
Forget multicore! The future is
many-core:

An outlook to the explosion of
parallelism likely to occur in the

LHC era

Sverre Jarp

CERN openlab

Erice – 6.11.2008

ACAT 2008

Sverre Jarp - CERN

Erice – 6 November 2008

2

Contents

Uni-core
Multi-core

The good news

The not-so good news

Many-core
The ever-increasing transistor count

The seven dimensions of performance

SW options in HEP w/encouraging examplesSW options in HEP w/encouraging examples

ConclusionsConclusions

Sverre Jarp - CERN

Erice – 6 November 2008

3

We moved
successfully to
uni-core PCs!

Sverre Jarp - CERN

Erice – 6 November 2008

4

Beginning of the x86 era for HEP

At CHEP-95, I reported on
the first porting and
benchmarking of HEP codes
(in FORTRAN)

CERNLIB
CERN benchmarks
GEANT3
ATLAS DICE (simulation)

A few years later, PCs
became ubiquitous !

Sverre Jarp - CERN

Erice – 6 November 2008

5

We moved
successfully to

multi-core!

Sverre Jarp - CERN

Erice – 6 November 2008

6

The good multi-core news

Sverre Jarp - CERN

Erice – 6 November 2008

7

World-wide LHC Computing Grid

Largest Grid service in the world !

• Around 140
sites in 35
countries

• Tens of
thousands of
Linux PC servers
(over 100’000
cores)

• Tens of
petabytes of
storage

Sverre Jarp - CERN

Erice – 6 November 2008

8

Largest server configuration ever!
Latest count in the CERN Computer Centre (Aug. 2008):

Systems Cores
Installed 4400 31’500
On-order 1000 6’700
Planned 950 6’000

Data from H.Meinhard/HEPix/Oct. 2008

Sverre Jarp - CERN

Erice – 6 November 2008

9

Thermal efficiency has soared !

When going from uni-core to quad-core servers:

Date Server Power efficiency Power
efficiency/GHz

Late 05 DP Irvindale, 2.8GHz,
4GB, 1 disk, 7320
chipset

6.63 2.37

Early 07 DP Woodcrest, 3.0GHz,
8 * 1GB, 1 disk, 5000P,
1U

22.3 7.43

Late 08
(not yet
installed)

DP Harpertown/L,
2.5GHz, 4 * 4GB, 2
disks, 5100, twin

57.0 22.8

Data from H.Meinhard/HEPix/Oct. 2008

Sverre Jarp - CERN

Erice – 6 November 2008

10

Quad-core CPU utilization

CPU cycles consumed (User + System):
Peak: 93%, Trough: 55%, Average: 72.3%

Measurements:
59 LSF production
servers during two
months
(Balazs/Hirstius,
CERN openlab)

Sverre Jarp - CERN

Erice – 6 November 2008

11

The not so good multi-core
news

Sverre Jarp - CERN

Erice – 6 November 2008

12

We neglect several performance dimensions

First three dimensions:

Superscalar

Pipelining

Computational width/SIMD

We extract only 10-15% of peak execution capability !

SIMD width

Superscalar

Pipelining

Sverre Jarp - CERN

Erice – 6 November 2008

13

In HEP (offline), we are vectorless !

Today:

XMM registers are 128 bits
Each operation (ADD, MUL, etc.) can operate
on two 64-bit doubles

We run at half speed!
Each operation done on one double, not two.

- E0

Sverre Jarp - CERN

Erice – 6 November 2008

14

Core 2 execution ports

Intel’s Core
microarchitecture
can handle:

Four instructions
in parallel:
Every cycle
Data width of
128 bits

14

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-016)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

Sverre Jarp - CERN

Erice – 6 November 2008

15

HEP code density
Averages about 1 instruction per cycle.

This “extreme” example shows even less:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code

Assembler instructions

Same
instructions
laid out
according to
latencies on
the Core 2
processor

NB: Out-of-
order
scheduling
not taken
into account.

Sverre Jarp - CERN

Erice – 6 November 2008

16

We want to move
successfully to

many-core!

Sverre Jarp - CERN

Erice – 6 November 2008

17

The driving force: Moore’s law

The industry
continues to
double the
number of
transistors

Consequence
Single core

Multicore
Manycore

From Wikipedia

Sverre Jarp - CERN

Erice – 6 November 2008

18

Real consequence of Moore’s law

We are being “run over” by transistors:

More (and more complex) execution units

Longer SIMD/SSE vectors

More hardware threading

More cores

Sverre Jarp - CERN

Erice – 6 November 2008

19

Intel platform 2015 (and beyond)

Today: 45 nm

Already on the roadmap:
32 nm (2009/10)
22 nm (2011/12)

In research:
16 nm (2013/14)
11 nm (2015/16)
8 nm (2017/18)

Source: Bill Camp/Intel HPC

And each generation will push the processor count!

2006 2007 2008 2009 2010 2011 2012 2013 2014

1

10

100

Multi-core era

Many-core era

Increased HW
threads per socket

From “Platform 2015: Intel Platform Evolution for
the Next Decade” (S.Borkar et al./Intel Corp.)

LHC data

Sverre Jarp - CERN

Erice – 6 November 2008

20

Definition of a hardware core/thread

Core
A complete ensemble of
execution logic and cache
storage (etc.) as well as
register files plus instruction
counter (IC) for executing a
software process or thread

Hardware thread
Addition of a set of register
files plus IC

Both appear as CPUs
cat /proc/cpuinfo

Execution logic

State: Registers, IC

Caches, etc.

State: Registers, IC

The sharing of the execution logic can
be coarse-grained or fine-grained.

Sverre Jarp - CERN

Erice – 6 November 2008

21

The appearance of many-core systems

Let’s define “dispatch slots”: sockets * cores * hw-threads
The total of what you see in /proc/cpuinfo!
Conservative:

Dual-socket Intel quad-core Harpertown: 2 * 4 * 1 = 8
Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 = 16

Aggressive:
Quad-socket Nehalem “octo-core”: 4 * 8 * 2 = 64
Quad-socket Sun Niagara (T2+) processors w/8 cores and 8
threads: 4 * 8 * 8 = 256

Now, or in the near future: Hundreds of “dispatch slots” !

And, by the time, new software is ready: Thousands !!

Sverre Jarp - CERN

Erice – 6 November 2008

22

Many-core graphics processor

Intel’s Larrabee:
Already announced at SigGraph 2008!
Fully IA (x86-based)
Many-core + Multithreaded + vector unit

Not forgetting offerings from NVidea, AMD, IBM, etc.

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In
te

rfa
ce

D
is

pl
ay

In
te

rfa
ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n Multi-Threaded

Wide SIMD
I$ D$

Multi-Threaded
Wide SIMD
I$ D$

Multi-Threaded
Wide SIMD
I$ D$

Multi-Threaded
Wide SIMD
I$ D$

.

.

L2 Cache

Sverre Jarp - CERN

Erice – 6 November 2008

23

Seven dimensions of performance
First three dimensions:

Superscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudo”
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Sverre Jarp - CERN

Erice – 6 November 2008

24

The worry of remaining vectorless !
Today:

We run at half speed
Each operation done on one double, not two.

Intel has announced AVX w/256bits:
Advanced Vector Extensions

In two years’ time: ¼
Operating on one double, not four!

And even longer vector will follow.
And we will use: 1/8, 1/16, etc.

- E0

Sverre Jarp - CERN

Erice – 6 November 2008

25

Our programming paradigm

Event-level parallelism has been used for decades
Process event-by-event in a single process

Advantage
Large jobs can be split into N efficient processes, each
responsible for processing M events

Built-in scalability

Disadvantage
Memory must be made available to each process

With 2 – 4 GB per process
A dual-socket server with Quad-core processors

– Needs 16 – 32 GB (or more) – we currently buy only 16!

Sverre Jarp - CERN

Erice – 6 November 2008

26

What are the options?

There is currently a discussion in the community about
the best way forwards (in a many-core world):

1) Stay with event-level parallelism (and independent
processes)

Assume that the necessary memory remains affordable

2) Rely on forking:
Start the first process
Fork N others
Rely on the OS to do “copy on write”, in case pages are
modified

3) Move to a fully multi-threaded paradigm
Using gross-grained (event-level?) parallelism

Sverre Jarp - CERN

Erice – 6 November 2008

27

C++ multithreading support

Beyond auto-vectorization/auto-parallelization,

Large selection of low-level tools:
OpenMP
MPI
pthreads/Windows threads
Threading Building Blocks (TBB)
TOP-C (from NE University)
RapidMind
Ct (C-throughput)
etc.

Sverre Jarp - CERN

Erice – 6 November 2008

28

Ct Language

New effort by Intel to extend C++ for Throughput Computing

Features:
Addition of new data types (parallel vectors) & operators

NeSL/SASAL-inspired: irregularly nested and sparse/indexed vectors

Abstracting away architectural details
Vector width/Core count/Memory Model: Virtual Intel Platform

– Forward-scaling (Future-proof!)
Nested data parallelism and deterministic task parallelism

Incremental adoption path:
Dedicated Ct-enabled libraries
Rewritten “kernels” in Ct
Pervasive use of Ct

See talk by A.Ghuloum/Intel

1
0
0
0

0

0

2

4

5

3

0
0
0 6

0

7

1 2 4 5
3 6

7

Sverre Jarp - CERN

Erice – 6 November 2008

29

Rethink concurrency in HEP

We are “blessed” with lots of it:
Events
Particles, tracks and vertices
Physics processes
I/O streams
Buffer manipulations (also compaction, etc.)
Fitting and minimization
Partial sums, partial histograms
and many others …..

Sverre Jarp - CERN

Erice – 6 November 2008

30

But remember: Multithreading is not easy!

Several new concepts to master:
Concurrency
Decomposition
Mapping
Communication
Synchronization
Keeping in mind Amdahl’s law:

n
ppp nS

+−
=

1
1max)(

On the other hand, the Blue Brain talk reminded us
that other disciplines can scale into the thousands!

Sverre Jarp - CERN

Erice – 6 November 2008

31

Examples of parallelism:
CBM track fitting

Extracted from CBM’s High Level Trigger Code
Originally ported to IBM’s Cell processor

Tracing particles in a magnetic field
Embarrassingly parallel code

Re-optimization on Intel Core systems
Step 1: use SSE vectors instead of scalars

Operator overloading allows seamless change of data types,
even between primitives (e.g. float) and classes
Two classes

– P4_F32vec4 – packed single; operator + = _mm_add_ps
– P4_F64vec2 – packed double; operator + = _mm_add_pd

Step 2: add multithreading (via TBB)
Enable scaling with core count

See talk by Ivan Kisel

Sverre Jarp - CERN

Erice – 6 November 2008

32

CBM HLT benchmark runs

Real fit time/track (μs) as a function of the core count:

Logarithmic
scale!

From H.Bjerke/CERN openlab

Sverre Jarp - CERN

Erice – 6 November 2008

33

Examples of parallelism: GEANT4

ParGeant4 (Gene Cooperman/NEU)
implemented event-level parallelism to simulate
separate events across remote nodes.

New development re-implements thread-safe event-
level parallelism inside a multi-core node

Done by NEU PhD student Xin Dong: Using FullCMS example
Required change of lots of existing classes:

– Especially global, “extrn”, and static declarations
The geometry was converted (this summer)
Latest news:

– Physics tables are now in the process of being shared

Additional memory: Only 22MB/thread (!)
More work is needed, but extremely interesting first steps!

Sverre Jarp - CERN

Erice – 6 November 2008

34

Examples of parallelism: JANA

Each thread in JANA is
composed of its own event
processing loop and a
complete set of factories

Reconstruction of a given
event is done entirely inside
of a single thread

No mutex locking is
required by authors of
reconstruction code

Threads work
asynchronously to maximize
rates at the expense of not
maintaining the event order
on output

Talk by D.Lawrence/JLAB on Monday

Sverre Jarp - CERN

Erice – 6 November 2008

35

Examples of parallelism: RooFit (1)

Example of Data Analysis (Fitting) in BaBar
Uses MPI to run scatter/gather

Based on the Negative-Log Likelihood function which requires
the calculation of separate values for each free parameter in
each minimization step

Talk by A.Lazzaro on Wednesday

Sverre Jarp - CERN

Erice – 6 November 2008

36

RooFit (2)

It works well in case of large number of parameters

Sverre Jarp - CERN

Erice – 6 November 2008

37

Example: ROOT minimization and fitting

Minuit parallelization is independent of user code

Log-likelihood parallelization (splitting the sum) is more efficient
more demanding on thread safety of provided code

Example: unbinned fit with 20 parameters

Can have combination on both
parallelization via multi-threading in a multi-core CPU
multiple process in a distributed computing environment

complex BaBar
fitting provided
by A. Lazzaro
and parallelized
using MPI

Sverre Jarp - CERN

Erice – 6 November 2008

38

Embracing parallelism

CERN openlab contribution:
Two workshops arranged together w/Intel
every year

Each event:
2 half-days w/lectures, 2 half-days w/exercises
Multiple lecturers (Intel + CERN); 30-40 participants
Next workshop: 11-12 November 2008

Large HP/Intel Blade quad-core cluster
available for exercises
Licenses for the Intel Threading Tools (and
other SW products) available

to all CERN users

Sverre Jarp - CERN

Erice – 6 November 2008

39

Conclusions
The transistors are here:

Vectors, HW threads, Many-core (in 7 dimensions)

Fortunately, there are more and more HEP software
examples of multi-/many-core scalability

Nevertheless, obtaining scalability for larger and
larger core counts will be difficult:

Now is the time to act!
Identify the software model that works for you!

Will you be ready for 100++ cores ??

We mastered uni- and multi-core. We now want to
master many-core as well!

Sverre Jarp - CERN

Erice – 6 November 2008

40

BACKUP

Sverre Jarp - CERN

Erice – 6 November 2008

41

We could bet on Symmetric Multithreading

Because we have thin instruction streams, we could profit
from SMT, provided the memory issue is under control

We could easily tolerate up to 4 hardware threads!

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

Sverre Jarp - CERN

Erice – 6 November 2008

42

The Power Wall
The CERN Computer Centre can “only” supply 2.5MW of
electric power

Plus 2MW to remove the corresponding heat!

Spread over a complex infrastructure:
CPU servers; Disk servers
Tape servers + robotic equipment
Database servers
Other infrastructure servers
Network switches and routers

This limit will be reached in 2009!
Even after a 15% increase

Input Power Evolution (MW)

0

5

10

15

20

25

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

year

MW

Other services Processor power(KW) Disk power (KW)

