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Recall: The prominence of the small-z gluons

H1 and ZEUS
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@ 99% of the total multiplicity in pp and AA lies below p; = 2 GeV
@ The bulk of particle production is controlled by partons at small = < 1
@ DIS demonstrates these partons are predominantly gluons

@ Need to better understand gluon evolution at small z
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Recall: The prominence of the small-z gluons

H1 and ZEUS
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@ 99% of the total multiplicity in pp and AA lies below p; = 2 GeV
@ The bulk of particle production is controlled by partons at small = < 1
@ DIS demonstrates these partons are predominantly gluons

@ With due respect to Emmanuel: we do have a good theory at small x |
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Bremsstrahlung

P, > (1-x)P, » —kJ_
kz=XPZ’ kJ_

e as(k?) Cp &2k, do
N 2 k2w

dPBrem = Z ’Mc)l\(kzv kJ—)
a,\
@ Phase—space enhancement for the emission of

o collinear (ki — 0)

e and/or soft (low—energy) (z — 0) gluons

@ The parent parton can be either a quark or a gluon

2
Cp =t =t =4, Ca=TT" =N, =3
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The gluon distribution of a single quark

@ To leading order in a : single gluon emission by the quark —-

dN, gluon dPB rem

ded?k;  dxd?k,

>> “unintegrated gluon distribution”

@ The gluon distribution 2G/(z, Q%) : # of gluons with a given energy
fraction z and any transverse momentum k£, < Q

2
In @

A2 k’i a 7T A2

Q ANjwon  asCp [@dk2 a.C
wGln, Q)= [tk o - 2OF [TOLL 0O

> logarithmic sensitivity to the confinement scale A
> the first ‘transverse’ logarithm of the DGLAP resummation

> no dependence upon energy () since gluon spin j =1 : s/~1
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The gluon distribution of a large nucleus

@ ‘'Large nucleus’ : incoherent superposition of A nucleons, each one
made with N, valence quarks (McLerran-Venugopalan model, 1994)

B/

2Ga(z, Q%) = AN.2Gy(z,Q?)

{4:\7:‘ CKSC 2
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Ry = Ry A3 (nuclear radius)

1/,

000000000080 A v =100 (RHIC) + 1000 (LHC)

@ The small-z gluons are delocalized over a large longitudinal distance:
R
zP, Y
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Gluon saturation in a large nucleus

@ AN, ~ 600 for Au or Pb : can we simply superpose the different
emissions as if they were independent from each other ?

> can one ignore gluon recombination 7
@ In order to interact, gluons must overlap with each other
> they naturally overlap in longitudinal direction ...

> but what about their overlap in the transverse plane ?

R/~

e numerous enough : large density
per unit L area ox A/3 ~ 6

S
an > [ .
100000000008 o large enough : relatively small k|
/0P, .
— o large occupation numbers ~ 1/
e’
S
£0999050000p009
Ra/~
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Bremsstrahlung strikes back

P, > (1-x)P, » -k
K, =X|:’Z ) kJ_
s A%k, d d
d,PBrem: a gR 2L i X Qg j = O dY
T kg T

°oY = ln(l/x> = Tquark — 7gluon -
rapidity difference between the parent quark and the emitted gluon

@ A probability of O(ay) to emit one gluon per unit rapidity
o If a,Y ~ 1, the emitted gluon can in turn emit an even softer one

@ The origin of the ‘BFKL cascades’ (high energy evolution in QCD)
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Two gluons

>

X1 <<

@ The ‘cost’ of the additional gluon :

1

d 1

as/ ﬂzaslnf:a‘gY
$ I x

@ Formally, a process of higher order in g, but which is enhanced by the
large available rapidity interval

@ When oY 2 1 = need for resummation !
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Gluon cascades

@ n gluons strictly ordered in x

T Ly LTy K11 K1

@ The n—gluon cascade contributes

1
] (asy>n

@ Gluons are strongly ordered also in their lifetimes :

h 2k 2z P
aa B
AFE k7 k1
> the smaller x, the shorter the lifetime ! (Lorentz time dilation)

@ During its short lifetime, the gluon at x overlaps with all its parent gluons at
2’ > x, which appear to it as frozen in some random configuration
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BFKL evolution

@ The sum of all the cascades exponentiates :

1
S 0y o o

n!

1

W

n

@ BFKL really applies to the unintegrated gluon distribution
%@%vmm . %m .
x<<1

ngluon N aCr i
yaz S r &2

ewasY
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BFKL evolution

@ The sum of all the cascades exponentiates :

1
S ()" o e o

n!

1

xwas

n

o BFKL really applies to the unintegrated gluon distribution

M

x<<1

ngluon N asCp (1)% e
2 2
dY dk9 0 kg
e 79 = 1/2 : ‘BFKL anomalous dimension’

o wy=4In2(N./m) : 'BFKL Pomeron intercept’
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Gluon evolution at small z

Low Energy
Gluon
Density
Grows

High Energy

@ BFKL: an evolution towards increasing density
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Gluon evolution at small z

Y=In1/x
Saturation

InQ%(Y)=AY

Dilute system

EON

BFKL

—_—

)
|

DGLAP

2
InAgep InQ?

@ BFKL: an evolution towards increasing density
@ Non-—trivial: not true for the DGLAP evolution !

o the BFKL gluons have similar transverse momenta, hence similar
transverse areas = they can overlap with each other

@ The relevant quantity: not the gluon number, but ...
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Color Glass ondensate

@ The gluon occupation number (or ‘packing factor’)

Y =In1/x

(277)3 ngluon

n(z, k) = 2(N2 —1) dY d2k, d%b,

> b, : impact parameter in L plane

2
(@) = Gy x T

S\

BFKL

—_—

¢

Saturation
InQ%(Y)=AY

Dilute system

DGLAP
—_—

In A2

'‘QcD

In Q2

@ When n = 1 : gluons overlap, so they are coherent with each other

o semi—classical description as a strong color field A? :

‘condensate’

o during the scattering, they are frozen by Lorentz dilation, but randomly
distributed due to quantum fluctuations: ‘glass’
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Gluon saturation

Y =In1/x

Saturation
In Q2(Y)= A

.. e
‘ ./4} % %ﬁkﬁ - @ Dilute systom

\

JIMWLK

@ —
k=X Pz
2
In Adco

In Q2

200000

@ ayn ~ 1 : strong overlapping which compensates small coupling

@ The evolution becomes non—linear :
> emissions 4+ recombination = gluon saturation

o BFKL gets replaced by the non—linear Balitsky—JIMWLK equations
Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner (97-00)
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A cartoon of the evolution equations : BFKL

e n(Y,Q?%) : gluon occupation number

@ Rapidity increment Y — Y + dY : a probability a;dY to emit an
additional gluon out of any of the preexisting ones

TgtE @

“Svahan

an wosY
y = n = nY) xe J

e Valid so long as n(Y, Q?) < 1/as (dilute system)
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Conceptual difficulties

@ Unitarity violation: T' ~ ayn cannot exceed 1

@ Infrared diffusion : excursion through soft (~ Aqcp) momenta

Y =In1/x

e The gluon emission vertex is
non—local in k| :

oyn = asmn + asain

= diffusion in p = Ink?

@ Both problems are solved by gluon saturation
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BK/JIMWLK

@ High gluon density: recombination processes leading to saturation

on 1
W:asn—aanZO when nwa—s>>1 J

e Fixed point : the evolution stops when a,n(Y, Q%) ~ 1

@ The saturation condition involves Y and Q?
= saturation momentum Qs(Y)
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A classical stochastic process

dyn(p,Y) = adin(p,Y) + asn(p,Y) — ain’(p,Y) J

@ Cartoon version of the Balitsky—Kovchegov equation

FKPP equation for the ‘reaction—diffusion’ process (A = 2A)

(Munier, Peschanski, 03; lancu, Mueller, Munier 04, Pomeron loops ...)
@ Mean field approximation (large—N.) to the B-JIMWLK equations

@ Known to next-to-leading-log accuracy (consistent with NLO BFKL)
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The saturation momentum

@ The transverse momentum where saturation starts to be important

Y=In1/x
n(z,Q?) = & x ) (2, Q%)
Q2 TR2
TI(.%‘ Q2<L)) ~ i Dilute system
TS Qs
JIMWLK
: rG(x, Q? 1 DGLAP

Q(w) = 0,20 L @

TR T
InASCD In Q2

@ Qs is rapidly rising with 1/z, i.e. with the center-of-mass energy :
As >~ 0.2 + 0.3 at NLO accuracy (Triantafyllopoulos, 2003)

> the actual ‘Pomeron intercept’ in the presence of saturation
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The saturation momentum

@ The transverse momentum where saturation starts to be important

2
Q%) = g x T

—
Q2 (GeV?)

n(z, Q3(x)) ~ o

0.1

2
AQCD

Q2<$) ~ o zGA(xan) -~ A1/3
ST Ry xAs 5
w02 100 10

@ ... and also with the atomic number A for a large nucleus (4 > 1)

> A'/3 ~ 6 for pA and AA collisions at RHIC and the LHC
Edmond lancu 18 / 70
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The saturation momentum

@ The transverse momentum where saturation starts to be important

10 e T e
2y 1=
(o, QY = & x 2G@QY)
b
Q* TR2
- 00 - e
1 § B
2 g -
n(:E,QS(:L‘)) ~ 07 Y
S
0.1 -
Color Glass Condensate
CEG a 2 A1/3 A(Z)CD
Q§<w) = Os A(}{éQS) ~ A Confinement Regime
S
T ’ 102 10° 107 10

A X

o 2~ 1077 Qs ~ 1 GeV for proton and ~ 3 GeV for Pb or Au
> a semi—hard scale, at which perturbation theory is marginally valid
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Gluon distribution & geometric scaling

o )?(x) o< the gluon density per unit transverse area

@ (s(x) : the typical transverse momentum of the gluons with a given z
Q
rG(z, Q%) = /d2bL/ dky ko n(x, by, ky)

1, Q)

o ? for kJ_ < QS(Y)

n(Y, ki) =

1 (Q?(Y)

Qg ki

>% for k1 > Qs(Y)

@ 7, ~ 0.63 : anomalous dimension at saturation

o Geometric scaling : n(Y, k1) = F(k1/Qs(Y))
(lancu, Itakura, McLerran; Mueller, Triantafyllopoulos; Munier, Peschanski, 02-03)
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Gluon distribution & geometric scaling

e (Q?(x) o< the gluon density per unit transverse area

@ ()s(z) : the typical transverse momentum of the gluons with a given z

Q
G (z, Q%) :/d2bL/ dky k) n(x, by, ky)

10 === 3 1000
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01k
I - 10
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Multiplicity : energy dependence

o pp, pA, AA : the saturated gluons are released in the final state
e Particle multiplicity dN/dn o zG(z, Q%) x Q%(x) ~ s*+/2

kLNQs

As ~0.2+0.3

New Trends in High-Energy Physics
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Average transverse momentum in p+p

o Typical transverse momentum (pr) o Qs(z) ~ E*/2 (E = /)

0.60
o CMS 0.142+0322 EO115 -
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2 g
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(McLerran and Praszalowicz, 2010)
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Geometric scaling at HERA: F,

@ DIS cross—section at HERA (Stasto, Golec-Biernat, Kwieciriski, 2000)

o(r, Q%) vs. 7= Q?/Q*(x) o< Q?/2"3 2 <0.01, Q%< 450 GeV?
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Geometric scaling in p+p at the LHC

@ Ratio between particle production at 2 different energies, s1 and s

(dN/dnd?p)|,, . B pi
Ry sy, = (dN/dTId2pL)‘S2 — 1 as a function of 7= 7@?(1%/\/5)

8 8
! ® Ry ! O Ruo
6 N A R7/2.35 6 N A R7/2 36
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5 * { { 5
x i { * x 41
3 [ ¢ i i ¥
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Particle production
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From collinear factorization ...

| —
\ =)
E)
D,
P~ 0,1y %mmm,\ Ky,
Po1 &0, JTJC@WV“ kai.m

&

do do
=21G 2) 2@ 6@ (k1 + kot )5
d2]€1Ld2k2Ld771d?72 I ('rlaQ )1:2 ($27Q ) ( 1L+ QL)dki
N d Ngtuon
I’G(.’I}7Q2) = / d2p @(I‘7pl>, @(.T,pj_) = xﬁ

@ Assumes pi |, p2 ~ Agep < ki
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to kr—factorization ...

g“mo'm
%(}3 0000000000

T KL
PiL, Ll
211

0000000 kay,

@ In reality p11, po1 ~ Qs can be comparable with k; |

do
= [d? d2py, 6@ kK
A2k, A2k, Ay digo / P1L / P21 09 (p1L +pos — k1L —koy)

X ®(z1,p11) O (2, P21 )

o)
2

ki

o Consistent with the BFKL evolution (Catani and Hautmann, 1994)
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Pii,xy

J2ARE ]
J_ —'r]
To ~ ——e

NG

v
@ A parton with k| < Qs can also be produced via the fusion of 2 initial
partons : gg — g, qg — q

do Qg

——~ 2 [d’p, ® D (w9, k) —
a2k dny ki pLP(21,p1) P(x2,k1L — 1)
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Forward quark production

k
T1p ~ iein
n~3+4
L1 _ 621 400 = 3000
1)

| eg 21 =02 & xo = 1071
® p11L ~Aqgep < ki ~ Qs(x2) => hybrid factorization

do Q
—_ ~ k)@ k
koJ_d’r] ki $1Q(w17 J_) (x27 J.)

@ So far though only linear evolution (BFKL) : no saturation effects
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Forward quark production

k
T1p ~ iein
n~3+4
L1 _ 621 400 = 3000
1)

| eg 21 =02 & xo = 1071
® p11L ~Aqgep < ki ~ Qs(x2) => hybrid factorization

dN 5 dN dk?
Log s X | =4
dn A%k, dn k4

o Without saturation ®(z2,k,) o< 1/k? = dN/dy is divergent !

New Trends in High-Energy Physics From CGC to QGP - Il Edmond lancu 28 / 70



Towards C factorization

J

%o . p

00000000000000¢00000000000000000000000000000000000000000

e kr—factorization is not consistent with saturation/JIMWLK evolution
e assumes single scattering (like collinear fact.) : “leading—twist”
e unintegrated gluon distribution : a 2—point function
e multiple scattering probes higher—points of the gluon distribution

e multiple scattering and saturation are mixed under the evolution
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Light—cone variables

@ How to compute multiple scattering in QCD at high energy 7

@ Convenient to use light—cone coordinates and momenta

t

X X +

x (t:l:z)

[
S ‘
[\

+

z P:ﬁ

P =" .pL)

(po + p-)

pra=pla+pal—ploa;
@ Ultrarelativistic right mover :

o z~t => 2~ ~ 0 (Lorentz contraction) & a2t ~ /2t (LC time)

o p.~py=FE = p'~(p* OOJ_)Wlthp"'—\fE
o Left mover: the roles of ™ and 2~ (or p* and p~) get interchanged
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Multiple scattering in pA : Wilson lines

@ A quark (or gluon) from the proton scatters off the dense gluon
distribution inside the nucleus: L () = ji (x) A% (z)

e the quark color current density
jh(x) = gy(a)y" ey (x)

o the quark S—matrix operator :

S' _ Teifd4w Ling ()
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Multiple scattering in pA : Wilson lines

@ A quark (or gluon) from the proton scatters off the dense gluon
distribution inside the nucleus: L () = ji (x) A% (z)

o the quark color current density

ji(@) = g(@)y"t"y (@)

S ‘
é 3 8 e the quark S—matrix operator :

& — ifd4a:£;m(a:)
0 I S =Te
@ View the process in the nucleus rest frame : the quark is very energetic

@ Quark energy E > typical k; < Qs = small deflection angle § < 1

New Trends in High-Energy Physics From CGC to QGP - Il Edmond lancu 31/70



Multiple scattering in pA : Wilson lines

@ A quark (or gluon) from the proton scatters off the dense gluon
distribution inside the nucleus: L () = ji (x) A% (z)

o the quark color current density
T 7 |
g Ja(x) = go(z)y"t*y(x)

<1
s
Bl o the quark S—matrix operator :

g _ Teifd“x[,im(z)

0 L
@ View the process in the nucleus rest frame : the quark is very energetic
@ Quark energy E > typical k; < Qs = small deflection angle § < 1
@ The quark transverse position is unchanged: eikonal approximation
Gh(x) ~ " gta8(z7)6P (@ — @)
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Multiple scattering in pA : Wilson lines

@ A quark (or gluon) from the proton scatters off the dense gluon
distribution inside the nucleus: L () = ji (x) A% (z)

o the quark color current density

1 xy . J - a
S 5 j(@) = gi(@) 1Y (x)
g‘ o}
3 % é o the quark S—matrix operator :
A (a7 2 .
(ll : L,) A A~ S' _ Tei.] a4z ﬁint(w)
0 L

@ View the process in the nucleus rest frame : the quark is very energetic

@ Quark energy E > typical k; < Qs = small deflection angle § < 1

@ The S—matrix reduces to a Wilson line (color rotation)

Uyw1) = Vile) Ui(e,), Viel) = Texp{ /dmm (2 M)t}

New Trends in High-Energy Physics From CGC to QGP - Il Edmond lancu 31/70



Dipole picture

@ The p)—spectrum of the quark after crossing the medium (r =  — y)

il

xt=0 L

P

|

I

|

|

|

|

|

|
X e

I

|

|

I

|

|

|

|

|
)

dN dPr 1
T = G ) S = n(iay))

> sum over the final color indices, average over the initial ones

> average over the distribution of the medium field A7

@ S—matrix for effective color dipole: ¢g pair in a color singlet state
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factorization for ‘dilute—dense’ (pA, forward pp)

dN d2 4
Fpty ~ 71 @) [ o TS

@ The Fourier transform of the dipole S—matrix plays the role of a
generalized unintegrated gluon distribution

e includes multiple scattering in the eikonal approximation...
e ... and saturation via the CGC average over the target wavefunction
o it evolves according to BK equation (special case of JIMWLK)
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The C weight function

k= xP 7 Alp]
@ An effective theory for the small-z gluons:

o> classical color fields A, radiated by randomly distributed color charges

DY FH(x) = 07 p" (et @) (DY =00 — gf"" A7)
e Wy [A] : functional probability distribution for the color fields/charges

> information about all the n—point gluon correlations with n > 2

(Sayly = [ (DA Wy (4] - (V1) (4]
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§
A
=

| Alp]

xF
e Functional evolution equation for Wy [A] with increasing Y =1In1/x
d
gy WAl = HWy[A]  (JIMWLK)

e Equivalent to an infinite hierarchy of non—linear equations for the
correlations of products of Wilson lines (Balitsky, 96)

> a complete basis of high—energy S—matrices for dilute projectiles

1
Sm1$2---m2n = ﬁtr (le Vacg Vm2n71VaI2n)
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The nuclear modification factors

@ Particle production in pA divided by particle production in pp scaled
up by the number of independent binary collisions A'/?

I> the proton scatters off the A'/3 nucleons at its own impact parameter

_ 1 dNpa/d?*pydn
T AY3 ANy /d?pidn

?

1 dNAA/d2pLdT]
A4/3 ANy, /d2p dn

@ An important test of nuclear effects at both RHIC and the LHC
> Raa = 1if AA = incoherent superposition of pp collisions

@ ... but for hadrons it is significantly different from 1 !
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R44 at RHIC and the LHC

PHENIX Au+Au Vs, = 200 GeV - L
10 | - n Directy ® 0-5% Pb-Pb m=27ETeV
E A T © 70-80% 1
E ® 1 1o -
L Jet Quenching Calculation J

7 | pem——
- HH++++++++ +A f 7777777 ] jw b {

gt

Ll
2 4 6 8 10 12 14 16 0‘7\\\\‘\“\\\‘\\\\“5\\\\;0
Transverse Momentum p (GeV/c) P, (Gevic)

Suppression Factor

T

10°

o \H‘

@ As expected, Ry4 = 1 for direct photons : no strong interactions

@ Strong suppression for hadrons in AA (RHIC and LHC): R44 < 0.3
@ Possible explanations :

e initial state effects: saturation in the nuclear wavefunctions
o final state effects: interactions in the fireball created by the collision
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The ‘pA benchmark’ : d4+Au at RHIC

1 dNggpae/d*prdny
2AY/3 dNpyp/d?pidn

Ryjau =

@ One expects no fireball in d4+Au = no final state interactions

a0 e d+Au FTPC-Au 0-20% |
'13 s —&-d+Au Minimum Bias -
151 1
- ]
051 .
L * Au+Au Central ]

coeo e e e b e ey
% 2 4 3 8 10

p; (GeVic)
@ No suppression, rather an enhancement at 7 ~ 0 : ‘Cronin peak’

@ The suppression seen in R44 is a final state effect
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The ‘pA benchmark’ : d4+Au at RHIC

1 dNggpae/d*prdny
2AY/3 dNpyp/d?pidn

Ryjau =

@ One expects no fireball in d4+Au = no final state interactions

a0 e d+Au FTPC-Au 0-20% |
'13 s —&-d+Au Minimum Bias -
151 1
- ]
051 .
L * Au+Au Central ]

coeo e e e b e ey
% 2 4 3 8 10

p; (GeVic)
@ No suppression, rather an enhancement at 7 ~ 0 : ‘Cronin peak’

@ Can one understand the Cronin peak within the CGC ?
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Midrapidity: the Cronin peak

dN —ip-
de = z1q(21, Q%) /d27° e PT(S(7)) e,
e d+Au collisions at RHIC: /s =200 GeV, p; ~ 2 GeV and =~ 0

e 11 = x5 = 0.01 = the proton is still dilute
e nucleus : a collection of uncorrelated valence quarks (MV model)

e independent scatterings off the valence quarks = random walk in p

In El N R
SA(Z‘vaL) =~ = 2 € Q3

38
é g g
— = (p2) = Q2(A) = ABQ?

L

o the distribution in p | gets shifted towards harder values ~ Q,(A)

@ No such a shift in pp collisions = Cronin peak in R4
From CGC to QGP - Il Edmond lancu 39 /70
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Forward rapidities: R,4 suppression

@ Increasing n > 0 <= high—energy evolution in the target (p or A)

@ Use BK equation for the evolution of the dipole S—matrix

o

1.4
1.2 o
: R, — 1 Sa(z2,p1)
PA T oA1/3 &
08 A / SP($27PL)
0.6
pL _
0.4 Ty = e N
0.2 \/g
’ 10 10 100 100 10t 10° 10® 10 10® ad]
pr (Gev/c)

n =0, 0.05 0.1,0.2, 0.4, 0.6, 1, 1.4 and 2 (BK equation: Albacete et al, 2003)

@ Rapid evolution with 1 : no Cronin peak for = 0.4
o for p; < Qs(A,x4), the nucleus is already saturated = no evolution

o for p; ~ Qs(A,x4), the proton is still dilute = rapid evolution

@ The denominator (p) grows much faster than the numerator (A)
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Rqiaq at RHIC : increasing n

e This is in good agreement with the RHIC data (BRAHMS)

=
1l
)
[

n
TTT T T TTT

Rd+Au
"y
+
o
s
aRREE RS
’

)

>

L

L S
H |
>
'|||||||||

05

h
N,
}

I,

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 3 4 5
pr [GeVi/c] pr [GeVic] pr [GeVic] pr [GeVic]

@ The Cronin peak disappears already after one unit of rapidity !
o LHC :zy ~ 2y~ 103 forn =0

o high-energy evolution is important already at mid rapidity

e competition between multiple scattering in the nucleus and rapid
evolution of the proton
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»+ph at the LHC fi

p-Pb |5, =5.02 TeV 3 B
@ ALICE, NSD, charged particles, n, | <0.3 3 chb(n=0) [0 reBK-MC kt-factorization
3 " K ePs09 nPDF
E —-— IP-Sal (Trbedy & Venugopalan)
= 15F — === rcBK (Tribedy & Venugopalan) 15
T Saturation (CGC), rcBK-MC E Wk
-6H Saturation (CGC), rcBK E
045 [l saturation (CGC), IP-Sat E
1.85 1 Shadowing, EPS09s (<) El o5k
1.6 110 pQCD + cold nuclear matter 3
1.4F E
% 12F = 0 L " L L L o
s £ 0 2 4 6 8 10 12
1 PYRCORT D E pt (GeVic)
0.8F = 2 2
E E ch 1cBK-MC, min bias
0'65 3 Repo(n=4) 1¢BK-MC, Npart >10
041 o = cme=5TeV FoBK-MC, LO+inelastic term a=0.1
E 5,=0: 3 15 H1s
18 HUING2.1 DQHC, 52028 E A EPS09 nPDF
161 -+ DHC, no shad, E
14F < =% —— DHC, no shad., indep. frag. -
E| 1F
1.2 ]
1 E|
08 osk
0.6 3
0.4E s L s s L L L L L I
2 4 6 8 10 12 14 16 18 20
o . L L L L o
0 2 4 6 8 10 12
pT (GEV/C) pt (GeV/c)

@ No Cronin peak ... in agreement with the CGC expectations
(Tribedy, Venugopalan; Rezaeian; Albacete, Dumitru, Fujii, Nara, 11-12)
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»+ph at the LHC for central rapidities

1.8f p-Pb |5, =5.02 TeV 3 B B
1.6 @ ALICE, NSD, charged particles, n_ | <0.3 3 Rd;n('r]=0) [ reBK-MC kt-factorization
14F 3 " K ePs09 nPDF
“E E —-— IP-Sal (Trbedy & Venugopalan)
1.2 = 15 ===~ 1cBK (Tribedy & Venugopalan) 15
1
0.8 3
E Saturation (CGC), rcBK-MC E s
0.6 Saturation (CGC), rcBK E
045 [l saturation (CGC), IP-Sat E
1.85 1 Shadowing, EPS09s (<) El osk
1.6 110 pQCD + cold nuclear matter 3
1.4F E
£ qoF E o n n L n n 0
o 0 2 4 6 8 10 12
1 PYRCORT D E pt (GeVic)
0.8F | 2 ™ S - 2
E E o 1cBK-MC, min bias
0.6E 3 Rpr(n —4) rcBK-MC, Npart >10
041 o = cme=5TeV FoBK-MC, LO+inelastic term a=0.1
E 5,=0: 3 15 H1s
18 HUING2.1 DQHC, 52028 E A EPS09 nPDF
161 -+ DHC, no shad, E
14F < =% —— DHC, no shad., indep. frag. -
E| 1F
1.2 ]
1 E|
0.8 osk
0.6 3
0.4E s L s s L L L L L I
2 4 6 8 10 12 14 16 18 20
o . L L L L o
0 2 4 6 8 10 12
pT (GEV/C) pt (GeV/c)

@ Various models could be differentiated by going to forward rapidities

@ This could be measured e.g. by LHCb (large n & semi-hard p,)
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Getting quantitative: d+Au at RHIC

@ One free parameter: the nuclear saturation momentum at 2y = 1072

STAR n =4

_ BRAHMS

= h(x20); n=2.2; K=1

« h(x4);1=3.2; K=1
STAR

E 4 7% m=4; K=0.3 —
E 9
10 %
E S
102 i
E LS
E i)
10° “’tﬁ
104%
10“‘% [
'0‘6;\\0.\5\\\\\1\\\\1.‘5\\\\£H\2‘\5\\\\\3\\\5.\5\\\\;\\\\4.\5\\\ 107° i 12 14 16 1z 3
p, (GeV) p1[GeV]

@ Left: LO in the CGC (Albacete and Marquet, 2010)

> note K —factor K = 0.3 for ©°: normalization under predicted

@ Right: LO and NLO in the CGC vs. NLO in pQCD (‘exact’)
(Stasto, Xiao, Yuan, Zaslavski, 2014)

> no K —factor anymore; CGC goes right; pQCD over predicts
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AA collisions : Glasma & the Ridge

ATLAS Preliminary 2<ppb <3 GeV
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Nucleus—nucleus collisions

@ "Dense—dense scattering” : much more complicated !

@ Non-linear effects enter at all levels

e in both incoming wavefunctions: gluon saturation
e in the scattering process : multiple interactions

e in the partonic medium created by the scattering: final-state
interactions
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Nucleus—nucleus collisions

@ "Dense—dense scattering” : much more complicated !

@ Non-linear effects enter at all levels
e 2 CGC weight functions: Wy, [p1], Wy, [p2]
e in the scattering process : multiple interactions

e in the partonic medium created by the scattering: final-state
interactions
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Nucleus—nucleus collisions

@ "Dense—dense scattering” : much more complicated !

@ Non-linear effects enter at all levels
e 2 CGC weight functions: Wy, [p1], Wy, [p2]
e classical Yang—Mills equations with 2 sources: p1, po

e in the partonic medium created by the scattering: final-state
interactions
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Nucleus—nucleus collisions

@ "Dense—dense scattering” : much more complicated !

@ Non-linear effects enter at all levels

o 2 CGC weight functions: Wy, [p1], Wy, |[p2]
o classical Yang—Mills equations with 2 sources: p1, po
e the CGC provides only the initial state for the subsequent evolution of

this partonic matter
Edmond lancu 45 / 70

New Trends in High-Energy Physics From CGC to QGP - Il



The CG  factorization for ‘dense—dense’

@ Numerically solve classical YM equations with 2 sources (2D lattice)
D, F"(z) = 6" pi(z) + " po(x)
@ Decompose the classical field A% in Fourier modes = gluon spectrum

@ Average over p; and po using the CGC distributions of the nuclei

dN dN
N = Dy Dpa] W W o] ———
<dY d2pj_ > /[ pl p2] Ypheam—y {pl} K)Qﬂﬂ)-&—Y [pz] dY d2pJ_

> JIMWLK evolution from Yj,eam up to the rapidity Y of the produced gluon

—IH«H«WHHWHHHHWLWY

- Ybeam p2 y pl + Ybeam

class
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Gluon spectrum from classical Yang—Miills

12
10

1.2; —vy=0 ,

Clk;)

O‘N‘J}‘O‘l‘m‘

> Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)
> Left: unintegrated gluon distribution for different values of Y = In(1/x)

> Right: spectrum of gluons produced in AA for different energies (y o< In E)

@ Particle production at high energy can be computed from QCD ©
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Gluon spectrum from classical Yang—Miills

12
10

1.2; —vy=0 ,

Clk;)

O‘N‘J}‘O‘l‘m‘

> Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)
> Left: unintegrated gluon distribution for different values of Y = In(1/x)

> Right: spectrum of gluons produced in AA for different energies (y o< In E)

e Particle production at high energy can be computed from QCD ©
@ Hadron spectra can be modified by final state interactions ...

@ ... but some gross features and special correlations will survive !
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Recall: Multiplicity : energy dependence

o Particle multiplicity dN/dn oc Q%(A) ~ s*s/2

UAS, pp NSD
14 CDF, pp NSD
CMS, op NSD T — T
ALICE, pp NSD 0.1
12 UAL, pp NSD

ALICE, AA(0-5%)
BRAHMS, AA(0-5%)
PHENIX 1, AA(0-5%)
PHENIX 2, AA(0-5%)
STAR, AA(0-5%)
NAS0, AA(0-5%)

EJe4dPr*AO0OD D

\
EEEE FEETE FRETE L YEEE FERT FEEe i

Saturation (CGC)
6 =
. (2/Npar)dN N A/dn’ ,1‘;‘:‘/
C] v
I o2
) - - dN_ /dn
0 PP B B |
10" 10° 10° 10

Vs [GeV]

@ Slight difference between energy growth in pp and AA
(see Levin, Rezaeian, '11)
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Boost invariance & longitudinal expansion

@ The classical field is invariant under a boost along the collision axis

> it depends upon proper time 7 but not upon space—time rapidity 7;
T = const

- n = const

//

/

@ Under a boost with velocity vg

ns — Ns + B with tanh g = vy
@ Free streaming leading to longitudinal expansion (Bjorken, 1983)
> particles propagate at the speed of light away from the interaction point

1.1
z ~ vt = nsziln +

= —Intan-= 17
1—wv, 2
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Boost invariance & longitudinal expansion

@ The classical field is invariant under a boost along the collision axis

> it depends upon proper time 7 but not upon space—time rapidity 7;

T = const

FHZCOM T =Vt2—22 = V2t

//

/

@ Under a boost with velocity vg
Ns — ns + B with tanh 8 = vy

@ Boost invariance = particle distribution is independent of 7
> particles propagate with the same probability along any direction 6
> they separate from each other in the z direction
> radial expansion remains negligible until 7 ~ R 4
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Multiplicity : rapidity dependence

e RHIC (PHOBOS) data for dNg,/dn as a function of 7

5

/2)

part
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dN,, /AN
N

Au+Au

200 GeV 0-6%
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L]

o
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© o
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o
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> flat in 7 around midrapidity : ‘Feynman plateau’

o> for produced particles, 9] < Nbeam
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Long—range rapidity correlations probe early times

@ Particles originating from the same interaction region are causally
connected even if they make very different angles

o At late stages, they can be correlated with each other even if they
have very different rapidities

@ Vice—versa, the long—range correlations in rapidity are necessarily
generated at early stages

detection

freeze out

latest correlation
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The Ridge in AA

@ A natural explanation for the ‘ridge’ :

e di—hadron correlations long—ranged in An & narrow in A¢
e abundantly observed in AA collisions at RHIC and the LHC

dNpair AN AN

A2py A d2py de  d2py dipy d2pg) diy
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The Ridge in AA

@ A natural explanation for the ‘ridge’ :
e long—range correlations in An : boost invariance at early times

e collimation in A¢ can be explained by radial flow

dNpair AN AN

A2py A d2py de  d2py diy d2pg) diy
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Glasma

e Right after the collision, the chromo-electric and chromo-magnetic
fields are purely longitudinal

@ Flux tubes which extend between the recessing nuclei

‘glasma’ (from ‘glass’ + ‘plasma’) (McLerran and Lappi, 06)

2
gut

@ At time 7 ~ 1/Qs, the transverse fields are regenerated
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From flux tubes to particles

@ At time 7 ~ 1/Qs, the glasma flux tubes break into particles (gluons)

@ Gluons emitted from the same flux tube are correlated with each other

e correlation length in the transverse plane: Ar; ~ 1/Q;
o correlation length in rapidity : An ~ 1/a

e to start with, this correlation is isotropic in A®
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From flux tubes to particles

@ At time 7 ~ 1/Qs, the glasma flux tubes break into particles (gluons)

@ Gluons emitted from the same flux tube are correlated with each other

e correlation length in the transverse plane: Ar; ~ 1/Q;

e correlation length in rapidity : An ~ 1/ay

e in presence of radial flow, there is a bias leading to collimation in A®
> more particles along the radial velocity v, than perpendicular to it
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The Ridge in pp and pA

@ LHC : quite surprisingly, a ridge is also observed in p+p and p+A
events with unusually high multiplicity

CMS pPb \[s,,, = 5.02 TeV, N > 110
(d) CMS N> 110, 1.0GeV/c<p_<3.0GeV/c PR NS VN2
T 1<p, <3GeVic

(b)

= 519 18
< =
= o|g 1.7
3 £ 16
&

@ What is the origin of the azimuthal collimation 7
e Can flow develop in such small systems (~ 1 fm) ?

@ This might reflect the momentum correlations at early times (glasma)
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The thermalization puzzle

@ Strong experimental evidence (RHIC, LHC) in favor of an intermediate
phase of quark—gluon plasma in ‘local thermal equilibrium’

e the parton distribution is isotropic in momentum space and slowly
varying in space and time; e.g.

n(t,x,p) = where T =T(t,x) is slowly varying

e /T 11
o ... albeit there is no direct evidence for thermal distributions, like above
@ Strongest evidence in that sense: the great success of nearly ideal
hydrodynamics in describing collective phenomena like elliptic flow

e requires small thermalization time: 79 <1 fm ~ 10723 secs

@ This is very puzzling though

o the early distribution is highly anisotropic (‘glasma flux tubes')
e to equilibrate, particles need to efficiently exchange 4—momentum

o difficult to achieve for an expanding, weakly-coupled, system
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The thermalization puzzle (2)

@ Just after the collision, the partonic matter is highly anisotropic

o the glasma flux tubes have ‘negative longitudinal pressure’ :
they oppose to expansion (like a string of rubber)

e 0 0 0 e 00 0
1o e3 0 o0 . [oeo0 o0
Teq 0 0 €/3 0 Toad = | 0 g ¢ o
0 0 0 ¢/3 00 0 —¢

e in equilibrium: Pp = P;, =¢/3 ; in the early glasma: Pp =c = —Py,

@ The original anisotropy can be amplified by the longitudinal expansion
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Thermalization in perturbation theory

@ Particles can exchange energy and momentum through collisions.

@ Weak coupling: the dominant mechanism is 2 — 2 elastic scattering

I

o Cross—section (o) scales like |amplitude|?, hence like g* ~ o2
@ Mean free path (/) = average distance between successive collisions
1 1
~ Gomsity o~ a2
e Typical equilibration time: 7oq ~ (/v ~ 1/a?
@ Weakly coupled systems have large equilibration times | &
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The role of the strong fields

@ Heisenberg's uncertainty principle requires
1
mean free path / 2> de Broglie wavelength A ~ —
p

@ In general, weakly interacting systems have ¢ > A

o weakly coupled QGP, temperature T': A\ ~ 1/T while £ ~ 1/[a?T]

@ However, the situation can change for a particle interacting with a
strong electric, or magnetic, field, as in the glasma

o domain of size Q! where the (chromo) magnetic field is |B| ~ Q2%/g

d . B
Lorentz force : d—z; =gux B = 0 ~ 9B ~ Qs
p

©B
o time spent in the domain 7 ~ Q7! = Af ~ O(1) g ,,,,,,,,

@ Mean free path £ ~ Q;! ~ 1/p : as low as permitted by Heisenberg
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)

@ Numerical solution to classical Yang—Mills eq. confirms the anisotropy

0.1

0 \/
TPy
_TPp

0 0.5 1 1.5 2 2.5 3
2
gt

o the saturation momentum Q, = g*/ sets the scale
o 7¢ =7(2Pr + Pr) ~ const. (longitudinal expansion)

e TPy starts by being negative, then it becomes positive, but it remains
much smaller than 7Pp
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)
@ However, this (boost—invariant) classical solution is unstable under
(rapidity—dependent) quantum fluctuations.
@ The fluctuations can be added to the initial conditions

o, =810 (g =0.1)

T [fm/c]

0.01 0.1 1 2 3 4
T T

+1 e

12
13

pr/c
P/ I

0.1 1.0 10.0 20.0 30.0 40.0
QT

o for very small g = 0.1, the solution preserves boost invariance, as at LO
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)

@ However, this (boost—invariant) classical solution is unstable under
(rapidity—dependent) quantum fluctuations.

@ The fluctuations can be added to the initial conditions

o, =2107% (g =0.5)

T [fm/c]
0.01 0.1 1 2 3 4
+1
12 T 4 .
13 ) Y A )
. P WA WA AW
o ’\/ I YT . i
Pr/e
PL/e
1 Lo
i
0.1 1.0 10.0 20.0 30.0 40.0

Qs T
e for g = 0.5, it approaches isotropy: Pr/Pr ~ 0.7 ©)
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Small n/s at weak coupling but strong fields

viscosity mean free path

entropy density ~ de Broglie wavelength ™~

o Infinitely strong coupling (AdS/CFT) : /s = 1/4n

n /
—_~ =~ 1
Pl o(1)

(in units of h)

@ Glasma : strong classical Yang—Mills fields at weak coupling
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Di—hadron production

1 % jet
% ’ /"
2%
P~ 0.2

2

N
Ob‘ 5

A e A

o~ 0 STO0000000
PaL = ié;%g{fﬁgl; 00 kyl 1 / A D
S

(§ et 7 \

do
d?ky | d%koy dnidne

i
dk?

= 211G (x1, Q%) 29G (12, Q%) 6P (k11 + ko)

e Within collinear factorization : k;| + ko =0
> a pair of hadrons propagating back—to—back in the transverse plane
@ Their azimuthal distribution presents a peak at A¢ = 7
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Di—hadrons with intrinsic p

“ |
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@ “Intrinsic p, " (BFKL evolution, saturation) = |k1| + ko || ~ Qs

do
= [d? d? 52 ki —k
d2k1ld2k2ldn1d772 / P11 / P21 (pu_ + P21 1L 2J_)
o
X (I)($17p1L) Tq)(l‘g,le)
dki

@ The peak at A¢ = 7 acquires a broadening d¢ ~ Qs/k |

> a potential signature of saturation when k| ~ Q
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Di—hadron azimuthal correlations at RHIC

_ deair dN dN
— d?pyidmd?peidne d2pyidm d2paidn

C(A9)

e Midrapidities (171 ~ 72 ~ 0) and semi—hard p, ~ 1+ 3 GeV

N L L B A B BRI
F » d+Au FTPC-Au 0-20% B
s ~ 02— =
Jet / <e1 r . —— p+p min. bias _éﬂn B
5 L |
/ > F * Au+Au Central R
= L |
7/ .qg: 0.1j :‘ i
4 P ‘ ]
= i A ‘ ! 1
- .4 ! : 4 .
/ AD T L
O Ry e ki & R S SR
jet/\
A ¢ (radians)

@ p+p or d4+Au : the peak at A® = 7 is visible and equally pronounced
o Au+Au : strong suppression of the ‘away peak’ (final state effect)
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Di—hadron azimuthal correlations at RHIC

dNpair dN dN

C(Ap) = —
(89) d?py  dmd?peidne d2pyidm d2poidn

e Midrapidities (171 ~ 72 ~ 0) and semi—hard p, ~ 1+ 3 GeV

. T
e d+Au FTPC-Au 0-20%

/ he 0 gt ;
A ¢ (radians)

@ Broadening in d+Au is controlled by jet fragmentation, like in p+p

. =~ 0.2 -
Jet / g r - ——p+p min. bias is:n R4
5 L i
> F * Au+Au Central R
S L i
g 0.1 —
o r 1
/ = L 1
4 L i
SN
- |-
1of

@ What happens if one moves to forward rapidities (larger Qs(A)) ?
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Forward rapidities: p+p vs. d+Au
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@ Predicted by the CGC (Marquet, 2007; Albacete and Marquet, 2010)
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Forward di—hadron production in pA (1)

@ A quark from the proton emits a gluon while scattering off the nucleus

2

> the gluon can be emitted either before, or after, the scattering with the
‘shockwave’ (Lorentz—contracted nucleus)
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Forward di—hadron production in pA (1)

@ A quark from the proton emits a gluon while scattering off the nucleus

X X

e 7 % J
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> emissions in the DA (at x, y), absorptions in the CCA (at Z, §)

> Fourier transforms: * —Z — p1 & y—4 — po

@ Each parton (g, g) that crosses the shockwave acquires a Wilson line
Ul(x) = Texp {ig/ do™ A (27, x) T“}
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The quadrupole

@ Most complicated piece: a color quadrupole

X X

|

|
N

|

|

l

T (U T [viteve])

J’:y

! V =quark, U = gluon

@ Target average with CGC weight function Wy [A™]
> can be computed by solving Balitsky—JIMWLK equations ... but it is hard
(see however Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan, 2011)
@ Mean field approximation : a Gaussian Ansatz for Wy [A™]

> the quadrupole and all the higher n—point functions of the Wilson lines
can be related to the color dipole, as obtained by solving the BK equation

(lancu, Triantafyllopoulos, 2011)
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Di—hadron correlations in the MFA

(Lappi and Mantysaari, 2012; see also Stasto, Xiao, Yuan, 2011)

P =2GeV, pi = 1GeV, yy =y = 3.4 P+D,3 <y, g2 <38, 0.5GeV < pf* < 0.75GeV
+p, Q2 = 0.2GeV? + f o L1GeV < pf" < 1.6GeV
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..... p+Au, Q% = 0.72GeV' 0.20 r
—  d+Au, Q% = 0.72GeV? +
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o left: different combinations projectile—target

@ right: comparison with RHIC data (PHENIX, 2012)
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The geometry of a HIC

Non-central 2/
collision

“peripheral” collision (b ~ b
“central” collision (b ~ 0)

max)

Reaction plane

Number of participants (N,,): number of incoming nucleons
(participants) in the overlap region
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