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We moved 
successfully to 
uni-core PCs!
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Beginning of the x86 era for HEP

At CHEP-95, I reported on 
the first porting and 
benchmarking of HEP codes 
(in FORTRAN)

CERNLIB
CERN benchmarks
GEANT3
ATLAS DICE (simulation)

A few years later, PCs 
became ubiquitous !
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We moved 
successfully to 

multi-core!
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The good multi-core news
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World-wide LHC Computing Grid

Largest Grid service in the world !

• Around 140 
sites in 35 
countries

• Tens of 
thousands of 
Linux PC servers 
(over 100’000 
cores)

• Tens of 
petabytes of 
storage



Sverre Jarp - CERN

Erice – 6 November 2008

8

Largest server configuration ever!
Latest count in the CERN Computer Centre (Aug. 2008):

Systems Cores
Installed 4400 31’500
On-order 1000 6’700
Planned 950 6’000

Data from H.Meinhard/HEPix/Oct. 2008
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Thermal efficiency has soared !

When going from uni-core to quad-core servers:

Date Server Power efficiency Power 
efficiency/GHz

Late 05 DP Irvindale, 2.8GHz, 
4GB, 1 disk, 7320 
chipset

6.63 2.37

Early 07 DP Woodcrest, 3.0GHz, 
8 * 1GB, 1 disk, 5000P, 
1U

22.3 7.43

Late 08
(not yet 
installed)

DP Harpertown/L, 
2.5GHz, 4 * 4GB, 2 
disks, 5100, twin

57.0 22.8

Data from H.Meinhard/HEPix/Oct. 2008
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Quad-core CPU utilization

CPU cycles consumed (User + System):
Peak: 93%, Trough: 55%, Average: 72.3%

Measurements:
59 LSF production 
servers during two 
months 
(Balazs/Hirstius, 
CERN openlab)
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The not so good multi-core 
news
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We neglect several performance dimensions

First three dimensions:

Superscalar

Pipelining

Computational width/SIMD

We extract only 10-15% of peak execution capability !

SIMD width

Superscalar

Pipelining
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In HEP (offline), we are vectorless !

Today:

XMM registers are 128 bits
Each operation (ADD, MUL, etc.) can operate 
on two 64-bit doubles

We run at half speed!
Each operation done on one double, not two.

- E0
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Core 2 execution ports

Intel’s Core 
microarchitecture
can handle:

Four instructions 
in parallel:
Every cycle
Data width of 
128 bits

14

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-016)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT
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HEP code density
Averages about 1 instruction per cycle.

This “extreme” example shows even less:

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0   // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3      # Prob 43% // jump if FALSE

High level C++ code 

Assembler instructions 

Same 
instructions 
laid out 
according to 
latencies on 
the Core 2 
processor 

NB: Out-of-
order 
scheduling 
not taken 
into account. 
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We want to move 
successfully to 

many-core!
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The driving force: Moore’s law

The industry 
continues to 
double the 
number of 
transistors

Consequence
Single core 

Multicore 
Manycore

From Wikipedia
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Real consequence of Moore’s law

We are being “run over” by transistors:

More (and more complex) execution units

Longer SIMD/SSE vectors

More hardware threading

More cores
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Intel platform 2015 (and beyond)

Today: 45 nm

Already on the roadmap:
32 nm (2009/10)
22 nm (2011/12)

In research:
16 nm (2013/14)
11 nm (2015/16)
8 nm (2017/18)

Source: Bill Camp/Intel HPC

And each generation will push the processor count!

2006 2007 2008 2009 2010 2011 2012 2013 2014

1

10

100

Multi-core era

Many-core era

Increased HW 
threads per socket

From “Platform 2015: Intel Platform Evolution for 
the Next Decade” (S.Borkar et al./Intel Corp.)

LHC data
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Definition of a hardware core/thread

Core
A complete ensemble of 
execution logic and cache 
storage (etc.) as well as 
register files plus instruction 
counter (IC) for executing a 
software process or thread

Hardware thread
Addition of a set of register 
files plus IC

Both appear as CPUs
cat /proc/cpuinfo

Execution logic

State: Registers, IC

Caches, etc.

State: Registers, IC

The sharing of the execution logic can 
be coarse-grained or fine-grained.
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The appearance of many-core systems

Let’s define “dispatch slots”: sockets * cores * hw-threads
The total of what you see in /proc/cpuinfo!
Conservative:

Dual-socket Intel quad-core Harpertown: 2 * 4 * 1 = 8
Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 = 16

Aggressive:
Quad-socket Nehalem “octo-core”: 4 * 8 * 2 = 64
Quad-socket Sun Niagara (T2+) processors w/8 cores and 8 
threads: 4 * 8 * 8 = 256

Now, or in the near future: Hundreds of “dispatch slots” !  

And, by the time, new software is ready: Thousands !!  
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Many-core graphics processor

Intel’s Larrabee:
Already announced at SigGraph 2008!
Fully IA (x86-based)
Many-core + Multithreaded + vector unit

Not forgetting offerings from NVidea, AMD, IBM, etc.
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Seven dimensions of performance
First three dimensions:

Superscalar
Pipelining
Computational width/SIMD

Next dimension is a “pseudo”
dimension:

Hardware multithreading

Last three dimensions:
Multiple cores
Multiple sockets
Multiple compute nodes 

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets
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The worry of remaining vectorless !
Today:

We run at half speed
Each operation done on one double, not two.

Intel has announced AVX w/256bits:
Advanced Vector Extensions

In two years’ time: ¼
Operating on one double, not four!

And even longer vector will follow. 
And we will use: 1/8, 1/16, etc. 

- E0
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Our programming paradigm

Event-level parallelism has been used for decades
Process event-by-event in a single process

Advantage
Large jobs can be split into N efficient processes, each 
responsible for processing M events

Built-in scalability

Disadvantage
Memory must be made available to each process

With 2 – 4 GB per process
A dual-socket server with Quad-core processors

– Needs 16 – 32 GB (or more) – we currently buy only 16!
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What are the options?

There is currently a discussion in the community about 
the best way forwards (in a many-core world):

1) Stay with event-level parallelism (and independent 
processes)

Assume that the necessary memory remains affordable

2) Rely on forking:
Start the first process
Fork N others
Rely on the OS to do “copy on write”, in case pages are 
modified 

3) Move to a fully multi-threaded paradigm
Using gross-grained (event-level?) parallelism



Sverre Jarp - CERN

Erice – 6 November 2008

27

C++ multithreading support

Beyond auto-vectorization/auto-parallelization,

Large selection of low-level tools:
OpenMP
MPI
pthreads/Windows threads
Threading Building Blocks (TBB)
TOP-C (from NE University)
RapidMind
Ct (C-throughput)
etc.
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Ct Language

New effort by Intel to extend C++ for Throughput Computing

Features:
Addition of new data types (parallel vectors) & operators

NeSL/SASAL-inspired: irregularly nested and sparse/indexed vectors

Abstracting away architectural details
Vector width/Core count/Memory Model: Virtual Intel Platform

– Forward-scaling (Future-proof!)
Nested data parallelism and deterministic task parallelism

Incremental adoption path:
Dedicated Ct-enabled libraries
Rewritten “kernels” in Ct
Pervasive use of Ct

See talk by A.Ghuloum/Intel
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Rethink concurrency in HEP

We are “blessed” with lots of it:
Events
Particles, tracks and vertices
Physics processes
I/O streams
Buffer manipulations (also compaction, etc.)
Fitting and minimization
Partial sums, partial histograms
and many others …..
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But remember: Multithreading is not easy!

Several new concepts to master:
Concurrency
Decomposition
Mapping 
Communication
Synchronization
Keeping in mind Amdahl’s law:

n
ppp nS

+−
=

1
1max )(

On the other hand, the Blue Brain talk reminded us 
that other disciplines can scale into the thousands!
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Examples of parallelism:
CBM track fitting

Extracted from CBM’s High Level Trigger Code
Originally ported to IBM’s Cell processor

Tracing particles in a magnetic field 
Embarrassingly parallel code

Re-optimization on Intel Core systems
Step 1: use SSE vectors instead of scalars

Operator overloading allows seamless change of data types, 
even between primitives (e.g. float) and classes
Two classes

– P4_F32vec4 – packed single; operator + = _mm_add_ps
– P4_F64vec2 – packed double; operator + = _mm_add_pd

Step 2: add multithreading (via TBB)
Enable scaling with core count

See talk by Ivan Kisel
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CBM HLT benchmark runs

Real fit time/track (μs) as a function of the core count:

Logarithmic
scale!

From H.Bjerke/CERN openlab
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Examples of parallelism: GEANT4

ParGeant4 (Gene Cooperman/NEU)
implemented event-level parallelism to simulate 
separate events across remote nodes.

New development re-implements thread-safe event-
level parallelism inside a multi-core node

Done by NEU PhD student Xin Dong: Using FullCMS example
Required change of lots of existing classes:

– Especially global, “extrn”, and static declarations
The geometry was converted (this summer)
Latest news:

– Physics tables are now in the process of being shared

Additional memory: Only 22MB/thread (!)
More work is needed, but extremely interesting first steps!
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Examples of parallelism: JANA

Each thread in JANA is 
composed of its own event 
processing loop and a 
complete set of factories

Reconstruction of a given 
event is done entirely inside 
of a single thread

No mutex locking is 
required by authors of 
reconstruction code

Threads work 
asynchronously to maximize 
rates at the expense of not 
maintaining the event order 
on output 

Talk by D.Lawrence/JLAB on Monday



Sverre Jarp - CERN

Erice – 6 November 2008

35

Examples of parallelism: RooFit (1)

Example of Data Analysis (Fitting) in BaBar
Uses MPI to run scatter/gather

Based on the Negative-Log Likelihood function which requires 
the calculation of separate values for each free parameter in 
each minimization step

Talk by A.Lazzaro on Wednesday
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RooFit (2)

It works well in case of large number of parameters
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Example: ROOT minimization and fitting

Minuit parallelization is independent of user code

Log-likelihood parallelization (splitting the sum) is more efficient
more demanding on thread safety of provided code 

Example: unbinned fit with 20 parameters

Can have combination on both
parallelization via multi-threading in a multi-core CPU 
multiple process in a distributed computing environment

complex BaBar 
fitting provided 
by  A. Lazzaro
and parallelized 
using MPI
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Embracing parallelism

CERN openlab contribution:
Two workshops arranged together w/Intel 
every year

Each event:
2  half-days w/lectures, 2 half-days w/exercises
Multiple lecturers (Intel + CERN); 30-40 participants
Next workshop: 11-12 November 2008

Large HP/Intel Blade quad-core cluster 
available for exercises
Licenses for the Intel Threading Tools (and 
other SW products) available

to all CERN users
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Conclusions
The transistors are here:

Vectors, HW threads, Many-core (in 7 dimensions)

Fortunately, there are more and more HEP software 
examples of multi-/many-core scalability

Nevertheless, obtaining scalability for larger and 
larger core counts will be difficult:

Now is the time to act!
Identify the software model that works for you!

Will you be ready for 100++ cores ??

We mastered uni- and multi-core. We now want to 
master many-core as well!
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BACKUP
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We could bet on Symmetric Multithreading

Because we have thin instruction streams, we could profit 
from SMT, provided the memory issue is under control

We could easily tolerate up to 4 hardware threads!

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-
packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe
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The Power Wall
The CERN Computer Centre can “only” supply 2.5MW of 
electric power

Plus 2MW to remove the corresponding heat!

Spread over a complex infrastructure:
CPU servers; Disk servers
Tape servers + robotic equipment
Database servers
Other infrastructure servers
Network switches and routers

This limit will be reached in 2009!
Even after a 15% increase

Input Power Evolution (MW)
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