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IntroductionIntroduction

Multivariate methods can be useful in:

hClassification

hFunction approximation

hProbability density estimation
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hData compression

hVariable selection

hOptimization

hModel comparison



Example Example –– Energy MeasurementsEnergy Measurements

Regression using
neural networks
to estimate single
particle energies.
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See poster by
Sergei Gleyzer
CMS Collaboration



Example Example –– Single Top SearchSingle Top Search

Single top quark search using
boosted decision trees
Bayesian neural networks
matrix element method
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Dzero Collaboration,
PRD 78 012005, 2008



Example Example –– Parton DistributionsParton Distributions

Gluon distribution
PDFs modeled with
neural networks,
fitted using a
genetic algorithm
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The NNPDF Collaboration,  R.D. Ball et al., arXiv: 0808.1231v2



Multivariate Methods: In TheoryMultivariate Methods: In Theory



Multivariate MethodsMultivariate Methods

Two general approaches:

Machine Learning
Teach a machine to learn y = f(x)  by feeding it 

training data T = (x, y) = (x,y)1, (x,y)2,…(x,y)N and a 
constraint on the class of functions.
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constraint on the class of functions.

Bayesian Learning
Infer y = f(x) given the conditional likelihood

p(y|x, w) for the training data and a prior on the space of 
functions f(x). 



Machine LearningMachine Learning

Choose
Function class F = { f(x, w) }
Constraint C
Loss function L

F
C(w)
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Method
Find f(x) by minimizing the empirical risk R

subject to the constraint 
C(w)

f(x, w*)
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Bayesian LearningBayesian Learning

Choose
Function class F = { f(x, w) }
Prior π(w)
Likelihood p(y|x, ww) 

Method
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Method
Use Bayes’ theorem to infer the parameters:

p(w|T) = p(T|ww) π(w)/p(T)
= p(y|x, ww) p(x|ww) π(w)/p(y|x) p(x)  
~ p(y|x, ww) π(w) (assume p(x|ww) = p(x))

p(w|T) assigns a probability density to every function in 
the function class. 



RegressionRegression

Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests, etc.) are based on the  
mean square empirical risk

In the machine learning approach R is minimized with respect 
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In the machine learning approach R is minimized with respect 
to the parameters, subject to the constraint. 

In the Bayesian approach, one writes (typically)
p(y|x, ww) = exp(-N R /2σ2)/σ√2π, computes the posterior 
density p(w|T), and then the predictive distribution:

( | , ) ( | , ) ( | )p y x T p y x pw w T wd= ∫



If y has only two values 0 and 1, then the mean of the 
predictive distribution

reduces to

( ) ( | , )f x y p y x T dy= ∫

( | ) ( )p x pS S

ClassificationClassification
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where S is associated with y = 1 and B with y = 0. This yields 
the Bayes classifier if p(S|x) > q accept x as belonging to S.

A Bayes classifier is optimal in the sense that it achieves the 
lowest misclassification rate. 
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In practice, it is sufficient to approximate the discriminant

ClassificationClassification

( | )
( )

( | ) ( | )
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D x
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Multivariate Methods                                         Harrison B. Prosper                         ACAT 08 13

because D(x) and p(S|x) are related one-to-one:

where A = p(S) / p(B) is the prior signal to background ratio.
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1. If your goal is to classify objects with the fewest errors, 
then the Bayes classifier is the optimal solution. 

2. Consequently, if you have a classifier known to be close
to the Bayes limit, then any other classifier, however 

Classification Classification –– Points to NotePoints to Note
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to the Bayes limit, then any other classifier, however 
sophisticated it might be, can at best be only marginally 
better than the one you have.

3. All classification methods, such as the ones in TMVA, are 
different numerical approximations of some function of 
the Bayes classifier.



Event WeightingEvent Weighting

The probability p(S|x) is optimal in another sense: 
If one weights an admixture of signal and background
events by the weight function

W(x) = p(S|x)
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then the signal strength will be extracted with zero bias and 
the smallest possible variance, provided that our models 
describe the signal and background densities accurately 
and the signal to background ratio p(S)/p(B) is equal to the 
true value.

Roger Barlow, J. Comp. Phys. 72, 202 (1987)



Problem 13: Prove the conjecture
In general, it is impossible to do the following:

f(x1,…,xn) = F( g1(x1),…, gn(xn) )

Historical Aside Historical Aside –– Hilbert’s 13Hilbert’s 13thth ProblemProblem
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But, in 1957, Kolmogorov disproved Hilbert’s conjecture!

Today, we know that functions of the form

can provide arbitrarily accurate approximations.
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Multivariate Methods: In PracticeMultivariate Methods: In Practice



IntroductionIntroduction

A Short List of Multivariate Methods

hRandom Grid Search
hLinear Discriminants
hQuadratic Discriminants
hSupport Vector Machines
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Support Vector Machines
hNaïve Bayes (Likelihood Discriminant)
hKernel Density Estimation 
hNeural Networks
hBayesian Neural Networks
hDecision Trees
hRandom Forests
hGenetic Algorithms



Decision TreesDecision Trees

A decision tree is an 
n-dimensional histogram
whose bins are constructed 
recursively.

Each bin is associated with the 
value of the function f(x) to 

200

100

B = 10
S = 9

B =  1
S = 39

f(x) = 0 f(x) = 1
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value of the function f(x) to 
be approximated.

The partitioning of a bin is 
done  using the best cut.

There are many ways to define 
best! (See, e.g., TMVA.)

MiniBoone, Byron Roe
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Ensemble LearningEnsemble Learning

A few popular methods (used mostly with decision trees):

hBagging: each tree trained on a bootstrap 
sample drawn from training set
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hRandom Forest: bagging with randomized trees

hBoosting: each tree trained on a different 
weighting of full training set
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Jeromme Friedman & Bogdan Popescu



Repeat K times:

1. Create a decision tree f(x, ww)

2. Compute its error rate ε on the weighted training set

3. Compute α = ln (1– ε) / ε

AdaAdaptive ptive BoostBoostinging
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4. Modify training set: increase weight of incorrectly 
classified examples relative to those that are correctly 
classified

Then compute weighted average f(x) = ∑ αk f(x, wk)

Y. Freund and R.E. Schapire.
Journal of Computer and  Sys. Sci. 55 (1), 119 (1997)



AdaBoost AdaBoost -- ExampleExample

mSUGRA
@ focus point

vs

growing trees
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ttbar



AdaBoost AdaBoost -- ExampleExample

mSUGRA
@ focus
point

test sample training sample

Signal/background discrimination, averaging over 
an increasing number of trees, up to 1000
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vs

ttbar



AdaBoost AdaBoost -- ExampleExample

mSUGRA
@ focus
point

test sample

error rate
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vs

ttbar training sample

error rate

Training error goes
to zero exponentially,
while test error 
remains almost constant!



Bayesian Neural NetworksBayesian Neural Networks

Given
p(w|T) ~ p(y|x, ww) π(w) 

where 
p(y|x, ww)= ∏Gaussian(yk, f(xk, w), σ)       (for regression)

or p(y|x, ww)= ∏n(xk, w)y [1 – n(xk, w)]1-y (for classification)
and n(x, w) = 1/[1+exp(–f(x, ww))] 
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Compute
y(x) = ∫ f(x, w) p(w|T) dw or n(x) = ∫ n(x, w) p(w|T) dw

y(x) and n(x) are called Bayesian neural networks (BNN). 

The integrals are approximated using a MCMC method (Radford 
Neal, http://www.cs.toronto.edu/~radford/fbm.software.html).



BNN BNN –– Classification ExampleClassification Example

Dots
D(x) = HS/(HS+HB)

HS signal histogram
HB background histogram
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x

Curves 
Individual neural networks
n(x, wkk)

Black curve
D(x) = E[ n(x, w) ] = (1/N) ∑ n(x, wk) 



Outstanding IssuesOutstanding Issues

Tuning Methods
hIs cross-validation sufficient to choose the function 

class (number of leaves, number of trees, number of 
hidden nodes etc.)?

Verification
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Verification
hHow can one confirm that an n-dimensional density is 

well-modeled?

hHow can one find, characterize, and exclude, discrepant 
domains in n-dimensions automatically? 



Some IssuesSome Issues

Verification…
hCan one automate re-weighting of model data, event-

by-event, to improve the match between real data and 
the model? 

How can one verify that f(x) is close to the Bayes limit?
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hHow can one verify that f(x) is close to the Bayes limit?

Looking Beyond the Lamppost 
hIs there a sensible way to use multivariate methods 

when one does not know for certain where to look for 
signals?



VerificationVerification

Discriminant Verification
Any classifier f(x) close to the Bayes limit approximates 

D(x) = p(x|S) / [ p(x|S) + p(x|B) ]

Therefore, if we weight, event-by-event, an admixture of N
signal and N background events by the function f(x)
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signal and N background events by the function f(x)
Sw(x) = N p(x|S) f(x)
Bw(x) = N p(x|B) f(x)

then the sum 
Sw(x) + Bw(x) = N (p(x|S) + p(x|B)) f(x) = N p(x|S), 

i.e., we should recover the n-dimensional signal density.



Verification Verification –– ExampleExample

Dzero single top quark search

Verifying the Bayesian neural
network discriminant.

Number of input variables ~ 24
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Number of input variables ~ 24
Number of channels = 12

(e, μ) x (1, 2) b-tags x (2,3,4) jets



Verification Verification –– ExampleExample
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Cyan plot: weighted signal Green plot: weighted background
Black curve: sum Black dots: signal



SummarySummary

hMultivariate methods can be applied to many aspects of 
data analysis.

hMany practical methods, and convenient tools such as 
TMVA, are available for regression and classification. 

hAll methods approximate the same mathematical entities, 
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hAll methods approximate the same mathematical entities, 
but no one method is guaranteed to be the best in all 
circumstances. So, experiment with a few of them!

hSeveral issues remain. The most pressing is the need for 
sound methods, and convenient tools, to explore and 
quantify the quality of modeling of n-dimensional data.  


