Calculations (V)

- Massless on-shell scalar box
$I_{4}^{0 m} / \Gamma(2+\epsilon) \quad \mathrm{s}=123, \mathrm{t}=-200$

Analytic Result(*)

ϵ^{-2}	Re	$-0.162601625709 \mathrm{E}-03$	$-0.162601626016 \mathrm{E}-3$
	Im	$0.328048372972 \mathrm{E}-16$	0
ϵ^{-1}	Re	$0.984593629811 \mathrm{E}-03$	$0.984593635928 \mathrm{E}-3$
	Im	$0.255414040540 \mathrm{E}-03$	$0.255414036877 \mathrm{E}-3$
ϵ^{0}	Re	$-0.238880580424 \mathrm{E}-02$	$-0.238880579909 \mathrm{E}-2$
	Im	$0.160867868831 \mathrm{E}-02$	$0.160867866412 \mathrm{E}-2$

1sec @ Core2 2.6GHz, DQAG (double precision, requested $\mathrm{E}_{\text {rel }}=10^{-8}$ for each integrals)

* Analytic result can be found in

G.Duplancic \& B.Nizic, Eur.Phys.J.C20 (2001) 357
Y.Kurihara, Eur.Phys.J.C45 (2006) 427

Example Calculations (VI)

- Massless box with two adjacent off-shell legs

$$
I_{4}^{2 m h} / \Gamma(2+\epsilon) \quad \mathrm{s}=123, \mathrm{t}=-200, \mathrm{~s}_{3}=50, \mathrm{~s}_{4}=60
$$

Numerical Result Analytic Result(*)

ϵ^{-2}	Re	$-0.406504064273 \mathrm{E}-04$	$-0.406504065041 \mathrm{E}-4$
	Im	$0.763198172102 \mathrm{E}-16$	0
ϵ^{-1}	Re	$-0.341563066836 \mathrm{E}-03$	$-0.341563069952 \mathrm{E}-3$
	Im	$-0.127707015460 \mathrm{E}-03$	$-0.127707018439 \mathrm{E}-3$
ϵ^{0}	Re	$-0.149295025998 \mathrm{E}-02$	$-0.149295024564 \mathrm{E}-2$
	Im	$-0.287455792563 \mathrm{E}-03$	$-0.287455926817 \mathrm{E}-3$

19min @ Core2 2.6GHz, DQAG (double precision, requested $\mathrm{E}_{\text {rel }}=10^{-8}$ for each integrals)

* Analytic result can be found in

G.Duplancic \& B.Nizic, Eur.Phys.J.C20 (2001) 357
Y.Kurihara, Eur.Phys.J.C45 (2006) 427

Example Calculations (VII)

- 1-loop scalar pentagon
- Actually this integral does not have IR-singularity, but sector decomposition does work

$$
\begin{aligned}
& s_{12}=100000.000000000 \\
& s_{23}=-30471.3126018059 \\
& s_{34}=32384.1496580698 \\
& s_{45}=37833.5682283554 \\
& s_{51}=-14146.0960752976
\end{aligned}
$$

produced by GRACEFIG

Re: -0.411918010140121E-13 AbsErr=0.269E-17 RelErr=0.654E-04
Im : 0.233630556003699E-12 AbsErr=0.139E-17 RelErr=0.596E-05
2.6hour @ Core2 2.6GHz, DQAG, w/ partial integration (double precision, requested $\mathrm{E}_{\text {rel }}=10^{-6}$ for each integrals)
Checked by other method in our group \Rightarrow Yuasa-san's talk (in my case, electron mass is neglected, but it does not affect the result with this error)

Summary

- We have implemented the sector decomposition algorithm on symbolic manipulation program FORM
- Thanks to its advantage for handling very large expression, we can overcome the memory problem
- We perform several loop integrals by using it

- As future work, we use sector decomposition + numerical extrapolation for physical region
- Preliminary results:

