Multivariate Methods in Particle Physics Today and Tomorrow

Harrison B. Prosper Florida State University

5 November, 2008 ACAT 08, Erice, Sicily

Outline

- Introduction
- Multivariate Methods
 - In Theory
 - In Practice
- Outstanding Issues
- Summary

Introduction

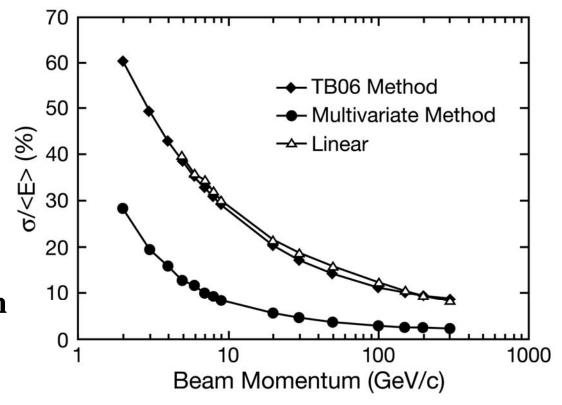
Multivariate methods can be useful in:

- Classification
- Function approximation
- Probability density estimation
- Data compression
- Variable selection
- Optimization
- Model comparison

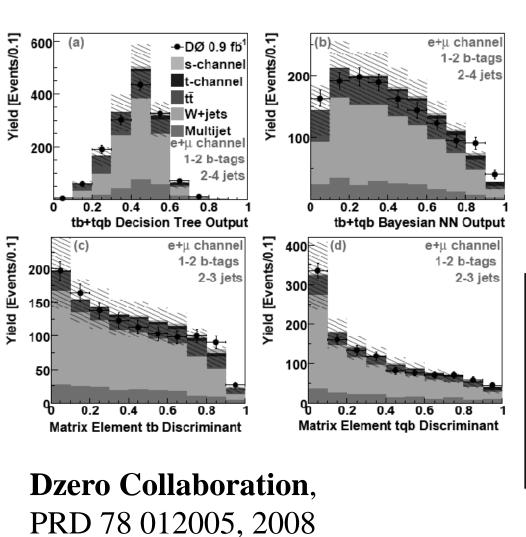
Example – Energy Measurements

Regression using neural networks to estimate single particle energies.

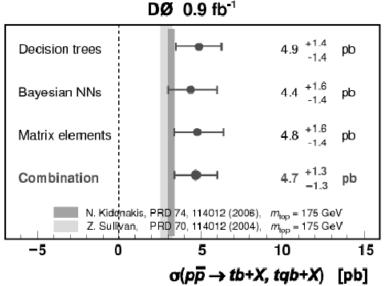
See poster by Sergei Gleyzer CMS Collaboration



Example – Single Top Search

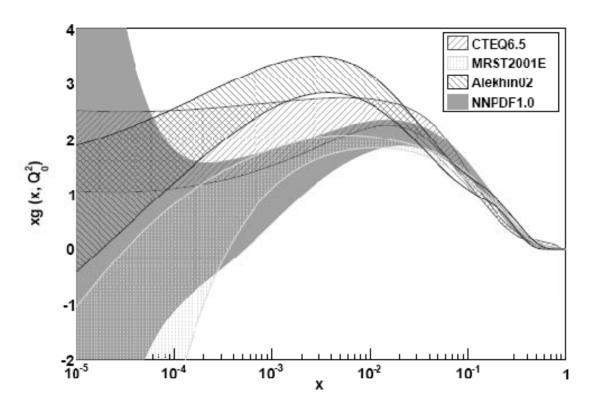


Single top quark search using boosted decision trees
Bayesian neural networks
matrix element method



Example – Parton Distributions

Gluon distribution



PDFs modeled with neural networks, fitted using a genetic algorithm

The **NNPDF Collaboration**, R.D. Ball et al., arXiv: 0808.1231v2

Multivariate Methods

Two general approaches:

Machine Learning

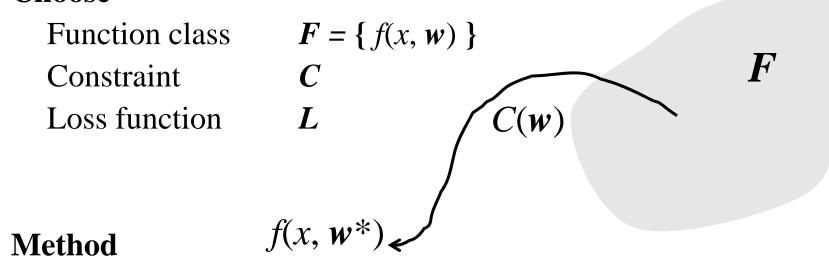
Teach a machine to learn y = f(x) by feeding it **training data** $T = (x, y) = (x,y)_1, (x,y)_2, ..., (x,y)_N$ and a **constraint** on the class of functions.

Bayesian Learning

Infer y = f(x) given the **conditional likelihood** p(y|x, w) for the training data and a **prior** on the space of functions f(x).

Machine Learning

Choose



Find f(x) by minimizing the **empirical risk** R

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w))$$

subject to the constraint C(w)

Bayesian Learning

Choose

Function class $F = \{ f(x, w) \}$

Prior $\pi(w)$

Likelihood p(y|x, w)

Method

Use Bayes' theorem to infer the parameters:

$$p(w|T) = p(T|w) \pi(w)/p(T)$$

$$= p(y|x, w) p(x|w) \pi(w)/p(y|x) p(x)$$

$$\sim p(y|x, w) \pi(w) \quad (assume p(x|w) = p(x))$$

p(w|T) assigns a probability density to every function in the function class.

Regression

Many methods (e.g., neural networks, boosted decision trees, rule-based systems, random forests, etc.) are based on the mean square empirical risk

$$R(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2$$

In the machine learning approach **R** is minimized with respect to the parameters, subject to the constraint.

In the Bayesian approach, one writes (typically) $p(y|x, w) = \exp(-N R/2\sigma^2)/\sigma\sqrt{2\pi}$, computes the **posterior density** p(w|T), and then the **predictive distribution**:

$$p(y \mid x, T) = \int p(y \mid x, w) p(w \mid T) dw$$

Classification

If y has only two values 0 and 1, then the mean of the predictive distribution

$$f(x) = \int y \, p(y \mid x, T) dy$$

reduces to

$$f(x) = p(S \mid x) = \frac{p(x \mid S)p(S)}{p(x \mid S)p(S) + p(x \mid B)p(B)}$$

where S is associated with y = 1 and B with y = 0. This yields the **Bayes classifier** if p(S|x) > q accept x as belonging to S.

A Bayes classifier is *optimal* in the sense that it achieves the *lowest misclassification rate*.

Multivariate Methods Harrison B. Prosper ACAT 08

Classification

In practice, it is sufficient to approximate the **discriminant**

$$D(x) = \frac{p(x \mid S)}{p(x \mid S) + p(x \mid B)}$$

because D(x) and p(S|x) are related one-to-one:

$$p(S \mid x) = \frac{D(x)}{D(x) + [1 - D(x)]/A}$$

where $\mathbf{A} = p(\mathbf{S}) / p(\mathbf{B})$ is the prior signal to background ratio.

Classification – Points to Note

- 1. If your goal is to *classify objects* with the fewest errors, then the **Bayes classifier** is the *optimal* solution.
- 2. Consequently, if you have a classifier known to be *close* to the **Bayes limit**, then *any* other classifier, *however* sophisticated it might be, can at best be only marginally better than the one you have.
- 3. All classification methods, such as the ones in TMVA, are different numerical approximations of some function of the Bayes classifier.

Event Weighting

The probability p(S|x) is optimal in another sense:

If one *weights* an admixture of **signal** and **background** events by the weight function

$$W(x) = p(S|x)$$

then the *signal* strength will be extracted with *zero bias* and the *smallest possible variance*, provided that our models describe the signal and background densities accurately and the signal to background ratio p(S)/p(B) is equal to the true value.

Roger Barlow, J. Comp. Phys. 72, 202 (1987)

Historical Aside – Hilbert's 13th Problem

Problem 13: Prove the conjecture

In general, it is *impossible* to do the following:

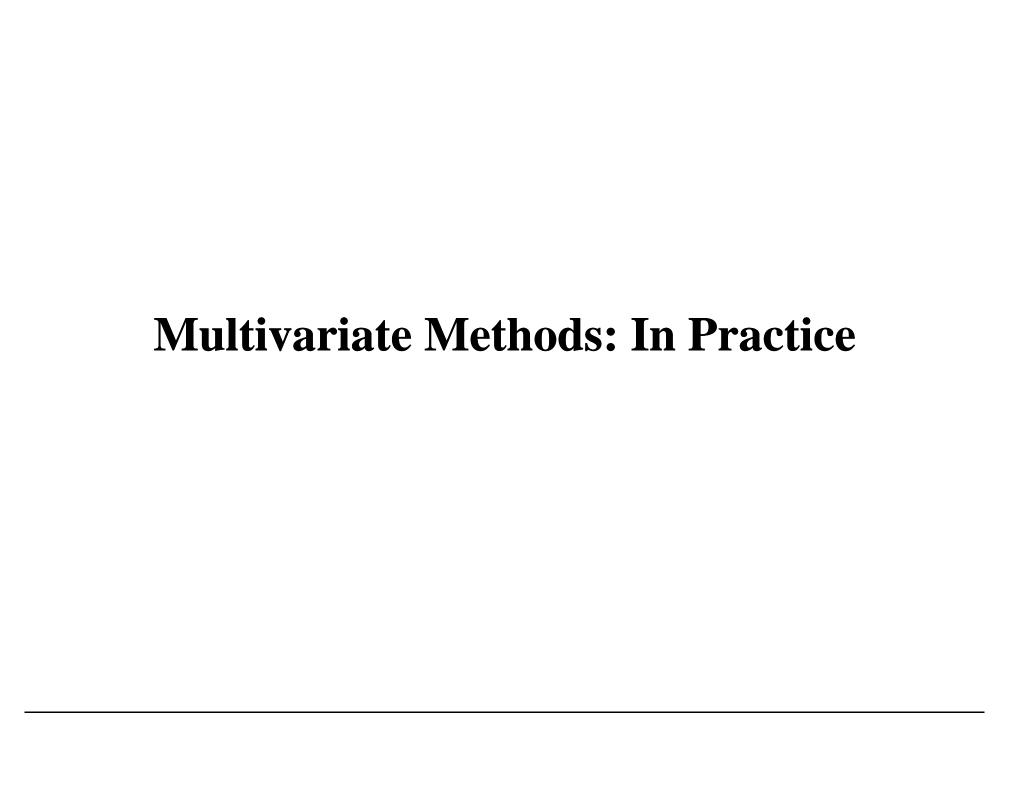
$$f(x_1,...,x_n) = F(g_1(x_1),...,g_n(x_n))$$

But, in 1957, Kolmogorov disproved Hilbert's conjecture!

Today, we know that functions of the form

$$f(x_1, \dots, x_n) = b + \sum_{i=1}^{H} v_i \tanh \left[a_i + \sum_{j=1}^{n} u_{ij} x_j \right]$$

can provide arbitrarily accurate approximations.



Introduction

A Short List of Multivariate Methods

- Random Grid Search
- Linear Discriminants
- Quadratic Discriminants
- Support Vector Machines
- Naïve Bayes (Likelihood Discriminant)
- Kernel Density Estimation
- Neural Networks
- Bayesian Neural Networks
- Decision Trees
- Random Forests
- Genetic Algorithms

Decision Trees

200

A decision tree is an **n-dimensional histogram** whose bins are constructed recursively.

Each bin is associated with the value of the function f(x) to be approximated.

The partitioning of a bin is done using the *best* cut.

There are many ways to define best! (See, e.g., TMVA.)

f(x)=0f(x) = 1B = 10B = 1S = 9S = 39100 f(x) = 0B = 37Energy (GeV) ()

MiniBoone, Byron Roe

Ensemble Learning

A few popular methods (used mostly with decision trees):

• **Bagging**: each tree trained on a **bootstrap**

sample drawn from training set

20

• Random Forest: bagging with randomized trees

Boosting: each tree trained on a different
 weighting of full training set

$$f(x) = a_0 + \sum_{k=1}^{K} a_k f(x, w_k)$$

Jeromme Friedman & Bogdan Popescu

Adaptive Boosting

Repeat K times:

- 1. Create a decision tree f(x, w)
- 2. Compute its error rate ε on the weighted training set
- 3. Compute $\alpha = \ln (1 \varepsilon) / \varepsilon$
- 4. Modify training set: *increase weight* of *incorrectly classified examples* relative to those that are correctly classified

Then compute weighted average $f(x) = \sum \alpha_k f(x, w_k)$

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. **55** (1), 119 (1997)

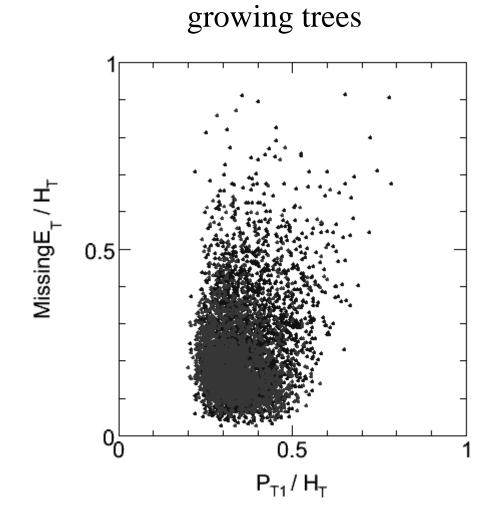
AdaBoost - Example

mSUGRA

@ focus point

VS

ttbar



AdaBoost - Example

mSUGRA

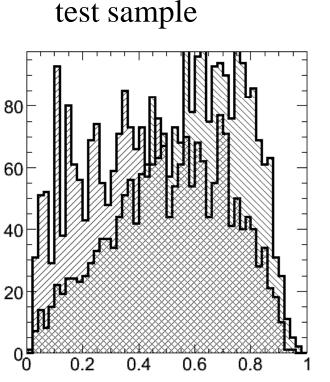
@ focus

point

VS

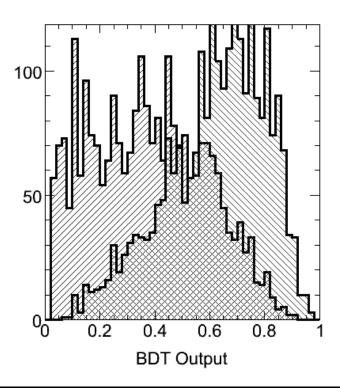
ttbar

Signal/background discrimination, averaging over an increasing number of trees, up to 1000



BDT Output

training sample



AdaBoost - Example

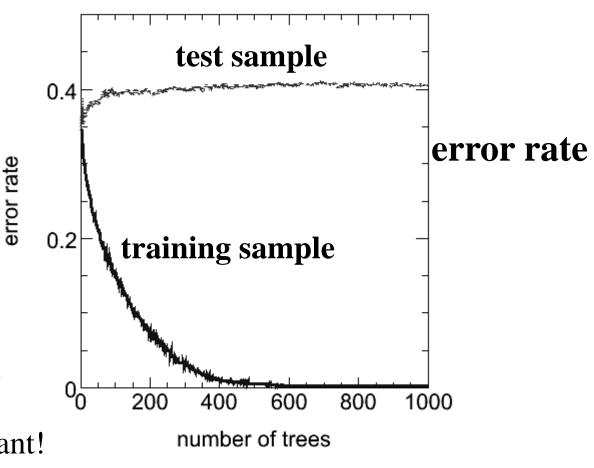
mSUGRA

@ focus
point

VS

ttbar

Training error goes to *zero* exponentially, while test error remains almost constant!



Bayesian Neural Networks

Given

where
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{w}) = \prod_{k=1}^{\infty} Gaussian(y_k, f(x_k, \boldsymbol{w}), \boldsymbol{\sigma}) \qquad \text{(for regression)}$$
 or
$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{w}) = \prod_{k=1}^{\infty} n(x_k, \boldsymbol{w})^y \left[1 - n(x_k, \boldsymbol{w})\right]^{1-y} \qquad \text{(for classification)}$$
 and
$$n(\boldsymbol{x}, \boldsymbol{w}) = 1/[1 + \exp(-f(\boldsymbol{x}, \boldsymbol{w}))]$$

Compute

$$y(\mathbf{x}) = \int f(\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{T}) d\mathbf{w} \text{ or } n(\mathbf{x}) = \int n(\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{T}) d\mathbf{w}$$

y(x) and n(x) are called **Bayesian neural networks** (BNN).

The integrals are approximated using a MCMC method (Radford Neal, http://www.cs.toronto.edu/~radford/fbm.software.html).

BNN – Classification Example

Dots

$$D(x) = H_{\rm S}/(H_{\rm S} + H_{\rm B})$$

H_S signal histogram

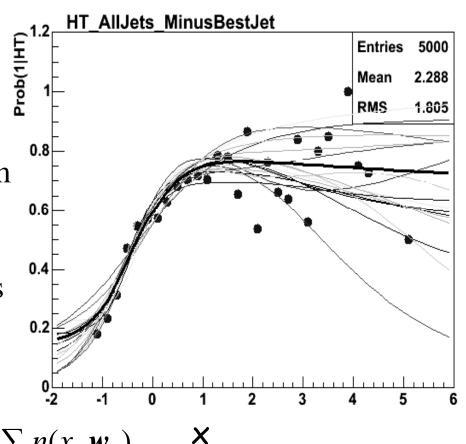
H_B background histogram

Curves

Individual neural networks $n(x, \mathbf{w}_k)$

Black curve

$$D(x) = E[n(x, w)] = (1/N) \sum n(x, w_k)$$



Outstanding Issues

Tuning Methods

• Is cross-validation sufficient to choose the function class (number of leaves, number of trees, number of hidden nodes etc.)?

Verification

- How can one confirm that an *n-dimensional* density is well-modeled?
- How can one find, characterize, and exclude, discrepant domains in n-dimensions *automatically*?

Some Issues

Verification...

- Can one automate *re-weighting* of model data, eventby-event, to improve the match between real data and the model?
- How can one verify that f(x) is close to the Bayes limit?

Looking Beyond the Lamppost

• Is there a sensible way to use multivariate methods when one does not know for certain where to look for signals?

Verification

Discriminant Verification

Any classifier f(x) close to the Bayes limit approximates D(x) = p(x|S) / [p(x|S) + p(x|B)]

Therefore, if we weight, *event-by-event*, an admixture of N signal and N background events by the function f(x)

$$S_{\mathbf{w}}(x) = N p(x|S) f(x)$$

$$B_{w}(x) = N p(x|B) f(x)$$

then the sum

 $S_{\rm w}(x) + B_{\rm w}(x) = N \left(p(x|S) + p(x|B) \right) f(x) = N p(x|S),$ i.e., we should recover the n-dimensional *signal density*.

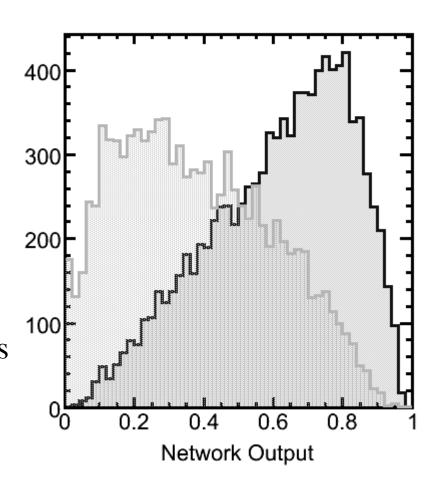
Verification – Example

Dzero single top quark search

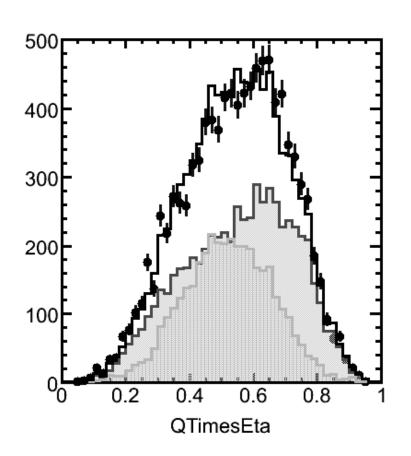
Verifying the Bayesian neural network discriminant.

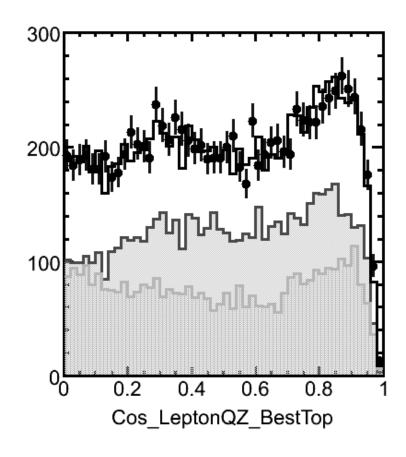
Number of input variables ~ 24 Number of channels = 12

 $(e, \mu) \times (1, 2)$ b-tags x (2,3,4) jets



Verification – Example





Cyan plot: weighted signal

Black curve: sum

Green plot: weighted background

Black dots: signal

Summary

- Multivariate methods can be applied to many aspects of data analysis.
- Many practical methods, and convenient tools such as TMVA, are available for regression and classification.
- All methods approximate the same mathematical entities, but no one method is guaranteed to be the best in all circumstances. So, experiment with a few of them!
- Several issues remain. The most pressing is the need for sound methods, and convenient tools, to explore and quantify the quality of modeling of n-dimensional data.