
Multi-threaded event processing with JANA

David Lawrence∗Jefferson Lab

E-mail: davidl@jlab.org

..........................

XII Advanced Computing and Analysis Techniques in Physics Research
November 3-7, 2008
Erice, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:davidl@jlab.org

Multi-threaded event processing with JANA David Lawrence

1. Introduction

It has been well known for some time that microprocessor development would shift from a
strategy of increased clock speed to one of an increased number of cores [1]. This has prompted
a renewed look at parallelizing code in order to take advantage of the CPU power available in the
next generation hardware. Software multi-threading is one of the most powerful tools in the parallel
toolbox, more so even than hardware threads and SIMD architectures.

The JANA framework [3] is being developed for the GlueX experiment [2] which plans to
start data taking at Jefferson Lab in 2014. The work presented here on JANA focuses on the multi-
threaded event processing aspect of the framework. The hardware that will be available when
GlueX starts in 2014 is anticipated to have as many as 100 cores per socket [1], strongly motivating
the need for parallelization in the reconstruction software.

1.1 The need for parallelism

With the hardware landscape changing to accommodate ever increasing demands for computer
processing power, the software must likewise be modified to take advantage of the hardware im-
provements. The nature of the multi-core architecture does not lend itself easily to solutions at
the compiler or operating system levels so it is left to the end-of-the-line software developers to
implement. In general, parallel processing decreases the time it takes to complete a job. In the
case of code development, this can decrease the turn-around time in the development cycle which
becomes real reductions in manpower. It can also efficiently utilize the available resource for large
reconstruction jobs more suited to computer farms.

1.2 Multi-threading vs. Multiple Processes

Parallelization in event processing is not a new concept. Earlier experiments sought to im-
prove overall throughput by implementing event dispatching schemes using either the network for
multiple computers, or shared memory and multiple processes in a single computer [4]. This early
experience indicates one obvious option for parallelization on a multi-core computer: multiple
processes. There are clear advantages to this approach. Consider, for example, a system where
multiple processes are launched and they communicate with both a dispatcher program and a ac-
cumulator program to retrieve unprocessed events and record processed ones respectively. For this
system, the only data shared by the programs is that which is explicitly placed in shared mem-
ory. In a multi-threaded system, something close to the opposite is true where all global variables
are automatically shared between the threads and one needs to go to some trouble to protect them
from simultaneous access. This situation is ameliorated quite a bit though by best practices in
object-oriented programming that discourage the use of global and static variables.

Figure 1 illustrates the contrast of systems using multiple processes vs. one that uses multiple
threads. What is shown depicts the common situation of code development on a desktop computer
in which one has a single input file that they want to process, placing the results in a single output
file. Two options are drawn for the case of multiple processes. The first assumes a random access
file format that allows each of the N processes to read events from a different part of the file.
This requires N simultaneously open file descriptors which will work fine for a few threads, but
may not scale well to a 100 core system (see section 3.2). The second option using multiple

2

Multi-threaded event processing with JANA David Lawrence

1 

FILE! FILE! FILE!

single 
threaded 
program 

single 
threaded 
program 

single 
threaded 
program 

single 
threaded 
program 

single 
threaded 
program 

single 
threaded 
program 

multi‐threaded 
program 

dispatcher!

Accumulator!

file!
output!

Merger!

file!
output!

file!
output!

Multiple Processes  Multiple Threads 
option 1  option 2 

FILE! FILE! FILE!

Figure 1: Simple schematic illustrating how solutions implementing multiple processes on the same com-
puter tend to be more complex for the end user than a single process with multiple threads.

processes employs dispatcher and accumulator programs to coordinate the job. Both of the multiple
process cases will require some type of scripting or forking mechanism to launch all of the different
processes involved. A multi-threaded application, on the other hand, will appear to the end user as
a simpler system where a single program reads in a single input file and produces a single output
file.

Figure 2 illustrates the total processing time (in arbitrary units) needed to process all of the
events in a data set as a function of the number of files in the data set. In this case a farm of 100
nodes is assumed, each with 100 cores for a total of 10,000 cores. In the plot the blue represents
the single thread per process situation in which a single file can be processed in one unit of time
by 1 core. In this model, a 1 file data set will take as long to process as a 10,000 file data set with
the 1 file case using only 1/10,000 of the available farm power. The red shows the multi-threaded
case in which each file is processed by 100 cores and therefore takes only 1/100 of a time unit.
Note that the red pattern is actually in the form of small steps (100 steps per 10,000 files). What
is difficult to see in the figure is the ideal limit plotted in black (behind the red) which represents
a perfectly linear scaling. The plot shows how the total processing time can as much as double for
the multi-process case as opposed to the multi-threaded case.

2. JANA’s multi-threaded implementation

JANA is built using the POSIX pthread library, pthreads [5]. It is designed to allow the exact
number of event processing threads to be specified at run time through an optional command line

3

Multi-threaded event processing with JANA David Lawrence

Number of files in dataset
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
o

ta
l t

im
e

to
 p

ro
ce

ss
 a

ll
fi

le
s

in
 d

at
as

et

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Multiple Processes

Multiple Threads

Ideal limit

1 unit of time =
time for 1 core to process 1 file

Assumed Farm:
100 nodes

100 cores/nodes
(10000 cores total)

Dataset processing time vs. number of files

Figure 2: Toy model calculation of the files in a given data set as a function of the number of files in the
data set for the case of multiple process (blue) and multiple threads (red).

argument. An event is always reconstructed in a single thread, eliminating the need for mutex
(un)locking calls by reconstruction code authors. This is described in more detail in section 2.2.

2.1 A modified factory model

Traditional factory models in object oriented programming use a generator class to generate
objects of another class whose ownership is then passed on to the caller. In JANA, the "factories"
maintain ownership of the objects, and only return const pointers. By only publishing const pointers
outside of the factory class, the data integrity is all but guaranteed.

Figure 3 shows a diagram illustrating the factory model used. The model follows what might
be used in a manufacturing industry. Specifically, when an order comes into the factory, the ex-
isting stock is checked to see if the order can be immediately filled, and if not, the objects are
manufactured using parts drawn from other factories as needed. Once the objects are created, they
are placed in the factory’s "stock" and const pointers returned. Subsequent requests to the same
factory for the same event will receive a list of pointers to the same objects. This causes the usually
CPU intensive manufacturing process to be invoked at most, once per event for a given factory. An
additional advantage of this model is that since data is produced on demand, the factory calling
sequence is handled automatically giving more flexibility in the coding.

2.2 The event processing engine in a thread

Performance in a multi-threaded application can be severely affected if mutex locks are used
frequently. Minimizing mutex usage is achieved by designing the framework such that large CPU-
intensive parts of the job can be done without the use of shared resources. Fortunately, the indepen-
dent nature of individual events coupled with the large numbers of events that must be processed
naturally lends itself to a design that requires few resources be shared between the processing
threads. The JANA design shown in figure 4 illustrates this. In this figure, each processing thread
consists of a JEventLoop object and a complete set of JFactory objects. A factory communicates
with other factories in the same thread through the thread’s JEventLoop. The key feature here is

4

Multi-threaded event processing with JANA David Lawrence

ORDER

PRODUCT

FACTORY

NO

YES

Stock?
In

Manufacture

Manufacture

Manufacture

Manufacture

FACTORY

NO

YES

Stock?
In

FACTORY

NO

YES

Stock?
In

FACTORY

NO

YES

Stock?
In

STOCK

STOCK

STOCK

STOCK

Figure 3: The modified factory model implemented by JANA.

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

Thread

JFactory

JFactory
JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

JFactory

raw data read in

JFactory

Thread

JFactory

JFactory

Thread

reconstructed
values written out
(e.g. ROOT tree)

Thread

JEventLoop

JEventLoop

JEventProcessor

JApplication

JEventSource

JEventLoop

JEventLoop

Figure 4: Diagram illustrating how JANA dedicates a complete set of factories to each processing thread
eliminating the need for mutex locking during inter-factory communication. See text for more details.

that JFactory objects never need to lock a mutex because the entirety of the event reconstruction
is contained inside of a single thread. The only mutex locking that is required takes place in the
JEventSource objects which read in the event and the JEventProcessor objects which write the
events out. This is the minimum requirement since the input(output) is a single source(destination)
stream, therefore requiring exclusive use by one event at a time.

3. Performance Measurements

3.1 CPU bound Jobs

Figure 5 shows the event processing rate of a multi-threaded process as a function of the
number of processing threads. In the ideal case, the rate will increase linearly with the number
of processing threads up until they equal the number of available cores on the system. The plot
shows reconstruction of simulated data (blue) which includes charged particle tracking through a
solenoidal field. Also shown are results using a special CPU-intensive testing plugin (red) which

5

Multi-threaded event processing with JANA David Lawrence

Number of processing threads
0 2 4 6 8 10

E
ve

n
t

P
ro

ce
ss

in
g

 R
at

e

0

2

4

6

8

10

(n
o

rm
al

iz
ed

 t
o

 s
in

g
le

 t
h

re
ad

 r
at

e)

Reconstruction of MC data

TestSpeed plugin (no I/O)

Dual quad-core Intel Xeon
x5355 @ 2.66 GHz

2GB RAM 8 cores totalOct. 16, 2008 DL

slope=1

Relative processing rate vs. number of threads

Figure 5: Event processing rate scaling with the number of threads.

includes no I/O and extends out beyond the number of available cores into the saturation region.
This plot illustrates that with this design, a task that requires similar CPU resources to reconstruc-
tion of real data can scale almost linearly with the number of processing threads (i.e. cores) up to
8 cores.

3.2 IO bound Jobs

It is estimated that by 2015, CPU’s will be available with more than 100 cores [1]. These
cores, being in the same computer, will still share the same disk drive and so may become I/O
limited, even for CPU intensive tasks. Multi-threading can provide some performance benefits
here compared to a multi-process solution. For example, 100 processes will likely be reading from
100 different parts of the disk (either different files, or different parts of the same file) causing the
read head to jump continuously. By contrast a 100 thread process will be reading events from a
single file and dispatching them internally allowing the read head to follow a continuous stream
with far fewer seeks. Figure 6 shows the results from a simple test that illustrates this. In the plot,
the blue circles represent the total event reading rate for an I/O bound job using multiple threads.
The red triangles show the same thing, except multiple instances of the same job using only a single
thread were used. For the latter case, the separate processes were reading from different files. In
both cases, care was taken to “clear” the disk cache by filling it with data from a source not used in
the test prior to beginning the test. It is unclear whether similar benefits will be seen if solid state
drive (SSD) technology becomes common in the future.

4. Summary

Event reconstruction in High Energy and Nuclear Physics is a CPU intensive task well suited
for a multi-threaded framework. A framework has been shown that minimizes mutex locking
allowing near perfect scaling in the event processing rate to be achieved for CPU intensive tasks.
It has also been shown that some benefit can be realized from multi-threading in tasks where there
is competition for I/O resources. This benefit is likely to become larger as the number of cores
increases causing the number of competitors to increase.

6

Multi-threaded event processing with JANA David Lawrence

Number of threads/processes
0.5 1 1.5 2 2.5 3 3.5 4 4.5

E
ve

n
t

in
p

u
t

ra
te

 (
kH

z)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Multiple threads

Multiple processes

Intel core 2 duo
@ 2.33 GHz

3GB RAM 2 cores totalOct. 16, 2008 DL I/O limited

Event I/O rate for multiple threads and processes

Figure 6: Event processing rates with the number of threads for IO bound jobs.

Thanks to Elliott Wolin and Mark Ito of JLab for proofreading this document and giving me
excellent feedback and suggestions.

References

[1] S. Borkar H. Mulder P. Dubey S. Powlowski K. Kahn J. Rattner D. Kuck. Platform 2105: Intel
processor and platform evolution for the next decade. Technical report, Intel Corp. White Paper, 2005.

[2] A. R. Dzierba. Qcd confinement and the hall d project at jefferson lab. hep-ex/0106010, 2001.

[3] D Lawrence. Multi-threaded event reconstruction with jana. Journal of Physics: Conference Series,
119(4):042018 (6pp), 2008.

[4] D. P. Weygand. The Data acquisition system for Brookhaven experiment 852. Science at the KAON
Factory Proceedings, Vancouver vol. 1* 6 p, 1990.

[5] Ieee std. 1003.1 (pthreads), 2004.

7

