Jets: seeing quarks, gluons and more at the LHC

Grégory Soyez

IPhT, CEA Saclay

Natal, October 21-31, 2014

- <u>Lecture 1</u>: Jets ~ QCD parton basic concepts
- Lecture 2: How close is a jet to a parton? Analytic estimates of perturbative and non-perturbative effects between a parton and a jet
- <u>Lecture 3</u>: *A jet can be something else too!* Boosted jets and jet substructure

What is a jet?

- Concept of a jet
- Jet algorithm/jet definition
- Fundamental requirements
- A little bit of history from LEP...
- ... to the LHC
- Practical implementation [if time permits]

How are the hadrons distributed in a collision event?

- (a) Uniformly across the event
- (b) Along a few directions
- (c) I do not understand the question

How are the hadrons distributed in a collision event?

(b) Along a few directions

Final-state events are pencil-like already observed in e^+e^- collisions:

Jets

Final-state events are pencil-like already observed in e^+e^- collisions:

"Jets" \equiv bunch of collimated particles

Final-state events are pencil-like already observed in e^+e^- collisions:

"Jets" \equiv bunch of collimated particles \cong hard partons

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 5 / 38

Is that expected in QCD?

(a) Yes

(b) No

(c) What is QCD?

Is that expected in QCD?

(a) Yes

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 6 / 38

Origin in QCD

This is expected from QCD:

- collinear divergence: enhancement of small-angle branchings
- Same as in DGLAP/PDF evolution

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz$$

• Physical origin: as $\theta \to 0$, $p_a^2 \to 0$ (assuming *b* and *c* are massless)

"Jets" \equiv bunch of collimated particles \cong hard partons

How many jets?

"Jets" \equiv bunch of collimated particles \cong hard partons

obviously 2 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

How many jets

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

- "collinear" is arbitrary
- "parton" concept strictly valid only at LO

Jet definition

What is a "jet"?

jet definition(s)

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 10 / 38

-

3

Jet definition

- A jet definiton is supposed to
 - give finite jet cross sections (th)
 - be fast enough (exp)
 - be (as) consistent (as possible) across different view of an event (both)

Divergences in QCD

UV divergences

- Re-absorbed into the parameters of the Lagrangian (Ψ_f , A^{μ}_a , g, m_f)
- QCD is a renormalisable theory
- Renormalisation-group equation e.g. $\alpha_s(\mu^2)$
- Asymptotic freedom in QCD

Divergences in QCD

UV divergences

- Re-absorbed into the parameters of the Lagrangian (Ψ_f , A^{μ}_a , g, m_f)
- QCD is a renormalisable theory
- Renormalisation-group equation e.g. $\alpha_s(\mu^2)$
- Asymptotic freedom in QCD

IR divergences

• In the initial state: re-absorbed in the PDFs DGLAP evolution equation

Divergences in QCD

UV divergences

- Re-absorbed into the parameters of the Lagrangian (Ψ_f , A^{μ}_a , g, m_f)
- QCD is a renormalisable theory
- Renormalisation-group equation e.g. $\alpha_s(\mu^2)$
- Asymptotic freedom in QCD

IR divergences

- In the initial state: re-absorbed in the PDFs DGLAP evolution equation
- what about the final-state?

Parton branching at small angle

Can be calculated explicitly (3 combinations: $q \rightarrow qg$, $g \rightarrow gg$, $g \rightarrow q\bar{q}$):

Parton branching at small angle

Can be calculated explicitly (3 combinations: $q \rightarrow qg$, $g \rightarrow gg$, $g \rightarrow q\bar{q}$):

Or if you're looking for something more "concrete": $e^+e^-
ightarrow$ hadrons

Parton branching at small angle

Can be calculated explicitly (3 combinations: $q \rightarrow qg$, $g \rightarrow gg$, $g \rightarrow q\bar{q}$):

Or if you're looking for something more "concrete": $e^+e^-
ightarrow$ hadrons

(only gives
$$q
ightarrow qg$$
)

In the end:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \propto^{z \ll 1} \frac{2C_R}{z}$$

At leading log: P's are the same splitting fcts as for DGLAP

jet definition(s)

Infrared-and-collinear safety

So, we have:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \overset{z \ll 1}{\propto} \frac{1}{z}$$

jet definition(s)

Infrared-and-collinear safety

So, we have:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \propto^{z \ll 1} \frac{1}{z}$$

Two IR divergences: collinear $(\theta \rightarrow 0)$; soft $(z \rightarrow 0)$

Infrared-and-collinear safety

So, we have:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \overset{z \ll 1}{\propto} \frac{1}{z}$$

Two IR divergences: collinear $(\theta \rightarrow 0)$; soft $(z \rightarrow 0)$

Kinoshita-Lee-Nauenberg/Block-Nordsieck theorem

Soft and collinear divergences cancel between real and virtual diagrams at all orders of the perturbation theory

jet definition(s)

Infrared-and-collinear safety

So, we have:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \overset{z \ll 1}{\propto} \frac{1}{z}$$

Two IR divergences: collinear $(\theta \rightarrow 0)$; soft $(z \rightarrow 0)$

Soft and collinear divergences cancel between real and virtual diagrams at all orders of the perturbation theory

Infrared-and-collinear safe observables

This cancellation must be preserved!

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 14 / 38

jet definition(s)

Infrared-and-collinear safety

So, we have:

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} P(z) dz, \qquad P(z) \stackrel{z \ll 1}{\propto} \frac{1}{z}$$

Two IR divergences: collinear $(\theta \rightarrow 0)$; soft $(z \rightarrow 0)$

Soft and collinear divergences cancel between real and virtual diagrams at all orders of the perturbation theory

Infrared-and-collinear safe observables

- This cancellation must be preserved!
- Observables (e.g. jets) must be insensitive to collinear branchings and soft emissions

How often are jets used at the LHC?

- (a) Never (QCD is dirty, I live with leptons and photons)
- (b) in about 20% of the analysis
- (c) in about 40% of the analysis
- (d) in about 60% of the analysis
- (e) in about 80% of the analysis
- (f) always (and I buy all QCD lecturers a beer)

Question 3

How often are jets used at the LHC?

(d) in about 60% of the analysis

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 15 / 38

Jets are omnipresent

Jets are used in \sim 60% of the LHC analyses

Jets are important

A robust jet definition is needed: it guarantees a precise access to the quarks and gluons in "hard" collisions

What is a jet? jet definition(s)

A brief/rough flight over the history of jets

What is a jet? jet definition(s)

A brief/rough flight over the history of jets

- Cone algorithms and IRC safety
- Clustering at the LHC: the anti- k_t algorithm
- FastJet: speed and implementation
- Now is a good time to stand up if you want to hear about sth else

What is a "jet"?

Cone algorithms and IRC safety

э

-

Basic concepts

Central idea: stable cones

- A jet is a direction of stable energy flow
- Stable cone: the sum of all momenta in a cone of (fixed) radius *R* points in the direction of the centre of the cone

Basic concepts

Central idea: stable cones

- A jet is a direction of stable energy flow
- Stable cone: the sum of all momenta in a cone of (fixed) radius *R* points in the direction of the centre of the cone

Cone algorithms with split-merge

- find stable cones (Usually iteratively starting from a set of seeds)
- run a split-merge procedure to get rid of overlaps
 CDFJetClu, CDFMidPoint, D0MidPoint, ATLASCone, SISCone

Basic concepts

Central idea: stable cones

- A jet is a direction of stable energy flow
- Stable cone: the sum of all momenta in a cone of (fixed) radius *R* points in the direction of the centre of the cone

Cone algorithms with split-merge

- find stable cones (Usually iteratively starting from a set of seeds)
- run a split-merge procedure to get rid of overlaps
 CDFJetClu, CDFMidPoint, D0MidPoint, ATLASCone, SISCone

Cone algorithms with progressive removal

- find the hardest stable cone (Usually iterating from the hardest particle in the event)
- call it a jet and iterate

CMSIterativeCone, SISCone-PR

What is a jet? Cone algorithms and IRC safety

IR safety: JetClu v. SISCone

JetClu

Finds stable cones stating from all the particles in the event

SISCone

Finds ALL stable cones

Consequences

- JetClu is IR-unsafe
- SISCone is IR-safe

What is a jet? Cone algorithms and IRC safety

IR safety: JetClu v. SISCone

cancellation between real and virtual spoiled

What is a jet? Cone algorithms and IRC safety

IR safety: JetClu v. SISCone

Same stable cones found everywhere: all OK

Question 4

Does it matter?	
(a) Yes	
(b) No	
(c) I understand why I hate QCD!	

-

A.

э

Question 4

Does it matter?

(a) Yes

э

3 🕨 🖌 3

Seeds are bad!

Consequences of IRC unsafety

- JetClu, ATLASCone IR-unsafe for 2 (nearby) particles + 1 soft Trust jets only at lowest order α_s^0
- CDF/D0MidPoint IR-unsafe for 3 (nearby) particles + 1 soft Trust jets only at lowest order α_s^1
- CMSIterativeCone collinear-unsafe for 3 (nearby) particles + 1 soft Trust jets only at lowest order α_s^1
- SISCone(-PR) find ALL stable cones: safe at all orders

Seeds are bad!

Consequences of IRC unsafety

- JetClu, ATLASCone IR-unsafe for 2 (nearby) particles + 1 soft Trust jets only at lowest order α_s^0
- CDF/D0MidPoint IR-unsafe for 3 (nearby) particles + 1 soft Trust jets only at lowest order α_s^1
- CMSIterativeCone collinear-unsafe for 3 (nearby) particles + 1 soft Trust jets only at lowest order α_s^1
- SISCone(-PR) find ALL stable cones: safe at all orders

IR-unsafety usually(!) beyond Tevatron precision

Not sufficient for the LHC

What is a "jet"?

Anti- k_t and jets at the LHC

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L Natal, October 21-31, 2014 26 / 38

э

-

The anti- k_t jets

• All experiments use the anti- k_t algorithm:

[M. Cacciari, G. Salam, GS, 2008]

The anti- k_t algorithm

• From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{-2}R^2$$

 repeatedly find the minimal distance if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet

• *R* is a size parameter (*e.g.* CMS: 0.5,0.7,0.4(soon) ATLAS: 0.4,0.6) It determines the "angular size" of jets.

The anti- k_t jets

• All experiments use the anti- k_t algorithm:

[M. Cacciari, G. Salam, GS, 2008]

The anti- k_t algorithm

• From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{-2}R^2$$

- repeatedly find the minimal distance if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet
- *R* is a size parameter (*e.g.* CMS: 0.5,0.7,0.4(soon) ATLAS: 0.4,0.6) It determines the "angular size" of jets.
- $p_t^{-2}
 ightarrow p_t^{2p}$: p = -1, 0, 1 is anti- k_t , Cambridge/Aachen and k_t

Question 5

Are anti-kt, C/A and k_t IRC-safe?

(a) Yes

- (b) No: IR-unsafe
- (c) No: collinear-unsafe
- (d) No: IR and collinear unsafe

Question 5

Are anti-kt, C/A and k_t IRC-safe?

(a) Yes

Clustering in action: anti- k_t (R = 0.7)

Start with your favourite picture

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-kt and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-kt and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-k_t and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

What is a jet? Anti-kt and jets at the LHC

Clustering in action: anti- k_t (R = 0.7)

Question 6

Why anti- k_t ?

The anti- k_t jets

Main property: hard jets are circular

Examples

Implementation and speed

Question 7

What complexity to cluster N particles?

- (a) $\mathcal{O}(N)$
- (b) $O(N^2)$
- (c) $O(N^3)$
- (d) $\mathcal{O}(\exp(N))$

- 4 E

Question 7

What complexity to cluster N particles?

(c)
$$\mathcal{O}(N^3)$$

Naively:

- Compute all pairwise distances to find the minimum: $\mathcal{O}(N^2)$
- Do that $\sim N$ times

FastJet (1/2)

• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles Cone preferred (easier calibration too)

[M.Cacciari, G.Salam, 05]

FastJet (1/2)

2005: FastJet: a fast implementation of k_t

[M.Cacciari, G.Salam, 05]

• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles Cone preferred (easier calibration too)

• Realistic timing for the LHC! $(\mathcal{O}(N^2) \text{ or even } \mathcal{O}(N \log(N)))$

FastJet (1/2)

2014: FastJet timings for various algorithms

[M.Cacciari, G.Salam, 05]

• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles Cone preferred (easier calibration too)

- Realistic timing for the LHC! $(\mathcal{O}(N^2) \text{ or even } \mathcal{O}(N \log(N)))$
- The situation today: 10-50ms for R = 0.4 (including pileup and areas)

FastJet (2/2)

[M.Cacciari, G.Salam, GS, 2007-2013]

• Grown way beyond just fast recombinations:

- plugins for used jet definitions
- jet areas and background subtraction
- tools for manipulating jets
- more to come...
- FastJet 3.1.0 released in September 2014 see www.fastjet.fr
- Standard interface for jet physics for both theorists and experimentalists

FastJet contrib (since Feb 2013)

fastjet.fr

fastjet-contrib

• contrib svn

FastJet Contrib

The fastjet-contrib space is intended to provide a common location for access to 3rd party extensions of Fastjet.

Download the current version: fjcontrib-1.011 (released 6 April 2014), which contains these contributions. Changes relative to earlier versions are briefly described in the NEWS file.

Package	Version	Information
ConstituentSubtractor	1.0.0	README NEWS
EnergyCorrelator	1.0.1	README NEWS
GenericSubtractor	1.2.0	README NEWS
JetCleanser	1.0.0	README NEWS
JetFFMoments	1.0.0	README NEWS
JetsWithoutJets	1.0.0	README NEWS
Nsubjettiness	1.0.3	README NEWS
ScJet	1.1.0	README NEWS
SubjetCounting	1.0.1	README NEWS
VariableR	1.0.1	README NEWS

- a quick and uniform access to 3rd-party code
- contributors are welcome

(please contact us)

The FastJet lemma

It (i, j) is the pair that minimize the k_t distance and $k_{t,i} < k_{y,j}$, then j is i's nearest neighbour

Proof: assume it is not, then $\exists k \text{ s.t. } \Delta R_{ik} < \Delta R_{ij}$ and

$$\begin{split} \min(k_{t,i}^2, k_{t,i}^2) \Delta R_{il}^2 &\leq k_{t,i}^2 \Delta R_{il}^2 \\ &\leq \min(k_{t,i}^2, k_{t,j}^2) \Delta R_{il}^2 \\ &< \min(k_{t,i}^2, k_{t,j}^2) \Delta R_{ij}^2 \end{split}$$